COURSE STRUCTURE (R20)

Definition of Credit (C)

1 Hour Lecture (L) per week 1 Credit

1 Hour Tutorial (T) per week 1 Credit

1 Hour Practical (P) per week 0.5 Credit

Structure of B. Tech program Regulation R20

S.No.	Category	Code	Suggested Breakup of Credits by AICTE	Suggested Breakup of Credits by APSCHE	Breakup of Credits
1	HumanitiesandSocialSciencesincludingManagement courses	HS	12	10.5	10.5
2	Basic Science courses	BS	25	21	21
3	Engineering Science courses including workshop, drawing, basics of electrical/ mechanical/ computer etc	ES	24	24	25.5
4	Professional core courses	PC	48	51	49.5
5	Professional Elective courses relevant to chosen specialization/ branch	PE	18	15	15
6	Open subjects – Electives from other technical and /or emerging subjects	OE	18	12	12
7	Project work, seminar and internship in industry or elsewhere	PR	15	16.5	16.5
8	MandatoryCourses[EnvironmentalSciences,Inductiontraining,Induction,EssenceIndianTraditionalKnowledge]	NC	Non-Credit	Non-Credit	0
9	Skill Oriented Courses	SC		10	10
	Total		160	160	160

SEMESTER-WISE STRUCTURE OF CURRICULUM

SEMESTER-WISE STRUCTURE OF CURRICULUM

Course structure for eight semesters during four years of study is as follows

I Year I Semester (Semester-1)

S. No.	Category	Course Name	L	Т	Р	С
1	HS1101	Communicative English	3	0	0	3
2	BS1101	Mathematics-I	2	1	0	3
3	BS1102	Applied Physics	3	0	0	3
4	ES1101	Problem Solving using C	3	0	0	3
5	ES1102	Engineering Graphics	1	0	4	3
6	HS1101L	Communicative English Lab	0	0	3	1.5
7	BS1102L	Applied Physics & Virtual Lab	0	0	3	1.5
8	ES1101L	Problem Solving using C Lab	0	0	3	1.5
Total Credits						19.5

Category	Credits
Humanities and Social Science Courses	4.5
Basic Science Courses	7.5
Engineering Science Courses	7.5
Total Credits	19.5

S. No.	Category	Course Name	L	Т	Р	С
1	BS1201	Mathematics-II	2	1	0	3
2	BS1202	Applied Chemistry	3	0	0	3
3	ES1201	Basic Electronic Devices and Circuits	2	1	0	3
4	ES1202	Problem Solving using Python	3	0	0	3
5	PC1201	Basic Circuit Analysis	2	1	0	3
6	BS1202L	Applied Chemistry Lab	0	0	3	1.5
7	ES1201L	Basic Electronic Devices and Circuits Lab	0	0	3	1.5
8	ES1202L	Problem Solving using Python Lab	0	0	3	1.5
9	MC1201	Indian Constitution	2	0	0	0
	Total Credits					19.5

I Year II Semester (Semester-2)

Category	Credits
Basic Science Courses	7.5
Professional Core Courses	3
Engineering Science Courses	9
Mandatory course (AICTE)	0
Total Credits	19.5

S.No	Category	Course Title	L	Τ	P	С
1	BS2101	Mathematics-III	2	1	0	3
2	ES2101	Data Structures	3	0	0	3
3	PC2101	Electrical Machines –I	2	1	0	3
4	PC2102	Electrical Circuit Analysis	2	1	0	3
5	PC2103	Electromagnetic Fields	2	1	0	3
6	ES2101L	Data Structures Lab	0	0	3	1.5
7	PC2101L	Electrical machines –I Lab	0	0	3	1.5
8	PC2102L	Electrical Circuit Analysis Lab	0	0	3	1.5
9	SOC2101	Skill oriented course-1	1	0	2	2
10	MC2101	Essence of Indian Traditional Knowledge	2	0	0	0
Total Credits					21.5	

II Year I Semester (Semester-3)

Category	Credits
Basic Science Course	3
Engineering Science Courses	4.5
Professional Core Courses	12
Skill Oriented Course	2
Mandatory Course (AICTE)	0
Total Credits	21.5

S.No	Category	Course Title	L	Т	Р	С
1	BS2201	Complex Variables and Statistical Methods	2	1	0	3
2	ES2201	Thermal and Hydro Prime Movers	3	0	0	3
3	PC2201	Power Systems-I	3	0	0	3
4	PC2202	Electrical Machines – II	2	1	0	3
5	PC2203	Control Systems	2	1	0	3
6	ES2201L	Thermal and Hydro Prime Movers Lab	0	0	3	1.5
7	PC2202L	Electrical Machines - II Lab	0	0	3	1.5
8	PC2204L	Control Systems Lab	0	0	3	1.5
9	SOC2201	Skill Oriented Course-2	1	0	2	2
10	MC2201	Environmental Science	2	0	0	0
	Total Credits					21.5
		Internship/Community Service Project				
		2 Months (Mandatory) during summer				
		vacation				
		Honors/Minor courses	3	0	2	4

II Year II Semester (Semester-4)

Category	Credits
Basic Science Courses	3
Engineering Science Courses	4.5
Professional Core Courses	12
Skill Oriented Courses	2
Mandatory course (AICTE)	0
Total Credits	21.5

S.No	Category	Course Title	L	Т	Р	С
1	HS3101	Engineering Economics and Management	3	0	0	3
2	PC3101	Power Systems – II	2	1	0	3
3	PC3102	Electrical Measurements and Instrumentation	3	0	0	3
4	PC3103	Power Electronics	3	0	0	3
5	OE3101	Open Elective-I	2	0	2	3
6	PC3102L	Electrical Measurements and Instrumentation Lab	0	0	3	1.5
7	PC3103L	Power Electronics Lab	0	0	3	1.5
8	SAC3101	Skill Advanced Course-1	1	0	2	2
9	INTERN3101	Summer Internship 2 Months (Mandatory) after second year (to be evaluated during V semester	0	0	0	1.5
Total Credits 2					21.5	
		Honors/Minor courses	3	0	2	4

III Year I Semester (Semester-5)

Category	Credits
Humanities and Social Science Courses	3
Professional Core Courses	12
Open Elective Courses	3
Skill Advanced Course	2
Summer Internship	1.5
Total Credits	21.5

S.No	Category	Course Title	L	Т	Р	С
1	HS3201	Universal Human Values-2	3	0	0	3
2	PC3201	Microprocessors & Microcontrollers	3	0	0	3
3	PC3202	Power Systems -III	2	1	0	3
		Professional Elective I				
		1. Digital Electronics				
4	PE3201	2. Special Electrical Machines	2	0	2	3
		3. Advanced Control Systems				
		4. Solar and wind Energy Conversion Systems				
		Professional Elective II				
		1. Power System Protection				
		2. Renewable Energy Sources				
5	PE3201	3. Advanced Control Systems	2	0	2	3
		4. NPTEL/SWAYAM				
		Duration: 12 Weeks minimum				
		*course /subject title can't be repeated.				
6	PC3201L	Microprocessors & Microcontrollers Lab	0	0	3	1.5
7	PC3202L	Power Systems Lab	0	0	3	1.5
8	PC3203L	Electrical Simulation Lab	0	0	3	1.5
9	SAC3201	Skill Advanced Course-2	1	0	2	2
Total Credits			,		21.5	
		Industrial/Research Internship				
		2Months (Mandatory) during summer vacation				
		Honors/Minor courses	3	0	2	4

III Year II Semester (Semester-6)

Category	Credits
Professional Core Courses	10.5
Humanities and Social Science Courses	3
Professional Electives Course	6
Skill Advanced Course	2
Total Credits	21.5

S.No	Category	Course Title	L	Т	P	С
1	PE4101	 Professional Elective III 1. Utilization of Electrical Energy 2. FACTS 3. High Voltage Engineering 4. Electrical Engineering Materials 	2	0	2	3
2	PE4102	 Professional Elective IV 1. Electric Drives 2. HVAC &DC Transmission 3. Power System Reliability 4. Reactive Power Compensation & Management 	2	0	2	3
3	PE4103	 Professional Elective V 1. Digital Control Systems 2. Energy Conservation & Auditing 3. Electric Power Quality 4. Electrical Machine Design 	2	0	2	3
4	OE4101	Open Elective II	2	0	2	3
5	OE4102	Open Elective III	2	0	2	3
6	OE4103	Open Elective IV	2	0	2	3
7	SAC4101	Skill Advanced Course-3102		2		
8	MC4101	Entrepreneurial Skill Development20		0	0	
9	INTERN4101	Industrial/Research Internship 2 Months000(Mandatory) after third year (to be evaluated during VII semester)000		0	3	
Total Credits 23					23	
		Honors/Minor courses302			4	

IV Year I Semester (Semester-7)

Category	Credits
Professional Elective Courses	9
Open Elective Courses	9
Industrial/Research Internship (Mandatory)2months	3
Skill Advanced Course	2
Mandatory Course(AICTE)	0
Total Credits	23

S. No	Subject code	Course Name		Т	Р	С
1 PROJ4201		Major Project				
	DDO14201	Project work, seminar, and internship in	0	0	0	10
	FROJ4201	industry	0	0	0	
		Internship (6 months)				
	Total Credits				12	

IV Year II Semester (Semester-8)

Open Elective Courses

OE3101	OOPS Through	Advanced Python	MEMS	Block-chain	
	JAVA	Programming	MENIS	Technology	
			Electrical		
OF/101	Signals and Systems	Machine Learning	Machines	VLSI	
UE4101	Signals and Systems		Modelling and		
			Analysis		
OF/102	Big Data Analytics	Linear IC	Pohotics	Embedded	
OE4102	Big Data Analytics	Applications	Robotics	Systems	
OE4103	Neural Networks &	Cubor Socurity	Nano-	Digital Signal	
	Fuzzy Logic	Cyber Security	Technology	Processing	

Skill Oriented Course/Skill Advanced Courses

SOC2101	Fundaments of Internet of Things (IoT)	Industrial Safety, Codes and Standards	DC Drives	Python library tools
SOC2201	Fundaments of MATLAB and PSpice	Solar Panel installation	Sensors & Actuators for IoT	AC Drives
SAC3101	Soft skills	Soft skills	Soft skills	Soft skills
SAC3202	SGP (Low Voltage Switchgears)	PLC and SCADA	PSCAD	Process Instrumentation
SAC4101	Power Bi	Amazon Web Services	ETAP (Electrical Transient & Analysis Program)	HOMER (Hybrid optimization Model for Electrical Renewable)

List of Open Elective Subjects offered by EEE Branch

Open Elective-I

1.Non Conventional Energy Sources
2.Electrical Estimating and Costing
3. Principles of Electric Power Conversion

Open Elective-II

1.Programmable Logic Controller and Applications
2.Energy Storage Systems
3.Soft Computing Techniques

Open Elective-III

1.Electric Vehicles	
2.Indian Electricity Act, 2003	
3.Power Systems for Data Centres	

Courses for Honors degree

POOL-1	POOL-2	POOL-3	POOL-4		
(II-II)	(III-I)	(III-II)	(IV-I)		
Analysis of Linear	Energy Economics	Power System	Advanced Power		
Systems	Energy Economics	Optimization	Converters		
Energy Storage	Distribution System	Power System	Hybrid Electrical Vehicle		
Systems	Engineering	Protection	Hybrid Electrical Venicle		
Semiconductor	Sensors and	Advanced	Modern Control Theory		
Device Modeling	Transducers	Power Systems	Modern Control Theory		
Renewable Energy	Process Control	Real Time Control of Power System Operation			
Sources	Sources Engineering Power System Deregulation(PSOI		Deregulation(PSOD)		
MOOC-1*(NPTEL/SWAYAM) Duration:12Weeks minimum					
MOOC-2*(NPTEL/SWAYAM) Duration:12Weeks minimum					

*Course/subject title can't be repeated

General Minor Tracks

Department of Electrical and Electronics Engineering

S.No.	Course Name	L	Т	Р	С
1	Special Electrical Machines	3	0	2	4
2	Electrical Measurements and Instrumentation	3	0	2	4
3	M ATLAB for Engineering Applications	3	0	2	4
4	Generation of Electric Power	3	0	2	4
5	Energy audit	3	0	2	4
6	Non-conventional energy sources	3	0	2	4

Note:

- i. A student can select four subjects from the above six subjects @3-0-2-4 credits per subject.
- ii. Compulsory MOOC/NPTEL courses for 04 credits (02courses @02credits each)

VVIT Life skill courses

The following courses are admitted to be the **courses beyond curriculum** to improve individuallifeskills. These courses and will be demonstrated in the classroom a ndwill be having an internal assessment for satisfactory.

S.No	Year and Semester	Course Name
1	I Year I Semester(Semester-1)	Quantitative Aptitude
2	I Year II Semester(Semester-2)	Verbal Ability
3	II Year I Semester(Semester-3)	Understanding Self for Effectiveness
4	II Year II Semester(Semester-4)	Design Thinking
5	III Year I Semester(Semester-5)	Stress and Coping Strategies
6	III Year II Semester(Semester-6)	Research Skills

SYLLABUS

I-Year-I Semester HS1101

COMMUNICATIVE ENGLISH (Common to CIV, EEE, MEC & ECE)

L	Т	Р	С
3	0	0	3

13 HOURS

Course objectives:

The main objectives are

- 1. Adopt activity-based teaching-learning methods to ensure that learners would be engaged in use of language both in the classroom and laboratory sessions.
- 2. Facilitate effective listening skills for better comprehension of academic lectures and English spoken by native speakers
- 3. Focus on appropriate reading strategies for comprehension of various academic texts and authentic materials
- 4. Help improve speaking skills through participation in activities such as role plays, discussions and structured talks/oral presentations
- 5. Impart effective strategies for good writing and demonstrate the same in summarizing, writing well organized essays, record and report useful information
- 6. Provide knowledge of grammatical structures and vocabulary and encourage their appropriate use in speech and writing

Unit – 1:

Detailed Study: A Proposal to Girdle the Earth (Excerpt) by Nellie Bly Theme: Exploration

Listening: Identifying the topic, the context and specific pieces of information by listening to short audio texts and answering a series of questions.

Speaking: Asking and answering general questions on familiar topics such as home, family, work, studies and interests; introducing oneself and others. **Reading:** Skimming to get the main idea of a text; scanning to look for specific pieces of information.

Reading for Writing: Beginnings and endings of paragraphs - introducing the topic, summarizing the main idea and/or providing a transition to the next paragraph.

Grammar and Vocabulary: Content words and function words; word forms: verbs, nouns, adjectives and adverbs; nouns: countable and uncountable; singular and plural; basic sentence structures; simple question form - wh-questions; word order in sentences.

Non-Detailed Study:

1. "How to Fashion Your Own Brand of Success" by Howard Whitman

2. "How to Recognize Your Failure Symptoms" by Dorothea Brande

Unit-2:

13 HOURS

Detailed Study: An excerpt from The District School as It Was by One Who Went to It by Warren Burton

Theme: On Campus

Listening: Answering a series of questions about main idea and supporting ideas after listening to audio texts.

Speaking: Discussion in pairs/ small groups on specific topics followed by short structured talks. **Reading:** Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas in a paragraph together.

Writing: Paragraph writing (specific topics) using suitable cohesive devices; mechanics of writing - punctuation, capital letters.

Grammar and Vocabulary: Cohesive devices - linkers, signposts and transition signals; use of articles and zero article; prepositions.

Non-detailed Study:

Unit-3:

3. "How to Conquer the Ten Most Common Causes of Failure" by Louis Binstock

4. "How to Develop Your Strength to Seize Opportunities" by Maxwell Maltz

13 HOURS

Detailed Study: The Future of Work? Theme: Working Together

Listening: Listening for global comprehension and summarizing what is listened to.

Speaking: Discussing specific topics in pairs or small groups and reporting what is discussed

Reading: Reading a text in detail by making basic inferences - recognizing and interpreting specific context clues; strategies to use text clues for comprehension.

Writing: Summarizing - identifying main idea/s and rephrasing what is read; avoiding redundancies and repetitions.

Grammar and Vocabulary: Verbs - tenses; subject-verb agreement; direct and indirect speech, reporting verbs for academic purposes.

Non-Detailed Study:

5. "How to Make the Most of Your Abilities" by Kenneth Hildebrand

6. "How to Raise Your Self-Esteem and Develop Self-confidence" by James W Newman Unit-4: 13 HOURS

Detailed Study: H.G Wells and the Uncertainties of Progress by Peter J. Bowler Theme: Fabric of Change

Listening: Making predictions while listening to conversations/ transactional dialogues without video; listening with video.

Speaking: Role-plays for practice of conversational English in academic contexts (formal and informal) - asking for and giving information/directions.

Reading: Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicate processes or display complicated data.

Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables.

Grammar and Vocabulary: Quantifying expressions - adjectives and adverbs; comparing and contrasting; degrees of comparison; use of antonyms

Non-Detailed Study

7. "How to Win Your War against Negative Feelings" by Dr Maxwell Maltz

8. "How to Find the Courage to Take Risks" by Drs. Tom Rusk and Randy Read

Unit-5:

13 HOURS

Detailed Study: Leaves from the Mental Portfolio of a Eurasian by Sui Sin Far Theme: Tools for Life

Listening: Identifying key terms, understanding concepts and answering a series of relevant questions that test comprehension.

Speaking: Formal oral presentations on topics from academic contexts - without the use of PPT slides.

Reading: Reading for comprehension.

Writing: Writing structured essays on specific topics using suitable claims and evidences

Grammar and Vocabulary: Editing short texts – identifying and correcting common errors in grammar and usage (articles, prepositions, tenses, subject verb agreement)

Non-Detailed Study

9. "How to Become a Self-Motivator" by Charles T Jones

10. "How to Eliminate Your Bad Habits" by OgMandino

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	identify the context, topic, and pieces of specific information from social or transactional						
	dialogues spoken by native speakers of English and formulate sentences using proper						
	grammatical structures and correct word forms (Describe, relate, tell, find L-3)						
CO2	speak clearly on a specific topic using suitable discourse markers in informal discussions						
	(Discuss, outline, explain, predict – L3)						
CO3	write summaries based on global comprehension of reading/listening texts (Usa						

categorize, complete, solve L-3)

- CO4 produce a coherent paragraph interpreting a figure/graph/chart/table (Identify, compare, explain, illustrate- L4)
- CO5 take notes while listening to a talk/lecture to answer questions (explain, relate, outline, complete -L3)

Text books:

- 1. English All Round: Communication Skills for Undergraduate Learners-Volume 1, Orient Black Swan, 2019
- 2. University of Success by OgMandino, Jaico, 2015.

Reference books:

- 1. Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.
- 2. Chase, Becky Tarver. Pathways: Listening, Speaking and Critical Thinking. Heinley ELT; 2nd Edition, 2018.
- 3. Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- 4. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.

AICTE Recommended Books

- 5. Meenakshi Raman and Sangeeta Sharma. Technical Communication. Oxford University Press, 2018.
- 6. Pushplata and Sanjay Kumar. Communication Skills, Oxford University Press, 2018.
- 7. Kulbushan Kumar. Effective Communication Skills. Khanna Publishing House, Delhi

Sample Web Resources

Grammar / Listening / Writing

1-language.com http://www.5minuteenglish.com/ https://www.englishpractice.com/

Grammar/Vocabulary

English Language Learning Online

http://www.bbc.co.uk/learningenglish/

http://www.better-english.com/

http://www.nonstopenglish.com/

https://www.vocabulary.com/

BBC Vocabulary Games

Free Rice Vocabulary Game

Reading

https://www.usingenglish.com/comprehension/ https://www.englishclub.com/reading/short-stories.htm https://www.english-online.at/ Listening https://learningenglish.voanews.com/z/3613 http://www.englishmedialab.com/listening.html Speaking https://www.talkenglish.com/ BBC Learning English – Pronunciation tips Merriam-Webster – Perfect pronunciation Exercises All Skills https://www.englishclub.com/ http://www.world-english.org/ http://learnenglish.britishcouncil.org/

Micro-Syllabus of Communicative English

Unit 1

Detailed Study: A Proposal to Girdle the Earth (Excerpt) by Nellie Bly

Theme: Exploration

Listening: Identifying the topic, the context and specific pieces of information by listening to short audio texts and answering a series of questions.

Speaking:Asking and answering general questions on familiar topics such as home, family, work, studies and interests; introducing oneself and others.

Reading: Skimming to get the main idea of a text; scanning to look for specific pieces of information. **Reading for Writing:** Beginnings and endings of paragraphs - introducing the topic, summarizing the main idea and/or providing a transition to the next paragraph.

Grammar and Vocabulary: Content words and function words; word forms: verbs, nouns, adjectives and adverbs; nouns: countable and uncountable; singular and plural; basic sentence structures; simple question form - wh-questions; word order in sentences.

Non-Detailed Study:

1. "How to Fashion Your Own Brand of Success" by Howard Whitman

2. "How to Recognize Your Failure Symptoms" by Dorothea Brande

Unit	Module	Micro content		
1a.Detailed Study	Listening	Identifying the topic, the context and specific pieces of information by listening to short audio texts and answering a series of questions.		
	Speaking	Asking and answering general questions on familiar topics such as home, family, work, studies and interests; introducing oneself and others.		
	Reading	Beginnings and endings of paragraphs - introducing the topic, summarizing the main idea and/or providing transition to the next paragraph.		

	Grammar and Vocabulary	Content words and function words; word forms: verbs, nouns, adjectives and adverbs; nouns: countable and uncountable; singular and plural; basic sentence structures; simple question form - wh-questions; word order in sentences.
	"How to Fashion	
	Your Own Brand of	Introduction to Whitman
	Success" by Howard	Summary of the Essay
1b.Non-Detailed Whitman		
Study	How to Recognize	
	Your Failure	Introduction to Dorothea Brande
	Symptoms" by	Summary of the Essay
	Dorothea Brande	

Unit 2

Detailed Study: The District School As It Was by One Who Went to It by Warren Burton Theme: On Campus

Listening: Answering a series of questions about main idea and supporting ideas after listening to audio texts.

Speaking: Discussion in pairs/ small groups on specific topics followed by short structured talks.

Reading: Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas in a paragraph together.

Writing: Paragraph writing (specific topics) using suitable cohesive devices; mechanics of writing - punctuation, capital letters.

Grammar and Vocabulary: Cohesive devices - linkers, signposts and transition signals; use of articles and zero article; prepositions.

Non-detailed Study:

3. "How to Conquer the Ten Most Common Causes of Failure" by Louis Binstock

4. "How to Develop Your Strength to Seize Opportunities" by Maxwell Maltz

Unit	Module	Micro content				
2a. Detailed Study	Listening	Answering a series of questions about main idea and supporting ideas after listening to audio texts.				
	Speaking	Discussion in pairs/ small groups on specific topics followed by short structured talks.				
	Reading	Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas in a paragraph together.				
	Writing	Paragraph writing (specific topics) using suita cohesive devices; mechanics of writing punctuation, capital letters.				

	Grammar and Vocabulary	Cohesive devices - linkers, signposts and transition signals; use of articles and zero article; prepositions.			
	"How to Conquer the				
	Ten Most Common	Introduction to Louis Binstock			
	Causes of Failure" by	Summary of the Essay			
2b. Non-Detailed	Louis Binstock				
Study	"How to Develop Your				
	Strength to Seize	Introduction to Maxwell Maltz			
	Opportunities " by	Summary of the Essay			
	Maxwell Maltz				

Unit 3

Detailed Study: The Future of Work

Theme: Working Together

Listening: Listening for global comprehension and summarizing what is listened to.

Speaking: Discussing specific topics in pairs or small groups and reporting what is discussed

Reading: Reading a text in detail by making basic inferences - recognizing and interpreting specific context clues; strategies to use text clues for comprehension.

Writing: Summarizing - identifying main idea/s and rephrasing what is read; avoiding redundancies and repetitions.

Grammar and Vocabulary: Verbs - tenses; subject-verb agreement; direct and indirect speech, reporting verbs for academic purposes.

Non-Detailed Study:

5. "How to Make the Most of Your Abilities" by Kenneth Hildebrand

6. "How to Raise Your Self-Esteem and Develop Self-confidence" by James W Newman

Unit	Module	Micro content							
	T istanin a	Listening for global comprehension and							
	Listening	summarizing what is listened to.							
		Discussing specific topics in pairs or small groups							
	Speaking	and reporting what is discussed							
		Reading a text in detail by making basic inferences -							
3a. Detailed	Reading	recognizing and interpreting specific context clues;							
Study		strategies to use text clues for comprehension.							
		Summarizing - identifying main idea/s and							
	Writing	rephrasing what is read; avoiding redundancies and							
		rephrasing what is read; avoiding redundancies and repetitions.							
	Grammar and Vocabulary	Verbs - tenses; subject-verb agreement; direct and							
		indirect speech, reporting verbs for academic							
		purposes.							
3b. Non-Detailed	"How to Make the Most	Introduction to Kenneth Hildebrand							

Study	of Your Abilities" by	Summary of the Essay
	Kenneth Hildebrand	
	How to Raise Your Self-	
	Esteem and Develop	Introduction to James Newman
	Self-confidence" by	Summary of the Essay
	James W Newman	

Unit 4

Detailed Study: H.G Wells and the Uncertainties of Progress by Peter J. Bowler Theme: Fabric of Change

Listening: Making predictions while listening to conversations/ transactional dialogues without video; listening with video.

Speaking: Role-plays for practice of conversational English in academic contexts (formal and informal) - asking for and giving information/directions.

Reading: Studying the use of graphic elements in texts to convey information, reveal

trends/patterns/relationships, communicate processes or display complicated data.

Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables.

Grammar and Vocabulary: Quantifying expressions - adjectives and adverbs; comparing and contrasting; degrees of comparison; use of antonyms

Non-Detailed Study

7. "How to Win Your War Against Negative Feelings" by Dr Maxwell Maltz

8. "How to Find the Courage to Take Risks" by Drs. Tom Rust and Randy Read

Unit	Module	Micro content					
		Making predictions while listening to conversations/					
	Listening	transactional dialogues without video; listening with					
		Micro content Making predictions while listening to conversations/ transactional dialogues without video; listening with video. Role plays for practice of conversational English in academic contexts (formal and informal) - asking for and giving information/directions Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicate processes or display complicated data. Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables.					
		Role plays for practice of conversational English in					
	Speaking	Making predictions while listening to conversations/ transactional dialogues without video; listening with video. Role plays for practice of conversational English in academic contexts (formal and informal) - asking for and giving information/directions Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicate processes or display complicated data. Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables. Quantifying expressions - adjectives and adverbs; comparing and contrasting: degrees of comparison:					
4a. Detailed Study							
	Deading	Studying the use of graphic elements in texts to					
		convey information, reveal					
	Keaunig	trends/patterns/relationships, communicate processes					
		transactional dialogues without video; listening with video. Role plays for practice of conversational English in academic contexts (formal and informal) - asking for and giving information/directions Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicate processes or display complicated data. Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables. Quantifying expressions - adjectives and adverbs; comparing and contrasting; degrees of comparison; use of antonyms					
		Information transfer; describe, compare, contrast,					
	Writing	Information transfer; describe, compare, contrast, identify significance/trends based on information					
		academic contexts (formal and informal) - asking for and giving information/directions Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicate processes or display complicated data. Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables. Quantifying expressions - adjectives and adverbs; comparing and contrasting; degrees of comparison; use of antonyms					
	Grammar and Vocabulary	Quantifying expressions - adjectives and adverbs;					
		comparing and contrasting; degrees of comparison;					
		use of antonyms					

4b. Non-Detailed	"How to Win Your War Against Negative Feelings" by Dr Maxwell Maltz	Introduction to Dr Maxwell Maltz Summary of the Essay				
Study	"How to Find the Courage to Take Risks" by Drs Tom Rust and Randy Read	Introduction to Drs. Tom Rust and Randy Read Summary of the Essay				

<u>Unit 5</u>

Detailed Study: Leaves from the Mental Portfolio of a Eurasian by Sui Sin Far Theme: Tools for Life

Listening: Identifying key terms, understanding concepts and answering a series of relevant questions that test comprehension. **Speaking:** Formal oral presentations on topics from academic contexts - without the use of PPT slides.

Reading: Reading for comprehension. **Writing:** Writing structured essays on specific topics using suitable claims and evidences

Grammar and Vocabulary: Editing short texts – identifying and correcting common errors in grammar and usage (articles, prepositions, tenses, subject verb agreement)

Non-Detailed Study

9. "How to Become a Self-Motivator" by Charles T Jones

10. "How to Eliminate Your Bad Habits" by OgMandino

Unit	Module	Micro content				
5- D-4-11-1	Listening	Identifying key terms, understanding concepts and answering a series of relevant questions that test comprehension.				
	Speaking	Formal oral presentations on topics from academic contexts - without the use of PPT slides.				
Study	Reading	Reading for comprehension.				
Study	Writing	Writing structured essays on specific topics using suitable claims and evidences				
	Grammar and Vocabulary	Editing short texts – identifying and correcting common errors in grammar and usage (articles, prepositions, tenses, subject verb agreement)				
Study"How to Become a Self- Motivator" by Charles5b. Non-DetailedT JonesStudy"How to Eliminate Your Bad Habits" by OgMandino		Introduction to Charles T Jones Summary of the Essay				
		Introduction to OgMandino Summary of the Essay				

Course Outcomes

At the end of the course, the learners will be able to

- **CO1.** identify the context, topic, and pieces of specific information from social or transactional dialogues spoken by native speakers of English and formulate sentences using proper grammatical structures and correct word forms (**Describe, relate, tell, find L-3**)
- CO2. speak clearly on a specific topic using suitable discourse markers in informal discussions (Discuss, outline, explain, predict L3)
- CO3. write summaries based on global comprehension of reading/listening texts (Use, categorize, complete, solve L-3)
- CO4. produce a coherent paragraph interpreting a figure/graph/chart/table (Identify, compare, explain, illustrate- L4)
- CO5. take notes while listening to a talk/lecture to answer questions (explain, relate, outline, complete -L3)

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1									2	3		1
CO2									2	3		1
CO3									2	3		1
CO4									2	3		1
CO5									2	3		1

I-Year-I Semester	Mathematics I	L	Τ	P	С
BS1101	Mathematics-1	3	1	0	3

Preamble: This course illuminates the students in the concepts of calculus.

Course objectives:

The main objectives are

- 1. To enlighten the learners in the concept of differential equations and multivariable calculus.
- 2. To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real-world problems and their applications.

Unit–1:

Differential equations of first order and first degree

Linear differential equations-Bernoulli's equations - Exact equations and equations reducible to exact form.

Applications: Newton's Law of cooling – Law of natural growth and decay – Orthogonal trajectories – Electrical circuits.

Unit–2:

Linear differential equations of higher order

Non-homogeneous equations of higher order with constant coefficients – with non-homogeneous

term of the type e^{ax} , sinax, cosax, polynomials in x^n , $e^{ax}V(x)$ and $x^nV(x)$ - Method of Variation of Parameters

Variation of Parameters.

Applications: LCR circuit – Simple harmonic motion

Unit-3:

Mean value theorems

Mean value theorems (without proofs): Rolle's Theorem – Lagrange's mean value theorem – Cauchy's mean value theorem – Taylor's and Maclaurin's theorems with remainders.

Unit-4:

14 HOURS

13 HOURS

12 HOURS

13 HOURS

13 HOURS

Partial differentiation

Introduction – Homogeneous function – Euler's theorem - Total derivative – Chain rule – Jacobian – Functional dependence – Taylor's and Mc Laurent's series expansion of functions of two variables.

Applications: Maxima and Minima of functions of two variables without constraints and Lagrange's method (with constraints).

Unit–5:

Multiple integrals

Double integrals (Cartesian and Polar) – Change of order of integration – Change of variables (Cartesian to Polar) – Triple integrals.

Applications: Areas by double integrals and Volumes by triple integrals.

Course Outcomes: Upon successful completion of the course, the student will be able to

- **CO1** | solve the differential equations related to various engineering fields.
- **CO2** | utilize mean value theorems to real life problems.
- **CO3** | familiarize with functions of several variables which is useful in optimization.
- **CO4** apply double integration techniques in evaluating areas bounded by region.
- **CO5** learn important tools of calculus in higher dimensions. Students will become familiar with 2-dimensional and 3 dimensional coordinate systems.

Text books:

- 1. **B.S. Grewal,** Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
- 2. **B.V. Ramana,** Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.

Reference books:

- 1. **H. K. Das,** Advanced Engineering Mathematics, 22nd Edition, S. Chand & Company Ltd.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India.

Micro-Syllabus of MATHEMATICS – I (Calculus)

Unit-1: Differential equations of first order and first degree:

Linear differential equations-Bernoulli's equations - Exact equations and equations reducible to exact form.

Applications: Newton's Law of cooling – Law of natural growth and decay – Orthogonal trajectories – Electrical circuits.

Unit	Module	Micro content		
	T : 1:00 (° 1	Solution of Linear differential equations in 'y'		
	Linear differential	Solution of Linear differential equations in $'x'$		
	equations	Initial value problem		
	Non-Linear	Bernoulli's equations		
	differential equations	Equations reducible to Linear differential equations		
	Exact differential equations	Solution of Exact differential equations		
1a. & 2a.	Non-Exact differential equations	Equations reducible to Exact equations		
Differential		Integrating factor found by inspection		
equations of first order and		Integrating factor of a Homogeneous equation		
first degree		Integrating factor for an equation of the type		
0		$f_1(xy) y dx + f_2(xy) x dy = 0$		
		$\partial M = \partial N$		
		Integrating factor, if $\frac{\overline{\partial y} - \overline{\partial x}}{N}$ be a function of 'x'		
		$\partial N = \partial M$		
		Integrating factor, if $\frac{\partial x}{\partial y}$ be a function of 'y'		

	Application of	Newton's Law of cooling
1b. & 2b.	differential equations	Law of natural growth and decay
Applications	of first order and first	Orthogonal trajectories
	degree	Electrical circuits

Unit-2: Linear differential equations of higher order:

Non-homogeneous equations of higher order with constant coefficients – with non-homogeneous term of the type e^{ax} , sin ax, cos ax, polynomials in x^n , $e^{ax}V(x)$ and $x^nV(x)$ - Method of Variation of Parameters.

Applications: LCR circuit – Simple harmonic motion

Unit	Module	Micro content		
	Homogeneous equations of higher order with constant coefficients	Finding the Complementary function		
3a. & 4a.		Particular integral of the type e^{ax}		
Linear differential equations of higher order wit	Non-homogeneous equations of higher order with constant coefficients	Particular integral of the type 'sinax' (<i>or</i>) 'cos <i>ax</i> '		
		Particular integral of the type x^n		
		Particular integral of the type $e^{ax} V(x)$		
		Particular integral of the type $'x^n v(x)'$		
3b. & 4b. Applications of Non- homogeneous equations Applications of higher order with constant coefficients	Applications of Non-	Method of variation of parameters		
	homogeneous equations of higher order with constant coefficients	LCR circuit		
		Basic problems on simple harmonic motion		

Unit-3: Mean value theorems:

Mean value theorems (without proofs): Rolle's theorem – Lagrange's mean value theorem – Cauchy's mean value theorem – Taylor's and Maclaurin's theorems with remainders.

Unit	Module	Micro content		
5a. & 6a.		Rolle's theorem		
Mean value	Mean value theorems	Lagrange's mean value theorem		
theorems				
5b. & 6b. Mean value theorems	Mean value theorems	Cauchy's mean value theorem		
		Taylor's expansions of $f(x)$		
		Maclaurin's expansions of $f(x)$		

Unit-4: Partial differentiation:

Introduction – Homogeneous function – Euler's theorem - Total derivative – Chain rule – Jacobians – Functional dependence – Taylor's and Mc Laurent's series expansion of functions of two variables.

Applications: Maxima and Minima of functions of two variables without constraints and Lagrange's method (with constraints).

Unit	Module	Micro content
7a. & 8a.	Partial Differentiation	Euler's theorem

Partial		Total derivative			
differentiation		Chain rule			
		Jacobians			
7b. & 8b.	Applications of Partial	Taylor's and Mc Laurent's series expansion of functions of two variables			
Applications	Differentiation	Maxima and Minima of functions of two variables			
		Lagrange's method of undetermined multipliers			
Unit-5: Multiple i	ntegrals:				
Double integrals (Cartesian and Polar) – Char	nge of order of integration – Change of variables			
(Cartesian to Polar) – Triple integrals.				
Applications: Area	as by double integrals and V	olumes by triple integrals.			
Unit	Module	Micro content			
02 8 102		Double integrals			
9a. & 10a. Multiple	Evaluation of Double	Change of order of integration			
integrals	Integrals	Double integrals in Polar co-ordinates			
integrais		Change of variables			
9b. & 10b. Applications	Evaluation of Triple Integrals	Triple integrals			
	Applications of Multiple	Areas by double integrals			
	Applications of Multiple	Areas by double integrais			

CO – PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										1
CO2	3	2										1
CO3	3	2										1
CO4	3	2										1
CO5	3	2										1

I-Year-I Semester **BS1102**

APPLIED PHYSICS

L	Т	Р	С
3	0	0	3

Course Objectives

Applied Physics curriculum which is re-oriented to the needs of Circuital branches of graduate engineering courses offered by Vasireddy Venkatadri Institute of Technology, which serves as a transit to understand the branch specific advanced topics. The course is designed to:

- Impart Knowledge of Physical Opticsphenomena like Interference and Diffraction required to design instruments with higher resolution.
- > Understand the physics of Semiconductors and their working mechanism for their utility in electronic devices.
- > Impart the knowledge of materials with characteristic utility in appliances.

Unit-1

Wave Optics:

Interference: PrincipleofSuperposition-Interferenceoflight - Conditionsfor sustainedInterference-Interferencein thin films (reflected geometry) - Newton's Rings (reflected geometry) Diffraction: Fraunhofer Diffraction: - Diffraction due to single slit (quantitative), double slit(qualitative), N -slits(qualitative) and circular aperture (qualitative) - Intensity distribution curves - Diffraction grating - Grating spectrum - missing order- resolving power - Rayleigh's criterion - Resolving powers of Microscope(qualitative), Telescope(qualitative) and grating (qualitative).

Unit-2

LASERs and Holography

LASERs: Interaction of radiation with matter - Spontaneous and Stimulated emission of radiation - population inversion - Einstein's coefficients & Relation between them and their significance -Pumping Mechanisms - Ruby laser - Helium-Neon laser - Applications.

Holography: Introduction - principle - differences between photography and holography construction and reconstruction of hologram – applications of holograms

Unit-3

Magnetism and Dielectrics

Magnetism: Introduction - Magnetic dipole moment - Magnetization-Magnetic susceptibility and permeability- Origin of permanent magnetic moment - Bohr magneton-Classification of magnetic materials: Dia, para & Ferro - Domain concept of Ferromagnetism - Hysteresis - soft and hard magnetic materials – applications of Ferromagnetic material.

Dielectrics:Introduction-

Dielectricpolarization-Dielectricpolarizability, Susceptibility and Dielectric constant- Types of polarizations: Electronic and Ionic (Quantitative), Orientation Polarizations (Qualitative) - Lorentz Internal field-Claussius -Mossotti's equation- Frequency dependence of polarization - Applications of dielectrics.

Unit-4

Ouantum Mechanics

Introduction- matter waves - de Broglie's hypothesis - Davisson-Germer experiment -G.P.Thomson experiment - Heisenberg's Uncertainty Principle-Schrödinger time independent and time dependent wave equations - physical significance of Schrödinger wave function - Particle in a potential box (determination of energy).

Unit-5

Semiconductor Physics

Originofenergybands(qualitative) –Classificationofsolidsbasedonenergybands– Intrinsicsemiconductors-densityof charge carriers –Electricalconductivity-Fermi level – extrinsicsemiconductors-P-type&N-type – Densityofchargecarriers-DependenceofFermienergyoncarrierconcentrationandtemperature-Halleffect-Hallcoefficient-ApplicationsofHalleffect- Drift and Diffusion currents - Einstein's equation.

TEXT BOOKS

- 1. "Engineering Physics" by B. K. Pandey, S. Chaturvedi Cengage Publications, 2012
- 2. "A Text book of Engineering Physics" by M.N. Avadhanulu, P.G.Kshirsagar S.Chand, 2017.
- 3. "Engineering Physics" by D.K.Bhattacharya and Poonam Tandon, Oxford press (2015).
- 4. "Engineering Physics" by R.K Gaur. and S.L Gupta., Dhanpat Rai publishers, 2012.

REFERENCE BOOKS

- 1. "Engineering Physics" by M.R.Srinivasan, New Age international publishers (2009).
- 2. "Optics" by AjoyGhatak, 6th Edition McGraw Hill Education, 2017.
- 3. "Solid State Physics" by A.J.Dekker, Mc Millan Publishers (2011).

Micro-Syllabus of Applied Physics

Unit-I: Wave Optics:

Interference:PrincipleofSuperposition-Interferenceoflight – ConditionsforsustainedInterference-Interferencein thin films (reflected geometry) - Newton's Rings (reflected geometry) Diffraction:Fraunhofer Diffraction:- Diffraction due to single slit (quantitative), double slit(qualitative), N –slits(qualitative) and circular aperture (qualitative) – Intensity distribution curves - Diffraction grating – Grating spectrum – missing order– resolving power – Rayleigh's criterion – Resolving powers of Microscope(qualitative), Telescope(qualitative) and grating (qualitative).

Unit No	Module	Micro content			
		Introduction to interference			
	on & Interformacifich	Principle of superposition			
	t	Coherence			
	l	ConditionsforsustainedInterference			
	Interferencein thin films	Interference in thin films by reflection (cosine's law)			
In Interformer		Complementary nature			
		Colours of thin film			
	Newton's Rings	Newton's Rings(reflected geometry)			
		Experimental arrangement & conditions for diameters			
		Applications: determination of wavelength of			
		monochromatic source and refractive index of the			
		given transparent liquid.			
Ib.Diffraction	Fraunhofer Diffraction	Differences between Fresnel's and Fraunhofer's			

	- Diffraction due to	diffraction		
	single slit	Differences between interference and diffraction		
		Fraunhofer diffraction due to single slit(quantitative)		
		Fraunhofer diffraction due to circular aperture		
		(qualitative)		
	11-11'4	Fraunhofer diffraction due to double slit (qualitative)		
	double slit	Fraunhofer diffraction due to grating		
	$(qualitative) \propto N -$	(N- slits) (qualitative)		
	sins(quantative)	Intensity distribution curves		
		Grating spectrum, missing orders and maximum		
	Diffraction grating by	number of orders possible with a grating		
	Diffaction grating&	Rayleigh's criterion for resolving power		
	Resolving powers	Resolving power of grating, Telescope and		
		Microscope (qualitative)		
Unit– II: LASERs a	and Holography			
LASERs: Interaction	n of radiation with matter	- Spontaneous and Stimulated emission of radiation -		
population inversion	- Einstein's coefficients	& Relation between them and their significance -		
Pumping Mechanism	ns - Ruby laser – Helium-	Neon laser – Applications.		
Holography: Introdu	uction – principle – differ	ences between photography and holography –		
Holography: Introduced construction and reco	uction – principle – differ onstruction of hologram –	ences between photography and holography – - applications of holograms		
Holography: Introduction and record Unit No	uction – principle – differ onstruction of hologram – Module	ences between photography and holography – - applications of holograms Micro content		
Holography: Introduction and reconstruction and rec	uction – principle – differ onstruction of hologram – Module Interaction of radiation	ences between photography and holography – - applications of holograms Micro content Introduction to LASERS		
Holography: Introduction and reconstruction and rec	uction – principle – differ onstruction of hologram – Module Interaction of radiation with matter	ences between photography and holography – - applications of holograms Micro content Introduction to LASERS Spontaneous emission		
Holography: Introduction and record Unit No	uction – principle – differ onstruction of hologram – Module Interaction of radiation with matter	ences between photography and holography – - applications of holograms Micro content Introduction to LASERS Spontaneous emission Stimulated emission		
Holography: Introduction and record Unit No	uction – principle – differ onstruction of hologram – Module Interaction of radiation with matter	ences between photography and holography – - applications of holograms Micro content Introduction to LASERS Spontaneous emission Stimulated emission Einstein'scoefficients		
Holography: Introduction and record Unit No IIIa.LASERs	uction – principle – differ onstruction of hologram – Module Interaction of radiation with matter Einstein's coefficients	ences between photography and holography – - applications of holograms Micro content Introduction to LASERS Spontaneous emission Stimulated emission Einstein'scoefficients Populationinversion		
Holography: Introduction and reconstruction and rec	uction – principle – differ onstruction of hologram – Module Interaction of radiation with matter Einstein's coefficients	ences between photography and holography – - applications of holograms Micro content Introduction to LASERS Spontaneous emission Stimulated emission Einstein'scoefficients Populationinversion Pumping mechanisms		
Holography: Introduced and reconstruction and recon	uction – principle – differ onstruction of hologram – Module Interaction of radiation with matter Einstein's coefficients	ences between photography and holography – - applications of holograms Micro content Introduction to LASERS Spontaneous emission Stimulated emission Einstein'scoefficients Populationinversion Pumping mechanisms Rubylaser		
Holography: Introduced and reconstruction and recon	uction – principle – differ onstruction of hologram – Module Interaction of radiation with matter Einstein's coefficients LASERS construction and working	ences between photography and holography – - applications of holograms Micro content Introduction to LASERS Spontaneous emission Stimulated emission Einstein'scoefficients Populationinversion Pumping mechanisms Rubylaser Helium-Neon laser		
Holography: Introduced and reconstruction and recon	uction – principle – differ onstruction of hologram – Module Interaction of radiation with matter Einstein's coefficients LASERS construction and working	ences between photography and holography – - applications of holograms Micro content Introduction to LASERS Spontaneous emission Stimulated emission Stimulated emission Einstein'scoefficients Populationinversion Pumping mechanisms Rubylaser Helium-Neon laser Applications of Lasers		
Holography: Introduction and record Unit No IIa.LASERs	A ction – principle – differ construction of hologram – Module Interaction of radiation with matter Einstein's coefficients LASERS construction and working Principle of holography	ences between photography and holography – - applications of holograms Micro content Introduction to LASERS Spontaneous emission Stimulated emission Stimulated emission Einstein'scoefficients Populationinversion Pumping mechanisms Rubylaser Helium-Neon laser Applications of Lasers Introduction and Principle of holography		
Holography: Introduces on struction and records Unit No	Anticipation – principle – differ Instruction of hologram – Module Interaction of radiation with matter Einstein's coefficients LASERS construction and working Principle of holography	ences between photography and holography – - applications of holograms Micro content Introduction to LASERS Spontaneous emission Stimulated emission Stimulated emission Einstein'scoefficients Populationinversion Pumping mechanisms Rubylaser Helium-Neon laser Applications of Lasers Introduction and Principle of holography Differences between photography and holography		
Holography: Introduced and reconstruction and recon	uction – principle – differ onstruction of hologram – Module Interaction of radiation with matter Einstein's coefficients LASERS construction and working Principle of holography construction and	ences between photography and holography – - applications of holograms Micro content Introduction to LASERS Spontaneous emission Stimulated emission Stimulated emission Einstein'scoefficients Populationinversion Pumping mechanisms Rubylaser Helium-Neon laser Applications of Lasers Introduction and Principle of holography Differences between photography and holography Construction of hologram		
Holography: Introduced and reconstruction and recon	uction – principle – differ onstruction of hologram – Module Interaction of radiation with matter Einstein's coefficients LASERS construction and working Principle of holography construction and reconstruction of	ences between photography and holography – - applications of holograms Micro content Introduction to LASERS Spontaneous emission Stimulated emission Stimulated emission Einstein'scoefficients Populationinversion Pumping mechanisms Rubylaser Helium-Neon laser Applications of Lasers Introduction and Principle of holography Differences between photography and holography Construction of hologram Reconstruction of hologram		
Holography: Introduced and reconstruction and recon	uction – principle – differ onstruction of hologram – Module Interaction of radiation with matter Einstein's coefficients LASERS construction and working Principle of holography construction and reconstruction of hologram	ences between photography and holography – - applications of holograms Micro content Introduction to LASERS Spontaneous emission Stimulated emission Stimulated emission Einstein'scoefficients Populationinversion Pumping mechanisms Rubylaser Helium-Neon laser Applications of Lasers Introduction and Principle of holography Differences between photography and holography Construction of hologram Reconstruction of hologram Applications of holography		

UI Jielectrics

Magnetism: Introduction - Magnetic dipole moment - Magnetization-Magnetic susceptibility and permeability- Origin of permanent magnetic moment - Bohr magneton-Classification of magnetic materials: Dia, para & Ferro - Domain concept of Ferromagnetism - Hysteresis - soft and hard magnetic materials - applications of Ferromagnetic material.

Dielectrics: Introduction- Dielectricpolarization-Dielectricpolarizability,

SusceptibilityandDielectricconstant- Types of polarizations: Electronic and Ionic (Quantitative), Orientation Polarizations (Qualitative) - Lorentz Internal field-Claussius –Mossotti's equation-Frequency dependence of polarization - Applications of dielectrics.

Unit No	Module	Micro content		
		Introduction to Magnetism, Definitions of		
	Introduction&	Magnetic dipole moment, Magnetization,		
	Origin of permanent	Magnetic susceptibility and Permeability		
	magnetic moment	Originofmagneticmoment		
		Bohr magneton		
	Classification of magnetic	Dia magnetic materials		
IIIa. Magnetism	matorials	Para magnetic materials		
	maichais	Ferro magnetic materials		
		Domain concept of Ferromagnetism		
	Domain concept of	Hysteresis Curve (B-H Curve)		
	Ferromagnetism &	Soft and hard magnetic materials classification		
	Hysteresis	based on HysteresisCurve		
		Applications of magnetic materials		
		Introduction to dielectrics		
	Introduction& definitions	Dielectric polarization, Dielectric polarizability,		
		susceptibility		
		Dielectric constant		
		Electronic polarization (Quantitative)		
IIIb.Dielectrics	Types of polarizations	Ionic polarization (Quantitative)		
		Orientational polarizations (Qualitative)		
	Internal field &	Lorentz Internalfieldsinsolids		
	Claussius Mossotti's	Clausius-Mossotti'sequation		
	equation	Frequency dependence of polarization		
	equation	Applications of Dielectrics		

Unit-IV: Quantum Mechanics

Introduction– matter waves – de Broglie's hypothesis – Davisson-Germer experiment – G.P.Thomson experiment – Heisenberg's Uncertainty Principle–Schrödinger time independent and time dependent wave equations – physical significance of Schrödinger wave function – Particle in a potential box (determination of energy).

Unit No	Module	Micro content
	Introduction& de Broglie's hypothesis	Introduction to Matter waves
		de Broglie's hypothesis
W. Onorthum		Properties of Matter waves
IV. Quantum Mochanics	Davisson-Germer	Davisson and Germer's experiment
Mechanics	experiment	G. P. Thomson experiment
	&G.P.Thomson	Heigenberg's uncertainty minainle
	experiment	Theisenberg's uncertainty principle

	Schrödinger's wave function and it's physical
Sahrädin oon waya	significance
function & equations	SchrodingerTimeIndependentwave equation
runction & equations	SchrodingerTimeDependentwave equation
	Application to particle inonedimensionalbox

Unit– V: Semiconductor Physics

Originofenergybands(qualitative) -Classificationofsolidsbasedonenergybands– Intrinsicsemiconductors-densityof charge carriers –Electrical conductivity-Fermi level - extrinsic semiconductors-P-type&N-type-Densityofchargecarriers-

DependenceofFermienergyoncarrierconcentrationandtemperature-Halleffect-Hallcoefficient-ApplicationsofHalleffect- Drift and Diffusion currents - Einstein's equation.

Unit No	Module	Micro content
		Introduction to energy bands and Origin of energy
		bands in crystalline solids
	Originofenergybands	Classification of solids into conductors,
		semiconductors and insulators based on energy
		bands
V.Semiconductor	Intrinsic&extrinsicsemico	Intrinsic semiconductor and Carrier Concentration
Physics		Equation for Conductivity
	nductors	Extrinsic Semiconductors (p-type and n-type)and
		Carrier Concentration
	Drift and Diffusion & Hall	Drift and Diffusion in semiconductors
	effect	Einstein's Equation
		Hall Effect and it's applications

Course Outcomes: The students will be able to

- **CO1.** Understand the principles such as interference and diffraction to design and enhance the resolving power of various optical instruments.
- **CO2.** Learn the basic concepts of LASER light Sources and Apply them to holography
- **CO3.** Study the magnetic and dielectric materials to enhance the utility aspects of materials.
- CO4. Learn the fundamental concepts of Quantum behaviour of matter.
- **CO5.** Identify the type of semiconductors using Hall Effect.

	PO1	PO2	PO3	PO4	PO5	PO 6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										1
CO2	3	2										1
CO3	3	2										1
CO4	3	2										1
CO5	3	2										1

CO PO Mapping

I-Year-I Semester ES1101

PROBLEM SOLVING USING C

L	Т	Р	С
3	0	0	3

Course Objectives

- 1. To learn about the computer systems, computing environments, developing of a computer program and Structure of a C Program
- 2. To gain knowledge of the operators, selection, control statements and repetition in C
- 3. To learn about the design concepts of arrays, strings, enumerated structure and union types. To learn about their usage.
- 4. To assimilate about pointers, dynamic memory allocation and know the significance of Pre-processor.
- 5. To assimilate about File I/O and significance of functions

Unit-1

Introduction to Computers: Creating and running Programs, Computer Numbering System, Storing Integers, Storing Real Numbers

Introduction to the C Language: Background, C Programs, Identifiers, Types, Variable, Constants, Input/output, Programming Examples, Scope, Storage Classes and Type Qualifiers. **Structure of a C Program:** Expressions Precedence and Associativity, Side Effects, Evaluating Expressions, Type Conversion Statements, Simple Programs, Command Line Arguments.

Unit-2

Bitwise Operators: Exact Size Integer Types, Logical Bitwise Operators, Shift Operators.

Selection & Making Decisions: Logical Data and Operators, Two Way Selection, Multiway Selection, More Standard Functions

Repetition: Concept of Loop, Pretest and Post-test Loops, Initialization and Updating, Event and Counter Controlled Loops, Loops in C, Other Statements Related to Looping, Looping Applications, Programming Examples

Unit-3

Arrays: Concepts, Using Array in C, Array Application, Two Dimensional Arrays, Multidimensional Arrays, Programming Example – Calculate Averages

Strings: String Concepts, C String, String Input / Output Functions, Arrays of Strings, String Manipulation Functions String/ Data Conversion, A Programming Example – Morse Code

Enumerated, Structure, and Union: The Type Definition (Type def), Enumerated Types, Structure, Unions, and Programming Application

Unit-4

Pointers: Introduction, Pointers to pointers, Compatibility, L value and R value

Pointer Applications: Arrays, and Pointers, Pointer Arithmetic and Arrays, Memory Allocation Function, Array of Pointers, Programming Application,**rocessor Commands**: Processor Commands

Unit-5

Functions: Designing, Structured Programs, Function in C, User Defined Functions, Inter-Function Communication, Standard Functions, Passing Array to Functions, Passing Pointers to Functions, Recursion

Text Input / Output: Files, Streams, Standard Library Input / Output Functions, Formatting Input / Output Functions, Character Input / Output Functions

Binary Input / Output: Text versus Binary Streams, Standard Library, Functions for Files, Converting File Type.

Course Outcomes: Upon successful completion of the course, the student will be able to

- **CO1 Understand** algorithms and basic terminology of C
- **CO2 Solve** problems using control structures and modular approach
- CO3 Make use of 1D and 2D arrays along with strings for linear data handling
- **CO4 Determine** the use of pointers and structures
- **CO5 Implement** various operations on data files.

TEXT BOOKS

- 1. Programming for Problem Solving, Behrouz A. Forouzan, Richard F.Gilberg, CENGAGE
- 2. The C Programming Language, Brian W.Kernighan, Dennis M. Ritchie, 2e, Pearson

REFERENCES

- 1. Computer Fundamentals and Programming, Sumithabha Das, Mc Graw Hill
- 2. Programming in C, Ashok N. Kamthane, AmitKamthane, Pearson
- 3. Computer Fundamentals and Programming in C, Pradip Dey, Manas Ghosh, OXFORD

Micro-Syllabus of Problem Solving in C

UNIT I

Introduction to Computers: Creating and running Programs, Computer Numbering System, Storing Integers, Storing Real Numbers

Introduction to the C Language: Background, C Programs, Identifiers, Types, Variable,

Constants, Input/output, Programming Examples, Scope, Storage Classes and Type Qualifiers.

Structure of a C Program: Expressions Precedence and Associativity, Side Effects, Evaluating Expressions, Type Conversion Statements, Simple Programs, Command Line Arguments.

Unit	Module	Micro content
	Texture describers to	Creating and running Programs
	Computers	Computer Numbering System
Introduction to Computers, C Language	Computers	Storing Integers, Storing Real Numbers
	Introduction to C	C Tokens
		I/O Functions
	Language	Scope and Storage classes
		Type Qualifiers
	Structure of a C	Expressions

Program	Side effects in evaluation of expressions
	Precedence and Associativity
	Command Line Arguments

UNIT - II

Bitwise Operators: Exact Size Integer Types, Logical Bitwise Operators, Shift Operators. **Selection & Making Decisions:** Logical Data and Operators, Two Way Selection, Multiway Selection, More Standard Functions

Repetition: Concept of Loop, Pretest and Post-test Loops, Initialization and Updating, Event and Counter Controlled Loops, Loops in C, Other Statements Related to Looping, Looping Applications, Programming Examples.

Unit	Module	Micro content		
	Piturica Operators	Exact Size Integer Types		
	Ditwise Operators	Exact Size Integer Types Logical Bitwise Operators and Shift Operators Two Way Selection Multi Way Selection More Standard Functions Counter Controlled Loops Logic Controlled Loops		
		Two Way Selection		
	Selection Statements	Micro content Exact Size Integer Types Logical Bitwise Operators and Shift Operators Two Way Selection Multi Way Selection More Standard Functions Counter Controlled Loops Logic Controlled Loops Other Statements related to looping Applications of looping and examples		
Colleron		Micro contentExact Size Integer TypesLogical Bitwise Operators and Shift OperatorsTwo Way SelectionMulti Way SelectionMore Standard FunctionsCounter Controlled LoopsLogic Controlled LoopsOther Statements related to loopingApplications of looping and examples		
Statements		Counter Controlled Loops		
	Iterative Statements	Logic Controlled Loops		
	nerative statements	Other Statements related to looping		
		Applications of looping and examples		

UNIT III

Arrays: Concepts, Using Array in C, Array Application, Two Dimensional Arrays, Multidimensional Arrays, Programming Example – Calculate Averages

Strings: String Concepts, C String, String Input / Output Functions, Arrays of Strings, String Manipulation Functions String/ Data Conversion, A Programming Example – Morse Code **Enumerated, Structure, and Union:** The Type Definition (Type def), Enumerated Types, Structure, Unions, and Programming Application

Unit	Module	Micro content		
		One Dimensional Arrays : Theory and Practice		
		Exercises		
	A	One Dimensional Arrays : Theory and Practice Exercises Two Dimensional Arrays : Theory and Practice Exercises Introduction to Multi-Dimensional Arrays Some more Example Programs on Arrays Introduction to the concept of a String in C String I/O Functions Manipulation Functions on Strings String/Data Conversion Programming Example – Morse Code		
	Allays	Exercises		
		Introduction to Multi-Dimensional Arrays		
Derived and User		Micro contentOne Dimensional Arrays : Theory and PracticeExercisesTwo Dimensional Arrays : Theory and PracticeExercisesIntroduction to Multi-Dimensional ArraysSome more Example Programs on ArraysIntroduction to the concept of a String in CString I/O FunctionsManipulation Functions on StringsString/Data ConversionProgramming Example – Morse CodeIntroduction to the Concept of 'typedef'Structures : Theory and Practice		
Defined Data		Introduction to the concept of a String in C		
types		Micro contentOne Dimensional Arrays : Theory and PracticeExercisesTwo Dimensional Arrays : Theory and PracticeExercisesIntroduction to Multi-Dimensional ArraysSome more Example Programs on ArraysIntroduction to the concept of a String in CString I/O FunctionsManipulation Functions on StringsString/Data ConversionProgramming Example – Morse CodeIntroduction to the Concept of 'typedef'Structures : Theory and Practice		
	Strings	Micro contentOne Dimensional Arrays : Theory and PracticeExercisesTwo Dimensional Arrays : Theory and PracticeExercisesIntroduction to Multi-Dimensional ArraysSome more Example Programs on ArraysIntroduction to the concept of a String in CString I/O FunctionsManipulation Functions on StringsString/Data ConversionProgramming Example – Morse CodeIntroduction to the Concept of 'typedef'Structures : Theory and Practice		
		String/Data Conversion		
		Programming Example – Morse Code		
	Structures, Unions	Introduction to the Concept of 'typedef'		
	and Enumeration	Structures : Theory and Practice		

Unions : Theory and Practice
Enumeration Data type

UNIT IV

Pointers: Introduction, Pointers to pointers, Compatibility, L value and R value

Pointer Applications: Arrays, and Pointers, Pointer Arithmetic and Arrays, Memory Allocation Function, Array of Pointers, Programming Application

Processor Commands: Processor Commands

Unit	Module	Micro content	
		Introduction to Pointers	
	Pointers	Pointers to pointers	
Pointers and		Compatibility, L-value and R-value	
Processor	Applications of Pointers	Pointer Arithmetic	
Commands		Dynamic Memory Allocation	
		Pointer to Arrays and Array of Pointers	
	Processor Commands	Processor Commands	

UNIT V

Functions: Designing, Structured Programs, Function in C, User Defined Functions, Inter-Function Communication, Standard Functions, Passing Array to Functions, Passing Pointers to Functions, Recursion

Text Input / Output: Files, Streams, Standard Library Input / Output Functions, Formatting Input / Output Functions, Character Input / Output Functions

Binary Input / Output: Text versus Binary Streams, Standard Library, Functions for Files, Converting File Type.

Unit	Module	Micro content			
		Designing, Structured Programs, Function in C			
	User Defined	Inter-Function Communication, Standard Functions			
		Passing Array to Functions			
	Functions	Passing Pointers to Functions			
		Micro contentDesigning, Structured Programs, Function in CInter-Function Communication, Standard FunctionsPassing Array to FunctionsPassing Pointers to FunctionsRecursionFiles, StreamsStandard Library Input / Output FunctionsFormatting Input / Output FunctionsCharacter Input / Output FunctionsText versus Binary StreamsStandard LibraryFunctions for filesConverting File Type			
		Files, Streams			
		Text Input / Output	Micro content Designing, Structured Programs, Function in C Inter-Function Communication, Standard Functions Passing Array to Functions Passing Pointers to Functions Recursion Files, Streams Standard Library Input / Output Functions Formatting Input / Output Functions Character Input / Output Functions Text versus Binary Streams Standard Library Functions for files Converting File Type		
Functions and	Text Input / Output	Formatting Input / Output Functions			
Files		Micro contentDesigning, Structured Programs, Function in CInter-Function Communication, Standard FunctionsPassing Array to FunctionsPassing Pointers to FunctionsRecursionFiles, StreamsStandard Library Input / Output FunctionsFormatting Input / Output FunctionsCharacter Input / Output FunctionsText versus Binary StreamsStandard LibraryFunctions for filesConverting File Type			
			Micro contentDesigning, Structured Programs, Function in CInter-Function Communication, Standard FunctionsPassing Array to FunctionsPassing Pointers to FunctionsRecursionFiles, StreamsStandard Library Input / Output FunctionsFormatting Input / Output FunctionsCharacter Input / Output FunctionsText versus Binary StreamsStandard LibraryFunctions for filesConverting File Type		
	Din any In mut/ Outmut	Standard Library			
	Dinary input/ Output	Recursion Files, Streams Standard Library Input / Output Functions Formatting Input / Output Functions Character Input / Output Functions Text versus Binary Streams Standard Library Functions for files Converting File Type			
		Converting File Type			

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1 Understand algorithms and basic terminology of C

CO2 Solve problems using control structures and modular approach

- **CO3** Make use of 1D and 2D arrays along with strings for linear data handling
- **CO4 Determine** the use of pointers and structures
- **CO5 Implement** various operations on data files.

Correlation of Course Outcomes with Program Outcomes and Program Specific Outcomes (PO's& PSO's)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	3	2	1	-	-	-	3	3	1	2	1	2
CO2	2	3	3	2	-	-	-	-	1	1	2	2	2	2
CO3	3	3	3	2	-	-	-	-	2	1	2	2	2	3
CO4	2	2	2	2	-	-	-	-	2	1	2	2	2	2
CO5	2	2	2	2	-	-	-	-	2	1	2	2	1	2

(Strong – 3; Moderate – 2; Weak – 1)

I-Year-I Semester ES1102

ENGINEERING GRAPHICS

L	Т	Р	С			
0	0	3	1.5			

Course objectives:

The main objectives are

- 1. Expose the students to use Drafting packages for generating Engineering curves and conventions followed in Preparation of engineering drawings.
- 2. Make the students to understand the concepts of orthographic projections of Lines and Plane Surfaces.
- 3. To understand the concepts of orthographic projections of Regular Solids.
- 4. Develop the ability of understanding sectional views and Development of Solid Surfaces.
- 5. Enable them to use computer aided drafting packages for Conversion of Isometric view to Orthographic Projection and vice versa.

UNIT-I: INTRODUCTION TO AUTOCAD:

Basic commands, Customization, ISO and ANSI standards for coordinate dimensioning, Annotations, layering, 2D drawings of various mechanical components, 2D drawings of various electrical and electronic circuits. Creation of engineering models- floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc. Applying colour coding according to building drawing practice; (Experiments should be Planned According to respective Core Branch Applications)

UNIT-II: THEORY OF PROJECTION:

Principles of Orthographic Projections-Convention: Projections of Points, Projections of Lines inclined to both planes, Projections of planes inclined to one Plane & Projections of planes inclined to both Planes

UNIT III: PROJECTIONS OF REGULAR SOLIDS: 1

Projections of Solids –with the axis perpendicular to one of the principal planes, with the axis Inclined to one of the principal planes, Projections of Solids –with the axis Inclined to Both the principal planes

UNIT IV: DEVELOPMENT OF SURFACES & SECTIONAL ORTHOGRAPHIC VIEWS 13 HOURS

Development of surfaces of Right Regular Solids – Prism, Pyramid, Cylinder and, Cone. Draw the sectional orthographic views of geometrical solids

UNIT V: ISOMETRIC PROJECTIONS

Conversion of isometric views to orthographic views, drawing of isometric views - simple Solids, Conversion of orthographic views to isometric views of simple Drawings

12 HOURS

12 HOURS

13 HOURS

15 HOURS

Course Outcomes: Upon successful completion of the course, the student will be able to

	-							
CO1	Prepare engineering drawings as per BIS conventions Understand level, KL2}							
CO2	Produce computer generated of orthographic projections of Lines and Plane surfaces using							
	CAD software {Apply level, KL3}							
CO3	Use the knowledge of orthographic projections of Solids to represent engineering information/concepts and present the same in the form of drawings							
	{Apply level, KL3}							
CO4	Use the knowledge of sectional views and Development of Solid Surfaces in Real time							
	Applications {Apply level, KL3}							
CO5	Develop isometric drawings of simple objects reading the orthographic projections of							
	those objects {Analyze level, KL4}							

Text books:

- 1. Engineering Drawing by N.D. Butt, Chariot Publications
- 2. Engineering Graphics with Autocad by Kulkarni D.M, PHI Publishers
- 3. Engineering Drawing + AutoCad K Venugopal, V. Prabhu Raja, New Age
- 4. Engineering Drawing by Agarwal & Agarwal, Tata McGraw Hill Publishers

Reference books:

- 1. Engineering Drawing by K.L.Narayana& P. Kannaiah, Scitech Publishers
- 2. Engineering Graphics for Degree by K.C. John, PHI Publishers
- 3. Engineering Graphics by PI Varghese, McGrawHill Publishers
- 4. AutoCAD 2018 Training Guide (English, Paperback, Sagar Linkan) ISBN: 9789386551870, 938655187X RUPAPUBLICATIONS

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	_	3	_	_	_	_	2	_	1
CO2	2	1	1	_	3	_	_	-	_	2	_	1
CO3	2	2	2	_	3	_	_	_	_	2	_	1
CO4	2	2	2	_	3	_	_	_	_	2	_	1
CO5	2	2	2	_	3	_	_	-	_	2	_	1

CO-PO Mapping:
COMMUNICATIVE ENGLISH LAB

L	Т	Р	С
0	0	3	1.5

I-Year-I Semester HS1101L Course Objective:

The main objective of the course is to adopt activity-based teaching-learning methods to ensure that learners would be engaged in use of language both in the classroom and laboratory sessions and appear confidently for competitive examinations for career development.

The specific objectives of the course are to

- 1. Facilitate effective listening skills for better comprehension of academic lectures and English spoken by native and non-native speakers
- 2. Focus on appropriate reading strategies for comprehension of various academic texts and authentic materials like newspapers, magazines, periodicals, journals, etc.
- 3. Help improve speaking skills through participation in activities such as role plays, discussions and structured talks/oral presentations
- 4. Impart effective strategies for good writing and demonstrate the same in summarizing, writing well organized essays, record and report useful information
- 5. Provide knowledge of grammatical structures and vocabulary and encourage their appropriate use in speech and writing

Course Outcomes

At the end of the course, the learners will be able to

- CO1: Prioritize information from reading texts after selecting relevant and useful points and paraphrase short academic texts using suitable strategies and conventions (L3)
- CO2: Make formal structured presentations on academic topics using PPT slides with relevant graphical elements (L3)
- CO3: Participate in group discussions using appropriate conventions and language strategies (L3)
- CO4: Prepare a CV with a cover letter to seek internship/ job (L2)
- CO5: Collaborate with a partner to make presentations and Project Reports (L2)

Detailed Syllabus

CALL based activity. English course books selected for classroom teaching will be used for practice in the computer-based language labs. Watching and listening to Video clips.

Listening Activity: Selected speeches of eminent personalities, audio texts, dialogues and discussions

Speaking: JAM, Oral Presentations, Group Discussions

Writing: Different types of reports

Project: Power point presentation of 5 min on a specific topic

Pair work, Role play, conversational practice and Individual speaking activities based on following essays from *University of Success*.

- 1. "How to Get Yourself Organized" by Michael LeBeouf
- 2. "How to Turn Your Desires into Gold" by Napoleon Hill
- 3. "How to Look Like a Winner How to Increase Your Value" by OgMandino
- 4. "How to Swap a Losing Strategy" by Auren Uris and Jack Tarrant

- 5. "How to Bounce Back from Failure" by OgMandino
- 6. "How to Prevent Your Success from Turning into Ashes" by Allan Fromme
- 7. "How to Have a Happy Life" by Louis Binstock
- 8. "How to Keep the Flame of Success Shining Brightly" by Howard Whitman

Any ten Supplementary Language Activities from UN Global Goals document

- 1. "Developing children's understanding of the Global Goals" by Carol Read
- 2. "End poverty in all its forms everywhere" by SylwiaZabor-Zakowska
- 3. "End hunger, achieve food security and improved nutrition and promote sustainable agriculture" by Linda Ruas
 - 4. 'Ensure healthy lives and promote well-being for all at all ages" by Carmen Flores
- 5. "Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all" by Daniel Xerri
- 6. "Achieve gender equality and empower all women and girls" by Jemma Prior and Tessa Woodward
- 7. "Ensure availability and sustainable management of water and sanitation for all" by Wei KeongToo
- 8. "Ensure access to affordable, reliable, sustainable and modern energy for all" by Phil Wade
- 9. "Promote sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all" by Nik Peachey
- 10. "Build resilient infrastructure, promote inclusive and sustainable industrialisation and foster innovation" by MaluSciamarelli
- 11. "Reduce inequality within and among countries" by Alan Maley
- 12. "Make cities and human settlements inclusive, safe, resilient and sustainable" by David Brennan
- 13. "Ensure sustainable consumption and production patterns" by Laszlo Katona and Nora Tartsay
- 14. "Take urgent action to combat climate change and its impacts" by Maria Theologidou
- 15. "Conserve and sustainably use the oceans, seas and marine resources for sustainable development" by Jill Hadfield and Charlie Hadfield
- 16. "Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss" by ChrysaPapalazarou
- 17. "Promote peaceful and inclusive societies for sustainable development, provide access to justice for all and build effective, accountable and inclusive institutions at all levels" by Rebeca

Duriga

- 18. "Strengthen the means of implementation and revitalise the global partnership for sustainable development" by Jennifer Verschoor and Anna Maria Menezes
- 19. "Content and the Sustainable Development Goals: going beyond language learning" by AdrianTennant
- 20. "Using extensive reading creatively to raise awareness of issues of equality and justice" by SueLeather

- 21. "Storytelling for a better world" by David Heathfield
- 22. "Using the Sustainable Development Goals in the EAP classroom" by Averil Bolster and PeterLevrai

Text Books

1. Alan Maley and Nik Peachy. *Integrating global issues in the creative English Classroom: Withreference to the United Nations Sustainable Development Goals.* British Council Teaching English, 2018 (Public Domain UN Document)

2. University of Success by OgMandino, Jaico, 2015 (Reprint).

Reference Books

- 1. Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.
- 2. Chase, Becky Tarver. *Pathways: Listening, Speaking and Critical Thinking.* Heinley ELT; 2ndEdition, 2018.
- 3. Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- 4. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.
- 5. Chaturvedi, P. D. and ChaturvediMukesh. *The Art and Science of Business Communication:Skills, Concepts, Cases and Applications.* 4Ed. Pearson, 2017.

AICTE Recommended Books

- 1. Meenakshi Raman and Sangeeta Sharma. *Technical Communication*. Oxford University Press, 2018.
- 2. Pushplata and Sanjay Kumar. Communication Skills, Oxford University Press, 2018.
- 3. Kulbushan Kumar. Effective Communication Skills. Khanna Publishing House, Delhi

Sample Web Resources

Grammar / Listening / Writing	Reading
1-language.com	https://www.usingenglish.com/comprehension/
http://www.5minuteenglish.com/	https://www.englishclub.com/reading/short
https://www.englishpractice.com/	stories.htm
Grammar/Vocabulary	https://www.english-online.at/
English Language Learning Online	Listening
http://www.bbc.co.uk/learningenglish/	https://learningenglish.voanews.com/z/3613
http://www.bbc.co.uk/learningenglish/	http://www.englishmedialab.com/listening.html
http://www.better-english.com/	Speaking
http://www.nonstopenglish.com/	https://www.talkenglish.com/
https://www.vocabulary.com/	BBC Learning English – Pronunciation tips
BBC Vocabulary Games	Merriam-Webster – Perfect pronunciation
Free Rice Vocabulary Game	Exercises
All Skills https://www.englishclub.com/ http://www.world-english.org/	

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1									2	3		1
CO2									2	3		1
CO3									2	3		1
CO4									2	3		1
CO5									2	3		1

I-Year-I Semester BS1102L

APPLIED PHYSICS LAB

L	Т	P	С
0	0	3	1.5

Course Objectives: The Applied Physics Lab is designed to

- > Understand the concepts of interference and diffraction and their applications.
- > Apply the concept of LASER in the determination of wavelength.
- **Recognize** the importance of energy gap in the study of conductivity and Hall Effect.
- > **Illustrate** the magnetic and dielectric materials applications.
- > Apply the principles of semiconductors in various electronic devices.

LIST OF EXPERIMENTS(Any 10 of the following listed 15 experiments)

- 1. Determination of wavelength of a source-Diffraction Grating-Normal incidence.
- 2. Newton's rings Radius of Curvature of Plano Convex Lens.
- 3. Determination of thickness of a spacer using wedge film and parallel interference fringes.
- 4. Magnetic field along the axis of a current carrying coil Stewart and Gee's apparatus.
- 5. Energy Band gap of a Semiconductor p n junction.
- 6. Characteristics of Thermistor Temperature Coefficients
- 7. Determination of dielectric constant by charging and discharging method
- 8. Variation of dielectric constant with temperature
- 9. Study the variation of B versus H by magnetizing the magnetic material (B-H curve).
- 10. LASER Determination of wavelength by plane diffraction grating
- 11. Determination of resistivity of semiconductor by Four probe method.
- 12. Determine the radius of gyration using compound pendulum
- 13. Rigidity modulus of material by wire-dynamic method (torsional pendulum)
- 14. Dispersive power of diffraction grating.
- 15. Determination of Hall voltage and Hall coefficients of a given semiconductor using Hall Effect.

Course Outcomes: The students will be able to:

- CO1. Operate optical instruments like microscope and spectrometer
- CO2. Determine thickness of a paper with the concept of interference
- CO3. Estimate the wavelength of different colours using diffraction grating and resolving power
- CO4. Plot the intensity of the magnetic field of circular coil carrying current with distance

CO5. Calculate the band gap of a given semiconductor

CO POMapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										1
CO2	3	2										1
CO3	3	2										1
CO4	3	2										1
CO5	3	2										1

I-Year-I Semester ES1101L

PROBLEM SOLVING USING C LAB

L	Τ	P	С
0	0	3	1.5

Course Objectives

- 1. Apply the principles of C language in problem solving.
- 2. To design flowcharts, algorithms and knowing how to debug programs.
- 3. To design & develop of C programs using arrays, strings pointers & functions.
- 4. To review the file operations, pre-processor commands.

Exercise 1

1. Write a C program to print a block F using hash (#), where the F has a height of six characters and width of five and four characters.

2. Write a C program to compute the perimeter and area of a rectangle with a height of 7 inches and width of 5 inches.

3. Write a C program to display multiple variables.

Exercise 2

1. Write a C program to calculate the distance between the two points.

2. Write a C program that accepts 4 integers p, q, r, s from the user where r and s are positive and p is even. If q is greater than r and s is greater than p and if the sum of r and s is greater than the sum of p and q print "Correct values", otherwise print "Wrong values".

Exercise 3

1. Write a C program to convert a string to a long integer.

2. Write a program in C which is a Menu-Driven Program to compute the area of the various geometrical shape.

3. Write a C program to calculate the factorial of a given number.

Exercise 4

1 .Write a program in C to display the n terms of even natural number and their sum.

2. Write a program in C to display the n terms of harmonic series and their sum.

 $1 + 1/2 + 1/3 + 1/4 + 1/5 \dots 1/n$ terms.

3. Write a C program to check whether a given number is an Armstrong number or not.

Exercise 5

1. Write a program in C to print all unique elements in an array.

- 2. Write a program in C to separate odd and even integers in separate arrays.
- 3. Write a program in C to sort elements of array in ascending order.

Exercise 6

1. Write a program in C for multiplication of two square Matrices.

2. Write a program in C to find transpose of a given matrix.

Exercise 7

1. Write a program in C to search an element in a row wise and column wise sorted matrix.

2. Write a program in C to print individual characters of string in reverse order.

Exercise 8

1. Write a program in C to compare two strings without using string library functions.

2. Write a program in C to copy one string to another string.

Exercise 9

1. Write a C Program to Store Information Using Structures with Dynamically Memory Allocation

2. Write a program in C to demonstrate how to handle the pointers in the program.

Exercise 10

1. Write a program in C to demonstrate the use of & (address of) and *(value at address) operator.

2. Write a program in C to add two numbers using pointers.

Exercise 11

1. Write a program in C to add numbers using call by reference.

2. Write a program in C to find the largest element using Dynamic Memory Allocation.

Exercise 12

1. Write a program in C to swap elements using call by reference.

2. Write a program in C to count the number of vowels and consonants in a string using a pointer.

Exercise 13

1. Write a program in C to show how a function returning pointer.

2. Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using malloc() function.

Exercise 14

Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using calloc() function. Understand & write the difference.
 Write a program in C to convert decimal number to binary number using the function.

Exercise 15

1. Write a program in C to check whether a number is a prime number or not using the function.

2. Write a program in C to get the largest element of an array using the function.

Exercise 16

- 1. Write a program in C to append multiple lines at the end of a text file.
- 2. Write a program in C to copy a file in another name.
- 3. Write a program in C to remove a file from the disk.

Course Outcomes: By the end of the Lab, the student able to

- CO1. Comprehend the various concepts of a C language
- CO2. Develop algorithms and flowcharts
- CO3. Design and development of C problem solving skills.
- CO4. Acquire modular programming skills.

CO – PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	3	2	1	-	-	-	3	3	1	2	1	2
CO2	2	3	3	2	-	-	-	-	1	1	2	2	2	2
CO3	3	3	3	2	-	-	-	-	2	1	2	2	2	3
CO4	2	2	2	2	-	-	-	-	2	1	2	2	2	2

(Strong - 3; Moderate - 2; Weak - 1)

I-Year-II Semester BS1201

MATHEMATICS-II

L	Т	Р	С
3	1	0	3

Course objectives:

The main objectives are

- 1. To elucidate the different numerical methods to solve nonlinear algebraic equations
- 2. To disseminate the use of different numerical techniques for carrying out numerical integration
- 3. To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real-world problems and their applications

UNIT-1: Iterative methods

11 HOURS

14 HOURS

Introduction–Bisection method–Method of false position–Iteration method–Newton-Raphson method (one variable)–Jacobi and Gauss-Seidel methods for solving system of equations.

UNIT-2: Interpolation

Introduction–Errors in polynomial interpolation–Finite differences–Forward differences– Backward differences–Central differences –Relations between operators–Newton's forward and backward formulae for interpolation–Gauss's forward and backward formulae for

Interpolation – Interpolation with unequal intervals–Lagrange's interpolation formula–Newton's divide difference formula.

UNIT-3: Numerical integration and solution of ordinary difference equations 12 HOURS Trapezoidal rule–Simpson's 1/3rd and 3/8th rule–Solution of ordinary differential equations by Taylor's series–Picard's method of successive approximations–Euler's method–Modified Euler's method–Runge-Kutta method (second and fourth order).

UNIT-4: Laplace Transforms:

14 HOURS

14 HOURS

Laplace transforms of standard functions – Shifting theorems – Transforms of derivatives and integrals – Unit step function – Dirac's delta function –Periodic function - Inverse Laplace transforms – Convolution theorem (without proof)

Applications: Evaluation of integrals using Laplace transforms - Solving ordinary differential equations (Initial value problems) using Laplace transforms.

UNIT 5: Fourier series and Fourier Transforms:

Fourier series: Introduction – Periodic functions – Fourier series of periodic function – Dirichlet's conditions – Even and odd functions – Change of interval – Half-range sine and cosine series. Fourier Transforms: Fourier integral theorem (without proof) - Fourier sine and cosine integrals – Sine and cosine transforms – Properties – Inverse transforms – Finite Fourier transforms.

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1 Evaluate approximate in the roots of polynomial and transcendental equations by different algorithms (EVALUATE)

CO2 Solve system of linear algebraic equations using Gauss Jacobi, Gauss Seidel and apply Newton's forward and backward interpolation and Lagrange's formulae for equal and unequal intervals (SOLVE,APPLY, FIND)

Apply different algorithms for approximating the solutions of ordinary differential equations to its analytical computations and also by Laplace the transforms for solving differential equations (SOLVE APPLY, FIND)
Find or compute the Fourier series of periodic signals (SOLVE, APPLY, FIND, ANALYSE)
Know and be able to apply integral expressions for the forwards and inverse Fourier transform to
range of non-periodic waveforms (SOLVE APPLY FIND)
runge of non periodic waverorms (SOL (L, THTET, THED)

Text books:

3. **B.S. Grewal,** Higher Engineering Mathematics, 44th Edition, Khanna Publishers

Reference books:

- 1. **B.V. Ramana**, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.
- 2. **H.K.Das**, Advanced Engineering Mathematics, 22nd Edition, S. Chand & Company Ltd.
- 3. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India.

Micro-Syllabus of MATHEMATICS-II

UNIT-1: Iterative methods:Introduction–Bisection method–Method of false position–Iteration method–Newton-Raphson method (one variable)–Jacobi and Gauss-Seidel methods for solving system of equations.

Unit	Module	Micro content		
	Numerical solution of	Bisection method		
1a. Solving given polynomial	algebraic and	Method of false position		
	transcendental	Iteration method		
	polynomials	Newton-Raphson's method		
1b. Solving linear	Solving linear system	Jacobi's method		
system	Solving inical system	Gauss-seidel method		

UNIT-2: Interpolation:Introduction–Errors in polynomial interpolation–Finite differences– Forward differences–Backward differences–Central differences –Relations between operators– Newton's forward and backward formulae for interpolation–Gauss's forward and backward formulae for

Interpolation – Interpolation with unequal intervals–Lagrange's interpolation formula–Newton's divide difference formula.

Unit	Module	Micro content		
	Finite difference tables	Forward, backward & central difference tables		
29		Errors in polynomials		
Equal-Spaced difference tables	Finding functional	Newton's forward and backward difference interpolation formula		
	values for given data	Gauss forward and backward difference interpolation formula		
2b.	Unequal spaced data &	Lagrange's interpolation formula		

UNIT-3: Numerical integration and solution of ordinary difference equations:

Trapezoidal rule–Simpson's 1/3rd and 3/8th rule–Solution of ordinary differential equations by Taylor's series–Picard's method of successive approximations–Euler's method–Modified Euler's method–Runge-Kutta method (second and fourth order).

Unit	Module	Micro content
		Trapezoidal rule
3a.	Numerical Integration	Simpson's 1/3 rd rule
Numerical		Simpson's 3/8 th
integration		Taylors series method
		Picard's method
		Euler's method
3b.	Numerical solution of	
Numerical	ordinary differential	
solution of	equations for single	
ordinary	variable	Modified Euler's method
differential		
equations for		
single variable		

UNIT – 4: Laplace Transforms:Laplace transforms of standard functions – Shifting theorems – Transforms of derivatives and integrals – Unit step function – Dirac's delta function –Periodic function - Inverse Laplace transforms – Convolution theorem (without proof)

Applications: Evaluation of integrals using Laplace transforms - Solving ordinary differential equations (Initial value problems) using Laplace transforms.

Unit	Module	Micro content
4 a	Laplace transforms and	Shifting theorems
Laplace		Derivatives and integrals
Transforms	licorem	Multiplication and division
th Invence	Periodic functions &Inverse Laplace Transforms	Periodic functions
40. mverse		Dirac delta functions
transforms and		Evaluation integrals using Laplace Transforms
Annlications		Solving differential equations using Laplace
rppneations		transforms

UNIT 5: Fourier series and Fourier Transforms:

Fourier series: Introduction – Periodic functions – Fourier series of periodic function – Dirichlet's conditions – Even and odd functions – Change of interval – Half-range sine and cosine series. Fourier Transforms: Fourier integral theorem (without proof) - Fourier sine and cosine integrals – Sine and cosine transforms – Properties – Inverse transforms – Finite Fourier transforms.

Unit	Module	Micro content
_		Periodic functions
		Dirichlet's conditions
Ja. Fourier Series	Fourier Series	Even and odd function's
rourier Series		Change of interval
		Half range sine and cosine series
	Fourier Transforms	Fourier Sine and Cosine integral
		Properties of Fourier Transforms
5h		Fourier and Inverse Fourier Transforms
50. Fourier Transforms		Fourier cosine and Inverse Fourier cosine
		Transforms
		Fourier sine and Inverse Fourier sine Transforms
		Finite Fourier Transforms
		Inverse Finite Fourier Transforms

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										1
CO2	3	2										1
CO3	3	2										1
CO4	3	2										1
CO5	3	2										1

I-Year-II Semester BS1202

APPLIED CHEMISTRY

L	Т	Р	С
3	0	0	3

Knowledge of basic concepts of chemistry for Engineering students will help them as professional engineers later in design and material selection as well as utilizing the available resources.

Course Objectives

- 1. Significance of various types of plastic materials in household appliances and composites (FRP) in aerospace and automotive industries.
- 2. Understand the basic concepts of electrochemistry, which are useful to construct the electrochemical cells, batteries and fuel cells.

Illustrate the theories and mechanism of corrosion and its prevention.

- 3. Importance of advanced materials and their engineering applications.
- 4. Make use of molecular machines in supramolecular chemistry and need of green chemistry.
- 5. Design and construction of advanced instrumental techniques and recall their importance.

Unit-1

POLYMER TECHNOLOGY

Polymerisation: Introduction-Methods of polymerisation-(emulsion and suspension)-Physical and mechanical properties.

Plastics: Compounding-Fabrication (compression, injection, blown film, extrusion)-Preparation, properties and applications of PVC, ploycarbonates and Bakelite-Mention some examples of plastic materials used in electronic gadgets, recycling of e-plastic waste.

Elastomers: Natural rubber-Drawbacks-Vulcanization-Preparation-Properties and applications of synthetic rubbers (Buna S, thiokol and polyurethanes)

Composite Materials: Fiber reinforced plastics-CFRP and GFRP

Conducting polymers: Polyacetylene, doped conducting polymers -p-type and n-type doping.

Bio degradable polymers: Biopolymers and biomedical polymers

Unit-2

ELECTROCHEMICAL CELLS AND CORROSION

Single electrode potential-Electrochemical series and uses of series-Standard hydrogen electrode, calomel electrode, concentration cell, construction of glass electrode, Batteries: Dry cell, Ni-Cd cells, Ni-Metal hydride cells, Li-ion battery, Zinc air cells, Fuel cells- $H_2 - O_2$, CH₃OH-O₂, phosphoric acid, molten carbonate.

Corrosion: Definition-theories of corrosion (chemical and electrochemical)-galvanic corrosion, differential aeration corrosion, stress corrosion, water-line corrosion- passivity of metals-galvanic series-factors influencing rate of corrosion-corrosion control: (proper designing, cathodic protection)-protective coatings: cathodic and anodic coatings, electroplating, electroless plating (nickel), paints (constituents and its functions).

Unit-3

MATERIAL CHEMISTRY

Non-elemental semiconducting materails: Stoichiometric, controlled valency & chalcogen photo/semiconductors-preparation of semiconductors (distillation, zone refining, Czochralski

crystal pulling technique) – Semiconductor devices (p-n junction diode as rectifier, junction transistor)

Nano materials: Introduction, sol-gel method, characterization by BET, SEM and TEM methods, applications of graphene-carbon nanotubes and fullerenes: Types, preparation of carbon nanomaterials by carbon-arc, laser abalation methods.

Liquid crystals: Introduction-types-applications.

Superconductors: Meissner effect, type- I and type- II superconductors, characteristics and applications.

Unit-4

ADVANCED CONCEPTS AND GREEEN CHEMISTRY

Molecular switches and machines: Introduction to supramolecular chemistry, characteristics of molecular motors and machines. Rotaxanes and Catenanes as artificial molecular machines. Protypes linear motions in Rotaxanes, and acid-base controlled molecular shuttle, a molecular elevator, an autonomous light –powered molecular motors, natural molecular motors and machine.

Green chemistry: Principles of green chemistry, green synthesis – aqueous phase, microwave assisted chemical reactions and phase transfer catalysis (PTC).

Unit-5

SPECTROSCOPIC TECHNIQUES & NON-CONVENTIONAL ENERGY SOURCES

Spectroscopic Techniques: Electromagneticspectrum-types of molecular spectra and their absorption criteria.

UV-visible spectroscopy (electronic spectroscopy), Frank-Condon principle, Beer-Lambert's law and its limitations, chromophores and auxochromes – *applications of UV visible spectroscopy.

IR spectroscopy – functional group and finger print region – molecular vibrations – stretching and bending vibrations – *applications of IR.

NMR (Nuclear magnetic resonance): Working principle and instrumentation of NMR – chemical shift() – *applications of NMR.

(*only general applications – without any spectroscopic problems regarding quantitative and qualitative analysis.)

Non-conventional energy sources: Design, working, schematic diagram, advantages and disadvantages of photovoltaic cell, organic photo-voltaic, hydropower, geothermal power, tidal, ocean thermal energy conversion (OTEC) – open cycle OTEC, closed cycle OTEC and hybrid cycle OTEC.

REFERENCE BOOKS

- 1. A text book of Engineering Chemistry by S.S. Dara, S. S. Umare; S. Chand & Co., Ltd., Latest Edition.
- 2. Engineering Chemistry by Shashi Chawla; Dhanpat Rai Publicating Co., Latest Edition.

TEXT BOOKS

- 1. Engineering Chemistry by Jain & Jain; Dhanpat Rai Publicating Co., Latest Edition
- 2. Engineering Chemistry by Shikha Agarwal; Cambridge University Press, 2019 Edition.
- 3. Engineering Chemistry by Prasanth Rath, B. Ramadevi, Ch. Venkata Ramana Reddy, Subendu Chakravarthy; Cengage Publications, 2019 Edition.

14 HRS

Micro-Syllabus of Applied Chemistry

UNIT-I: POLYMER TECHNOLOGY

Polymerisation: Introduction-Methods of polymerisation-(emulsion and suspension)-Physical and mechanical properties.

Plastics: Compounding-Fabrication (compression, injection, blown film, extrusion)-Preparation, properties and applications of PVC, ploycarbonates and Bakelite-Mention some examples of plastic materials used in electronic gadgets, recycling of e-plastic waste.

Elastomers: Natural rubber-Drawbacks-Vulcanization-Preparation-Properties and applications of synthetic rubbers (Buna S, thiokol and polyurethanes)

Composite Materials: Fiber reinforced plastics-CFRP and GFRP.

Conducting polymers: Polyacetylene, doped conducting polymers- p-type and n-type doping. *Bio degradable polymers*: Biopolymers and biomedical polymers.

Unit	Module	Micro content	
Polymerization	Introduction, Methods of Polymerization And Properties of Polymers	Introduction - Polymer, monomer, functionality and polymerization. Methods of polymerisation - Emulsion and suspension Physical and mechanical properties of polymers.	
Plastics	Compounding of plastics, fabrication of polymer articles, preparation, properties and applications of some polymers, e-plastic and disposal of e-plastic waste.	Compounding of plastics Fabrication of polymer articles – compression, injection, blowing, extrusion Preparation, properties and applications of PVC, ploycarbonates and Bakelite Mention some examples of plastic materials used in electronic gadgets, recycling of e-plastic waste.	
Elastomers	Natural Rubber, vulcanization, synthetic rubbers	Natural rubber – Drawbacks – Vulcanization Preparation – Properties and applications of synthetic rubbers – Buna S, thiokol and polyurethane rubbers.	
Composite	Fiber reinforced	Fiber Reinforced Plastics (FRP) – CFRP and	
materials	plastics	GFRP.	
Conducting polymers	Polyacetylene polymer, p-type and n-type doping	Polyacetylene, doped conducting polymers- p-type and n-type doping.	
Biodegradable	Biopolymers and	Biopolymers and biomedical polymers – polylactic	
polymers	biomedical polymers	acid polyglycolic acid polymers	
UNIT-II: ELECTROCHEMICAL CELLS AND CORROSION			
12 HRS			
Single electrode potential - Electrochemical series and uses of series - Standard hydrogen			

electrode, calomel electrode, concentration cell, construction of glass electrode, Batteries: Dry

cell, Ni-Cd cells, Ni-Metal hydride cells, Li-ion battery, Zinc air cells, Fuel cells- H_2-O_2 , CH₃OH-O₂, phosphoric acid, molten carbonate.

Corrosion: Definition - theories of corrosion (chemical and electrochemical)-galvanic corrosion, differential aeration corrosion, stress corrosion, water-line corrosion- passivity of metals-galvanic series-factors influencing rate of corrosion-corrosion control: (proper designing, cathodic protection)-protective coatings: cathodic and anodic coatings, electroplating, electroless plating (nickel), paints (constituents and its functions).

Unit	Module	Micro content
Introduction	Single alectrode notantial	Oxidation potential
Introduction	Single electrode potential	Reduction potential
Concentration cells	Electrode concentration cell and electrolyte	Electrode concentration cell and electrolyte concentration cell
		Definition Electro chemical series
		Definition – Electro chemical series
Electro chemical	Electro chemical series	Significances of Electro chemical series
series		Differences between Electro chemical series and
		galvanic series
	Standard Hydrogen	
	Electrode	Working Principle and Construction of a
Reference		 Standard Hydrogen Electrode
electrodes	Calomel Electrode	– Calomel Electrode
		– Glass Electrode
	Glass Electrode	
	Introduction	Definition – Corrosion
Corrosion	Theories of Corrosion	Chemical Theory of Corrosion / Dry Corrosion Electro Chemical Theory of Corrosion / Wet Corrosion
	Types of Corrosion	Galvanic corrosion, Differential aeration corrosion, Stress corrosion, Water-line corrosion
	Passivity of metals	Passivity, Examples for passive metals
Factors affecting rate of	(a) Nature of metal	 (a) Nature of metal: (i) Position of metal in the Galvanic series (ii) Purity of metal (iii) Relative surface area of anodic and cathodic metal (iv) Nature of oxide film (v) Physical state of metal (vi) Solubility and volatility of corrosion products
Corrosion (b) Na enviro	(b) Nature of environment	 (b) Nature of environment: (i) Temperature (ii) Humidity (iii) pH of the medium (iv) Establishment of oxygen concentration cell (v) Impurities of the atmosphere (vi) Polarization of electrodes

12 HRS

Corrosion	Cathodic protection	Sacrificial anodic protection impressed cathodic
control mothods		ourront
control methods		Cuitein
	Cathodic and Anodic	Calvanizing and Tinning
	coatings	Garvanizing and Timing
	Electroplating	Electroplating with example
	Electroless plating	Nickel Electroless plating
	Paints	Constituents of paints and its functions

UNIT-III: MATERIAL CHEMISTRY

Non-elemental semiconducting materails: Stoichiometric, controlled valency & chalcogen photo / semiconductors - Preparation of semiconductors (distillation, zone refining, Czochralski crystal pulling technique) – Semiconductor devices (p-n junction diode as rectifier, junction transistor)

Nano materials: Introduction, sol-gel method, characterization by BET, SEM and TEM methods, applications of graphene-carbon nanotubes and fullerenes: Types, preparation of carbon nanomaterials by carbon-arc, laser abalation methods.

Liquid crystals: Introduction – types-applications.

Superconductors: Meissner effect, type- I and type- II superconductors, characteristics and applications.

Unit	Module	Micro content
	Non elemental	Stoichiometric, controlled valency & chalcogen
	semiconductors	photo / semiconductors
Non elemental semiconducting materials	Preparation, purification and fabrication of semiconductors	Preperation – Distillation, zone refining, Czochralski crystal pulling technique
	Applications of semiconducting devices	p-n junction diode as rectifier, junction transistor
Nano materials	Introduction, sol-gel method, characterization of nano materials Applications of graphene Preparation of carbon	Introduction to Nano materials, Sol-gel method, characterization by BET, SEM and TEM methods, Carbon nanotubes and fullerenes. Types,
	nanomaterials	Carbon-arc, laser adalation methods.
Liquid crystals	Introduction, Types, Applications	Introduction, Thermotropic and Lyotropic liquid crystals, nematic and smectic liquid crystals, Applications of liquid crystals
Superconductors	Introduction, Characteristics and Applications	Introiduction, Meissner effect, type-I and type- II superconductors, characteristics and applications.
UNIT-IV: ADVA	NCED CONCEPTS AND G	REEEN CHEMISTRY 10 HRS
Molecular motors/ machines: Introduction to supramolecular chemistry, characteristics of		

molecular motors. Rotaxanes and Catenanes as artificial molecular machines. molecular shuttle, a molecular elevator, an autonomous light –powered molecular motors.

Green chemistry: Principles of green chemistry, green synthesis – aqueous phase, microwave assisted chemical reactions and phase transfer catalysis (PTC).

Unit	Module	Micro content
Molecular	Introduction to supramolecular chemistry Moleculatr Motors.	Introduction to supramolecular chemistry, characteristics of molecular motors.
motors/ machines	Natural Molecular Motors and Artificial Molecular Motors	Natural Molecular Motors, Artificial Molecular Machines: Rotaxanes and Catenanes. Molecular shuttle, a molecular elevator, an autonomous light –powered molecular motors
Green chemistry	Principles of Green Chemistry Green Synthetic Methods	12 Principles of green chemistry, green synthesis – aqueous phase, microwave assisted chemical reactions and phase transfer catalysis (PTC).

UNIT-V: SPECTROSCOPIC TECHNIQUES & NON-CONVENTIONAL ENERGY SOURCES 12 HRS

*Spectroscopic Techniques:*Electromagneticspectrum-types of molecular spectra and their absorption criteria.

UV-visible spectroscopy (electronic spectroscopy), Frank-Condon principle, Beer-Lambert's law and its limitations, chromophores and auxochromes – *applications of UV visible spectroscopy.

IR spectroscopy – functional group and finger print region – molecular vibrations – stretching and bending vibrations – *applications of IR.

NMR (Nuclear magnetic resonance): Working principle and instrumentation of NMR – chemical shift() – *applications of NMR.

(*only general applications – without any spectroscopic problems regarding quantitative and qualitative analysis.)

Non-conventional energy sources: Design, working, schematic diagram, advantages and disadvantages of photovoltaic cell, organic photo-voltaic, hydropower, geothermal power, tidal, ocean thermal energy conversion (OTEC) – open cycle OTEC, closed cycle OTEC and hybrid cycle OTEC.

Unit	Module	Micro content
Spectroscopic	Introduction to	Electromagneticspectrum-types of molecular
Techniques	Electromagneticspectrum	spectra and their absorption criteria.
UV	UV Visible Spectroscopy Applications	UV – Visible spectroscopy (electronic
		spectroscopy), Frank-Condon principle, Beer-
		Lambert's law and its limitations,
		chromophores and auxochromes –
		*applications of UV visible spectroscopy.

IR	IR Spectroscopy, Applications	<i>IR</i> spectroscopy – functional group and finger print region – molecular vibrations – stretching and bending vibrations – *applications of IR.
NMR	NMR Spectroscopy, Applications	<i>NMR</i> (Nuclear magnetic resonance): Working principle and instrumentation of NMR – chemical shift() – *applications of NMR. (Note: *only general applications – without any spectroscopic problems regarding quantitative and qualitative analysis.)
Non- conventional energy sources	Photovoltaic cells, Organic Photovoltaic cells, hydropower, geo thermal power, tidal and ocean thermal energy conversion	Design, working, schematic diagram, advantages and disadvantages of photovoltaic cell, organic photo-voltaic cell, hydropower, geothermal power, tidal, ocean thermal energy conversion (OTEC) – open cycle OTEC, closed cycle OTEC and hybrid cycle OTEC.

Course Outcomes: At the end of the course, the students will be able to

CO1. explain the preparation, properties and applications of thermoplastics, thermosettings, elastomers and conducting polymers.

- **CO2. know** the importance of various materials and their uses in the construction of batteries and fuel cells.
- CO3. know the applications of advanced materials in various industries.
- **CO4. apply** the principles of supramolecular chemistry in the applications of molecular machines, need of green chemistry.
- CO5. explain the principles of spectrometry such as UV, IR, and NMR.

CO PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2					3					
CO2	2	2					2					
CO3	2	2					2					
CO4	2	2					3					
CO5	2	2					3					

⁽Strong – 3; Moderate – 2; Weak – 1)

I-Year-II Semester PC1201

BASIC CIRCUIT ANALYSIS

L	Т	Р	С
3	1	0	3

Course objectives

- To study the concepts of network elements and network reduction techniques.
- To understand the behavior of RLC networks for sinusoidal excitations.
- To study the performance of different circuits and to understand the concept of resonance.
- To understand the applications of network theorems.
- To study the concept of magnetic coupled circuits.

Unit-1

Introduction to Electrical Circuits

Passive components and their V-I relations. Sources (dependent and independent, Ideal and Practical) -Kirchhoff's laws, Network reduction techniques, source transformation techniques, Nodal analysis and Mesh analysis with DC excitation.

Unit-2

Single Phase A.C Systems

RMS, average value, form factor and Peak factor for Periodic waveforms, Concept of phase, phase angle and phase difference, 'j' operator, waveforms and phasor diagrams for lagging and leading networks. Concept of Impedance and admittance- steady state analysis of R, L and C circuits with sinusoidal excitation, real, reactive power, apparent power and power triangle.

Unit-3

Analysis of AC Networks

Nodal and Mesh analysis with AC excitation, resonance and anti-resonance, selectivity, band width and Quality factor, voltage and current magnification factor, locus diagrams.

Unit-4

Network theorems (DC & AC Excitations)

Superposition theorem, Thevenin's theorem, Norton's theorem, Maximum Power Transfer theorem, Reciprocity theorem, Millman's theorem, Compensation theorem and Telligen's theorem.

Unit-5

Magnetic Circuit

MMF, flux, reluctance, flux density, field intensity and its relations. Analogy between electrical and magnetic circuits. Faraday's laws of electromagnetic induction, Concept of self and mutual inductance, Dot convention, coefficient of coupling and composite magnetic circuit.

Text Books

1. "Fundamentals of Electric Circuits "Charles K.Alexander, Mathew N.O.Sadiku, Tata McGraw-Hill.

2. Engineering Circuit Analysis by William Hayt and Jack E.Kemmerley,Mc Graw Hill Company,6th edition

3. Network Analysis: Van Valkenburg; Prentice-Hall of India Private Ltd.

4. 3000 Solved Problems in Electrical Circuit by Schaum's solved problem series Tata McGraw- Hill.

Reference Books

1. Circuits & Networks Analysis & Synthesis by A. Sudhakar and Shyammohan S Palli, Tata McGraw- Hill.

2. Network Analysis by N.C.Jagan, C.Lakshmi Narayana BS publications 2nd edition

3. Circuit Theory by A.ChakrabartiDanapat Rai & Co publisher.

e- Resources & other digital material:

- 1. <u>https://www.youtube.com/watch?v=8gMuLr_0-TI&t=7s</u>
- 2. https://www.youtube.com/watch?v=pO9qgzzRWaA&t=337s
- 3. <u>https://www.youtube.com/watch?v=HcgDoL9YtMM&t=15s</u>
- 4. <u>https://www.youtube.com/watch?v=MdPLQFFeQ30&t=74s</u>
- 5. <u>https://www.youtube.com/watch?v=Q-qKhjXYFPQ</u>

Micro-Syllabus of Basic Circuit Analysis

Unit No.	Unit	Module	Micro-Content								
Unit: 1	Introduction t	o Electrical Circuits									
Passive of	Passive components and their V-I relations. Sources (dependent and independent, Ideal and										
Practical) -Kirchhoff's	laws, Network reduction	techniques, source transformation techniques,								
Nodal ar	alysis and Me	sh analysis with DC exci	tation.								
			1. Types of Network elements								

			1. Types of fictivoir chemicities
			2. V- I relations
	1a. 1b.		3. Types of sources and source
		Introduction to	transformation technique
	,	Electrical Circuits	4. Kirchhoff 's Laws, numerical problems
			5. Series, parallel connection of elements,
Ι			star and delta transformation, numerical
			problems
			6. Nodal Analysis with DC excitation,
			numerical problems (both dependant and
	2a,2b	Network reduction	Independent sources)
	,	techniques	7. Mesh Analysis with DC excitation,
			numerical problems(both dependant and
			Independent sources)

UNIT 2: Single Phase A.C Systems

RMS, average value, form factor and Peak factor for Periodic waveforms, Concept of phase, phase angle and phase difference, 'j' operator, waveforms and phasor diagrams for lagging and leading networks. Concept of Impedance and admittance- steady state analysis of R, L and C circuits with sinusoidal excitation, real, reactive power, apparent power and power triangle.

			1 Introduction to single phase AC
			1. Introduction to single phase AC
			quantities different forms of representing
			periodic quantities
	2 21	Introduction to Single	2. Basic definitions and Calculation of
	3a,3b	nhase ac systems	Average, RMS, peak and form factor using
		phase ac systems	Integration method- numerical problems
			3. Concept of phase, phase angle, phasor
II			representation, phasor relation between
			quantities and j operator significance.
			4. Steady state analysis with AC excitation -
			Concept of impedence, admittance in RLC
		Steady state analysis	series and parallel networks - numerical
	4a,4b	of RLC circuits with	problems
		AC excitation	5. Basic terms and definitions- real, reactive
			power, apparent power and power triangle
			numerical problems

Unit 3: Analysis of AC Networks

Nodal and Mesh analysis with AC excitation, resonance and anti-resonance, selectivity, band width and Quality factor, voltage and current magnification factor, locus diagrams.

	5a,5b	Analysis of circuit with AC excitation and resonance	 Nodal analysis with AC excitation - numerical problems (Independent sources only) Mesh analysis with AC excitation - numerical problems (Independent sources only)
ш	6a,6b	Locus Diagrams of RLC networks	 3. Concept of resonance and anti-resonance 4. Definition and derivations of selectivity, band width and Quality factor, voltage and current magnification factor- numerical problems
			5. RL and RC locus diagrams with individual parameter variation- simple numerical problems

Unit 4: Network theorems (DC & AC Excitations)

Superposition theorem, Thevenin's theorem, Norton's theorem, Maximum Power Transfer theorem, Reciprocity theorem, Millman's theorem, Compensation theorem and Telligen's theorem.

			1.	Thevenin's theorem
IV	7a 7b	Analysis of electric	2.	Superposition theorem
	7 a ,70	circuits using	3.	Norton's theorem
		network theorems	4.	Maximum Power Transfer theorem

		5.	Reciprocity theorem		
0.01	Analysis of electric	6.	Millman's theorem		
8a,8b	circuits using	7. Compensation theorem			
	network theorems	6.	Telligen'stheorem - All theorems with		
		both D	OC and excitations - numerical problems		

Unit 5: Magnetic Circuits

MMF, flux, reluctance, flux density, field intensity and its relations. Analogy between electrical and magnetic circuits. Faraday's laws of electromagnetic induction, Concept of self and mutual inductance, Dot convention, coefficient of coupling and composite magnetic circuit.

			1. Basic Terms and definitions related to magnetic circuits- MMF, flux, reluctance, flux		
		Introduction and	density, field intensity and its relations		
	0a 0h	analysis of magnetic	2. Analogy between electrical and magnetic		
	9a,90	circuits	circuits		
		circuits	3. Types of Magnetic Circuits- series,		
V			parallel and composite circuits- numerical		
			problems		
			4. Faraday's laws of electromagnetic		
		Calculation of	induction		
	10a,10b	Inductance of	5. Concept of self, mutual inductance and		
		magnetic circuits	coefficient of coupling - numerical problems		
			6. Dot convention- numerical problems		

Course Outcomes: Upon successful completion of the course, the student will be able to analyse

CO1	Various electrical networks in presence of active and passive elements. {Apply level,
	KL3}
CO2	Any R, L, C network with sinusoidal excitation {Apply level, KL3&Analyse level,
	KL4}
CO3	Any R, L, C network with variation of any one of the parameters i.e R, L, C. and f.{Apply
	level, KL3&Analyse level, KL4}
CO4	Electrical networks by using principles of network theorems. {Apply level, KL3}
CO5	Any magnetic circuit with various dot conventions. {Apply level, KL3}

CO-PO MAPPING

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	3	2	2									
2	3	2	2	1		1						1
3	3	2	3	1								
4	3	2	1	1								

5	2	2	2	1	1			1
Average	2.8	2	2	1	1			1

(Strong – 3; Moderate – 2; Weak – 1)

I-Year-II Semester ES1201

BASICELECTRONIC DEVICES & CIRCUITS

L	Т	Р	С
3	0	0	3

Course objectives:

- 1. To Understand the Diode operation and switching characteristics,
- 2. To understand the implementation of various diode applications
- 3. To Understand the Operation of BJT, FET, MOSFET metal semiconductor rectifying and ohmic contacts.
- 4. To learn the various biasing methods and small-signal models of Transistors
- 5. To learn the feedback topology of amplifier and applications of transistors.

Unit-1

Junction Diode Characteristics

P-N Junction Diode Qualitative Theory of P-N Junction, P-N Junction as a Diode, Diode Equation(Qualitative), Volt-Ampere Characteristics, Temperature dependence of VI characteristic, Ideal versus Practical – Resistance levels (Static and Dynamic), Transition and Diffusion Capacitances, Diode Equivalent Circuits, Load Line Analysis, Breakdown Mechanisms in Semiconductor Diodes.

Special Diodes, Zener Diode Characteristics, Principle of Operation LED and Photo Diode. Unit-2

Diode Applications

Rectifiers: Half wave rectifier, ripple factor, full wave rectifier, Harmonic components in a rectifier circuit Rectifier with Filters(Qualitative Treatment only): Inductor filter, Capacitor filter, Qualitative Treatment of L - section filter, Pi - section filter, Multiple L and pi -section and filter, and comparison of various filter circuits in terms of ripple factors

Voltage Regulators: Simple circuit of a regulator using zener diode.

Unit-3

Transistor Characteristics

Bi-polar Junction Transistors(BJT): Formation of N-P-N and P-N-P transistors, Transistor current components, Operation of BJT, BJT characteristics (CE, CB configurations), Early effect, Current equations, Relation between Alpha and Beta, typical transistor junction voltage values and Limits of Operation, Transistor as an amplifier. (6 Hrs)

Junction Field Effect Transistors (JFET): Junction Field Effect Transistor (JFET) structure, Drain and Transfer Characteristics, Significance of Pinch-Off Voltage, JFET as an amplifier and switch, Comparison of BJT and JFET.

Unit-4

Transistor Amplifiers

Biasing and Stabilisation: Need for Proper Biasing, Q-point stability, Fixed and Voltage Divider biasing for BJT, Emitter Degeneration, Design of Self Biasing circuit, Thermal Stability considerations. Fixed, Voltage Divider biasing for JFET.

Small Signal Low frequency analysis of BJT and FET amplifiers: Small signal low frequency h-

parameter model of BJT. Approximate model, Analysis of BJT amplifiers using Approximate model for CB,CC and CE configurations, Analysis of JFET Amplifiers, Analysis of CS, CD Amplifiers. (06 Hrs)

Unit-5

Feedback Amplifiers

Negative Feedback Amplifiers: Concept of feedback, Classification of feedback amplifiers, General characteristics of negative feedback amplifiers, Effect of Feedback on input and output characteristics, Voltage series, voltage shunt, current series, and current shunt feedback amplifiers with discrete components and their analysis (05 Hrs) Oscillators: Condition for oscillations. RC-phase shift oscillators with Transistor and FET,

Hartley and Colpitts oscillators, Wein bridge oscillator, Crystal oscillators, Frequency and amplitude stability of oscillators.

Advanced Topics in this Subject: The historical background of MOS devices and their fabrication will be briefly reviewed, as well as the basic MOS structure for accumulation, depletion and inversion. Advanced issues such as work function, trapped charge, interface traps, non-equilibrium operation and re-equilibration processes will be covered.

Text books

- 1. Jacob Millman and Halkias, ' Integrated Electronics', Tata-Mcgraw Hill International.
- 2. Donald A. Neaman,"Semiconductor Physics and Devices", Times Mirror High Education Group, Chicago.

Reference books

- 1. Robert L.Boylestead and Louis Nashelsky,"Electronic Devices and Circuit Theory",Pearson Education.
- 2. Adel S. Sedra and Kenneth C. Smith, "Microelectronic Circuits", Oxford University Press.
- 3. D. Chattopadhyay and P.C. Rakshit Electronics: Fundamentals and Applications

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/117/102/117102061/
- 2. https://nptel.ac.in/courses/117/106/117106091/
- 3. https://nptel.ac.in/courses/108/107/108107142/

Micro-Syllabus of Basic Electronic Devices & Circuits

Unit	Topic Name	Micro-Topics
No.		
		1. Formation of PN junction and space charge Region
I Junction Characte	Junction Diode	2. Open Circuited P-N Junction
	Characteristics	a. Electrical representation
	Characteristics	b. Energy Band diagram and Fermi energy level
		c. Barrier Potential and Electrical symbols

4. Diode current equation 5. Diode resistance 6. Temperature Effect on V-I Characteristics 7. Illustrative examples 8. Transition and Diffusion Capacitances of Diode 9. Reverse Breakdown mechanisms 10. Operation of Zener Diode 11. Working of LED, Photodiode. 12. Components of Power Supply 3. Working of HWR,FWCR and FWBR 4. Characteristics of Rectifiers a. RMS Output b. DC output c. Ripple Factor			3. Forward and reverse bias characteristics
5. Diode resistance 6. Temperature Effect on V-I Characteristics 7. Illustrative examples 8. Transition and Diffusion Capacitances of Diode 9. Reverse Breakdown mechanisms 10. Operation of Zener Diode 11. Working of LED, Photodiode. 1. Working of Diode as a switch 2. Components of Power Supply 3. Working of HWR,FWCR and FWBR 4. Characteristics of Rectifiers a. RMS Output b. DC output c. Ripple Factor			4. Diode current equation
6. Temperature Effect on V-I Characteristics 7. Illustrative examples 8. Transition and Diffusion Capacitances of Diode 9. Reverse Breakdown mechanisms 10. Operation of Zener Diode 11. Working of LED, Photodiode. 1. Working of Diode as a switch 2. Components of Power Supply 3. Working of HWR,FWCR and FWBR 4. Characteristics of Rectifiers a. RMS Output b. DC output c. Ripple Factor			5. Diode resistance
7. Illustrative examples 8. Transition and Diffusion Capacitances of Diode 9. Reverse Breakdown mechanisms 10. Operation of Zener Diode 11. Working of LED, Photodiode. 1. Working of Diode as a switch 2. Components of Power Supply 3. Working of HWR,FWCR and FWBR 4. Characteristics of Rectifiers a. RMS Output b. DC output c. Ripple Factor			6. Temperature Effect on V-I Characteristics
8. Transition and Diffusion Capacitances of Diode Special Diodes 9. Reverse Breakdown mechanisms 10. Operation of Zener Diode 11. Working of LED, Photodiode. 1. Working of Diode as a switch 2. Components of Power Supply 3. Working of HWR,FWCR and FWBR 4. Characteristics of Rectifiers a. RMS Output b. DC output c. Ripple Factor			7. Illustrative examples
Special Diodes 9. Reverse Breakdown mechanisms 10. Operation of Zener Diode 11. Working of LED, Photodiode. 1. Working of Diode as a switch 2. Components of Power Supply 3. Working of HWR,FWCR and FWBR 4. Characteristics of Rectifiers a. RMS Output b. DC output c. Ripple Factor			8. Transition and Diffusion Capacitances of Diode
Special Diodes 10. Operation of Zener Diode 11. Working of LED, Photodiode. 1. Working of Diode as a switch 2. Components of Power Supply 3. Working of HWR,FWCR and FWBR 4. Characteristics of Rectifiers a. RMS Output b. DC output c. Ripple Factor			9. Reverse Breakdown mechanisms
11. Working of LED, Photodiode. 11. Working of Diode as a switch 2. Components of Power Supply 3. Working of HWR,FWCR and FWBR 4. Characteristics of Rectifiers a. RMS Output b. DC output c. Ripple Factor		Special Diodes	10. Operation of Zener Diode
1. Working of Diode as a switch 2. Components of Power Supply 3. Working of HWR,FWCR and FWBR 4. Characteristics of Rectifiers a. RMS Output b. DC output c. Ripple Factor			11. Working of LED, Photodiode.
 2. Components of Power Supply 3. Working of HWR,FWCR and FWBR 4. Characteristics of Rectifiers a. RMS Output b. DC output c. Ripple Factor 			1. Working of Diode as a switch
 3. Working of HWR,FWCR and FWBR 4. Characteristics of Rectifiers a. RMS Output b. DC output c. Ripple Factor 			2. Components of Power Supply
 4. Characteristics of Rectifiers a. RMS Output b. DC output c. Ripple Factor 			3. Working of HWR, FWCR and FWBR
a. RMS Outputb. DC outputc. Ripple Factor			4. Characteristics of Rectifiers
b. DC output c. Ripple Factor			a. RMS Output
c. Ripple Factor			b. DC output
			c. Ripple Factor
d. Efficiency			d. Efficiency
e. PIV			e. PIV
II Diode Applications f. Percentage Regulation	II	Diode Applications	f. Percentage Regulation
g. TUF			g. TUF
4. Illustrative Examples			4. Illustrative Examples
5. Need for filtering ac content			5. Need for filtering ac content
6. Working of FWR with series inductor filter and capacitor			6. Working of FWR with series inductor filter and capacitor
filter			filter
7. L-section and Pi-section filters			7. L-section and Pi-section filters
8. Design of Shunt Voltage Regulator with Zener Diode			8. Design of Shunt Voltage Regulator with Zener Diode
9. Worked out examples			9. Worked out examples
1. Construction of BJT			1. Construction of BJT
2. Transistor configurations and modes of operation			2. Transistor configurations and modes of operation
3. Operation of Bipolar Transistor			3. Operation of Bipolar Transistor
4. Transistor Current components and transportation factors			4. Transistor Current components and transportation factors
Bipolar Junction a. Emitter Injection Efficiency		Bipolar Junction	a. Emitter Injection Efficiency
Transistorb. Base Tansporation factor		Transistor	b. Base Tansporation factor
5. Large Signal Current gain			5. Large Signal Current gain
6. Early Effect and Circuit symbols	111		6. Early Effect and Circuit symbols
7. Input and Output Characteristics of CB,CE configurations			7. Input and Output Characteristics of CB,CE configurations
8. Transistor as an Amplifier and switch			8. Transistor as an Amplifier and switch
8. Structures of N and P channel JFETs			8. Structures of N and P channel JFETs
Junction Field Effect 9. Drain and Transfer Characteristics		Junction Field Effect	9. Drain and Transfer Characteristics
Transistor 10. Pinch of Voltage(V_p)		Transistor	10. Pinch of Voltage(V_n)
11. Interpretation of Shockley's Equation,			11. Interpretation of Shockley's Equation,

		1. Define Q-Point and DC load line					
		2. Proper Selection of Q-point					
		3. Stability of Q-point and Definition of Stability factors					
		4. Basics of Fixed biasing Circuit					
		5. Voltage divider biasing circuit					
		6. Analysis of Self-bias circuit					
	Transistor Blasing	7. Design of self bias circuit					
		8. Thermal Stability considerations					
		9. Worked out examples					
		10. Fixed Biasing in JFET					
IV		11. Voltage Divider Biasing of JFET					
		12. Worked out examples on FET biasing					
		1. BJT low frequency and small signal equivalent models					
		and definitions					
		h-parameter model					
	Small Signal Low	2. Temperature dependence of h-parameters and					
	frequency analysis of	determination of h-parameters from characteristics					
	BJT and FET	3. General analysis of CE,CC and CB amplifiers and comparison					
	amplifiers						
		4. Procedure to analyze practical amplifiers					
		5. CS amplifier analysis					
		6. Analysis of CD amplifier					
		1. Concept of feedback					
		2. Block Diagram, Concept of negative and positive feedback					
		3. Characteristics of Negative feedback Amplifiers					
		4. Voltage Series feedback Amplifier (Block diagram and					
		practical circuit analysis)					
	Feedback Amplifiers	5. Current series feedback Amplifier (Block diagram and					
		practical circuit analysis)					
		6. Voltage shunt feedback Amplifier (Block diagram and					
V		practical circuit analysis)					
v		7. Current shunt feedback Amplifier (Block diagram and					
		practical circuit analysis)					
		1. Barkhausen Criterion, Classification of Oscillators					
		2. General form of LC oscillator					
		3. Hartley and Colpitts Oscillators					
	Oscillators	4. RC phase shift oscillator with Transistor and FET					
		5. Wein Bridge Oscillator					
		6. Crystal Oscillator					
		7. Frequency Stability of Oscillators					

Course Outcomes: Upon successful completion of the course, the student will be able to

- **CO1:** Develop through basic knowledge on the behaviour and the characteristics of semiconductor junction. (**Understand**)
- **CO2:** Demonstrate the usage of diodes in various applications (**Apply**)
- CO3: Acquire knowledge on the operations of BJT, FET, and MOSFET. (Understand)
- **CO4:** Learn the art of biasing of BJTs and FETs, small signal low frequency models of BJTs and FETS in amplifier analysis (**Apply, Analyze**)
- CO5: Learn the feedback topology of amplifier and applications of transistors (Apply, Analyze)

CO-PO MAPPING

Mapping	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
C01		3												2
C02	2	2												2
C03		3												3
C04		3												2
C05	2		2											2

(Strong – 3; Moderate – 2; Weak – 1)

I-Year-II Semester ES1202

PROBLEM SOLVING USING PYTHON

L	Т	Р	С
3	0	0	3

Course Objectives

- To learn about Python programming language syntax, semantics, and the runtime environment
- To be familiarized with universal computer programming concepts like data types, containers
- To be familiarized with general computer programming concepts like conditional execution, loops & functions
- To be familiarized with general coding techniques and object-oriented programming

Unit-1

Introduction: Introduction to Python, Program Development Cycle, Input, Processing, and Output, Displaying Output with the Print Function, Comments, Variables, Reading Input from the Keyboard, Performing Calculations, Operators. Type conversions, Expressions, More about Data Output.

Data Types, and Expression: Strings Assignment, and Comment, Numeric Data Types and Character Sets, Using functions and Modules.

Decision Structures and Boolean Logic: if, if-else, if-elif-else Statements, Nested Decision Structures, Comparing Strings, Logical Operators, Boolean Variables. Repetition Structures: Introduction, while loop, for loop, Calculating a Running Total, Input Validation Loops, Nested Loops.

Unit-2

Control Statement: Definite iteration for Loop Formatting Text for output, Selection if and if else Statement Conditional Iteration, While Loop

Strings and Text Files: Accessing Character and Substring in Strings, Data Encryption, Strings and Number Systems, String Methods Text Files.

Unit-3

List and Dictionaries: Lists, Defining Simple Functions, Dictionaries

Design with Function: Functions as Abstraction Mechanisms, Problem Solving with Top Down Design, Design with Recursive Functions, Case Study Gathering Information from a File System, Managing a Program's Namespace, Higher Order Function.

Modules: Modules, Standard Modules, Packages.

Unit-4

File Operations: Reading config files in python, Writing log files in python, Understanding read functions, read(), readline() and readlines(), Understanding write functions, write() and writelines(), Manipulating file pointer using seek, Programming using file operations

Object Oriented Programming: Concept of class, object and instances, Constructor, class attributes and destructors, Real time use of class in live projects, Inheritance, overlapping and overloading operators, Adding and retrieving dynamic attributes of classes, Programming using Oops support

Design with Classes: Objects and Classes, Data modeling Examples, Case Study An ATM, Structuring Classes with Inheritance and Polymorphism

Unit-5

Errors and Exceptions: Syntax Errors, Exceptions, Handling Exceptions, Raising Exceptions, User-defined Exceptions, Defining Clean-up Actions, Redefined Clean-up Actions.

Graphical User Interfaces: The Behavior of Terminal Based Programs and GUI -Based, Programs, Coding Simple GUI-Based Programs, Other Useful GUI Resources. **Programming:** Introduction to Programming Concepts with Scratch.

TEXT BOOKS:

- 1. Fundamentals of Python First Programs, Kenneth. A. Lambert, Cengage.
- 2. Python Programming: A Modern Approach, VamsiKurama, Pearson.

REFERENCES:

- 1. Introduction to Python Programming, Gowrishankar.S, Veena A, CRC Press.
- 2. Introduction to Programming Using Python, Y. Daniel Liang, Pearson.

Micro-Syllabus of Problem-Solving usingPython

UNIT I

Introduction: Introduction to Python, Program Development Cycle, Input, Processing, and Output, Displaying Output with the Print Function, Comments, Variables, Reading Input from the Keyboard, Performing Calculations, Operators. Type conversions, Expressions, More about Data Output.

Data Types, and Expression: Strings Assignment, and Comment, Numeric Data Types and Character Sets, Using functions and Modules.

Decision Structures and Boolean Logic: if, if-else, if-elif-else Statements, Nested Decision Structures, Comparing Strings, Logical Operators, Boolean Variables. Repetition Structures: Introduction, while loop, for loop, Calculating a Running Total, Input Validation Loops, Nested Loops.

Unit	Module	Micro content
		Program Development Cycle, I/O Functions
		Comments, Variables, Operators
	Introduction	Reading From Keyboard, Type Conversions
Introduction to Python Language	Data Types and	Numeric Data types.
	Expressions	Strings and Character set.
		String Functions
		Comments
		Conditional Statements
	Decision Structures	Nested Conditional Statements
	and Boolean Logic	Looping Techniques
		Nested Loops

UNIT – II

Control Statement: Definite iteration for Loop Formatting Text for output, Selection if and if else Statement Conditional Iteration, While Loop

Strings and Text Files: Accessing Character and Substring in Strings, Data Encryption, Strings and Number Systems, String Methods Text Files.

Unit	Module	Micro content
Control Statements	Control Statements	For loop formatting text for output
		Selection if and if else statement
		Conditional iteration, While loop
	String and Text Files	Character and substring in strings
		Data Encryption
		Strings and Number Systems, String methods
		Text Files.

UNIT III

List and Dictionaries: Lists, Defining Simple Functions, Dictionaries

Design with Function: Functions as Abstraction Mechanisms, Problem Solving with Top Down Design, Design with Recursive Functions, Case Study Gathering Information from a File System, Managing a Program's Namespace, Higher Order Function.

Modules: Modules, Standard Modules, Packages.

Unit	Module	Micro content
	List and Dictionaries	Lists
		Functions of Lists
		Dictionaries
		Functions of Dictionaries
Data Structures, Functions and Modules	Design with Function Modules	Functions and there usage in python
		Recursive Functions
		Managing a Programs Namespace
		Gathering Info from a File System
		Higher Order Function
		Standard Modules
		Packages and their usage.

UNIT IV

File Operations: Reading config files in python, Writing log files in python, Understanding read functions, read(), readline() and readlines(), Understanding write functions, write() and writelines(), Manipulating file pointer using seek, Programming using file operations

Object Oriented Programming: Concept of class, object and instances, Constructor, class attributes and destructors, Real time use of class in live projects, Inheritance, overlapping and overloading operators, Adding and retrieving dynamic attributes of classes, Programming using Oops support

Design with Classes: Objects and Classes, Data modeling Examples, Case Study An ATM, Structuring Classes with Inheritance and Polymorphism

Unit	Module	Micro content
File Operations,		Reading and Writing Files in python using read
Object Oriented	File Operations	and write functions
Programming		File operations using seek and other operations

	Class, Object, constructor and destructor, OOP
Object Oriented	Principles.
Programming	Objects and Classes, Data modeling Examples
Design With Classes	Adding and retrieving dynamic attributes of
	classes

UNIT V

Errors and Exceptions: Syntax Errors, Exceptions, Handling Exceptions, Raising Exceptions, User-defined Exceptions, Defining Clean-up Actions, Redefined Clean-up Actions.

Graphical User Interfaces: The Behavior of Terminal Based Programs and GUI -Based, Programs, Coding Simple GUI-Based Programs, Other Useful GUI Resources.

Programming: Introduction to Programming Concepts with Scratch.

Unit	Module	Micro content
	Errors and Exceptions	Syntax Errors, Exceptions, Handling Exceptions
		Raising Exceptions, User-defined Exceptions
Errors and Exceptions, GUI and Programming		Defining Clean-up Actions
		Redefined Clean-up Actions
	GUI Programming	Terminal Based Programs and GUI – Based
		Simple GUI-Based Programs and other useful
		GUI Resources
		Introduction to Programming
		Scratch Programming

Course Outcomes: After completing this course, Students will be able to-

CO1: Develop essential programming skills in computer programming concepts like data types, containers

CO2: Solve coding tasks related to conditions, loops and String processing

CO3: Experiment with various Data structures in interpreted Language and to build modules and packages for real software needs.

CO4: Implement Files and object oriented principles in Python

CO5: Identify solutions using GUI in Python.

CO – PO MAPPING

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	2	1	-	-	-	-	-	-	-	-
CO2	1	2	2	1	-	-	-	-	-	-	-	-
CO3	1	3	3	2	1	-	-	-	-	-	-	-
CO4	1	2	2	2	-	-	-	-	-	-	-	-
CO5	1	2	2	2	1	-	-	-	-	-	-	1

[1-Slight (low), 2-Moderate (Medium), 3-Substantial (High)]

I-Year-II Semester BS1202L

APPLIED CHEMISTRY LAB

L	Т	Р	С
0	0	3	1.5

Introduction to chemistry laboratory – Molarity, Normality, Primary, Secondary standard solutions, Volumetric titrations quantitative analysis .

Course Objectives

- 1. To furnish the students with a solid foundation in Chemistry Laboratory required to solve the Engineering problems.
- 2. To expose the students in practical aspects of the theoritical concepts like pH, hardness of water etc.
- 3. To guide the students on how to handle the instruments like UV-visible spectrophotometer, potentiometer and conductometer.

List of Experiments: (Students should do any 10 experiments listed below)

- 1. Determination of HCl using standard Na₂CO₃ solution.
- 2. Determination of alkalinity of a sample containing Na₂CO₃ and NaOH.
- 3. Determination of Mn (II) using standard oxalic acid solution.
- 4. Determination of ferrous iron using standard K₂Cr₂O₇ solution.
- 5. Determination of Copper (II) using standard EDTA solution.
- 6. Determination of temporary and permanent hardness of water using standard EDTA solution.
- 7. Determination of Iron (III) by colorimetric method.
- 8. Determination of the concentration of acetic acid using sodium hydroxide (pH-metric method).
- 9. Determination of concentration of strong acid vs strong base (by conductometric method).
- 10. Determination of strong acid vs strong base (by potentiometric method).
- 11. Determination of Mg^{+2} present in an antacid.
- 12. Determination of CaCO₃ presence in an egg shell.
- 13. Estimation of vitamin- C.
- 14. Determination of phosphoric content in soft drinks.
- 15. Adsorption of acetic acid by charcoal.
- 16. Prepatation of nylon-6, 6 and Bakelite (demonstration only)

Reference Books:

A Text Book of Quantitative Analysis, Arthur J. Vogel.

Course Outcomes: At the end of the course, the students will be able

- CO1. To estimate the amount of metal ions present in different solutions (L4 & L3)
- CO2. To analyze the quality parameters of water (L4)
- **CO3.** To determine the strength of different solutions by using different instrumentation techniques (L3)

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3							2			
CO2	2	2							2			
CO3	2	3							2			

(Strong – 3; Moderate – 2; Weak – 1)

I-Year-II SemesterBASIC ELECTRONIC DEVICES & CIRCUITSES1201LLAB

L	Т	P	С
0	0	3	1.5

Course Objectives

- 1. To study basic electronic components
- 2. To observe characteristics of electronic devices

Learning Outcomes: At the end of the course the students can able to

- 1. Measure voltage, frequency and phase of any waveform using CRO.
- 2. Generate sine, square and triangular waveforms with required frequency and amplitude using function generator.
- 3. Analyze the characteristics of different electronic devices such as diodes, transistors etc.
- 4. Analyze and design simple circuits like rectifiers, power supplies and amplifiers etc.,

Electronic Workshop Practice:

- 1. Identification, Specifications and Testing of active devices, Diodes, BJTs, JFETs, LEDs, LCDs, SCR, UJT.
- 2. Soldering Practice- Simple circuits using active and passive components.
- 3. Study and operation of Ammeters, Voltmeters, Transformers, Analog and Digital Millimeter, Function
- 4. Regulated Power Supply and CRO.

List of Experiments(Any 10 of the following experiments are to be conducted)

- 1. P.N Junction Diode Characteristics
 - Part A: Germanium Diode (Forward bias& Reverse bias)

Part B: Silicon Diode (Forward Bias only)

- 2. Zener Diode Characteristics
 - Part A: V-I Characteristic
 - Part B: Zener Diode as Voltage Regulator
- 3. Rectifiers (without and with c-filter)
 - Part A: Half-wave Rectifier

Part B : Full-wave Rectifier

- 4. BJT Characteristics (CE Configuration)
 - Part A: Input Characteristics
 - Part B: output Characteristics
- 5. FET Characteristics

Part A: Drain Characteristics

Part B: Transfer Characteristics

- 6. SCR Characteristics
- 7. UJT Characteristics
- 8. Transistor Biasing

- 9. CRO Operation and its Measurement
- 10. BJT-CE Amplifier
- 11. Emitter Follower –CC Amplifier
- 12. Design any oscillator and measure frequency (RC PHASE SHIFT, WEIN BRIDGE, HARTLEY, and COLPITT'S)
- 13.Design of variable DC power supply (application).

CO PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1	3	2												2
CO2	3	2												2
CO3	3	2												2
CO4	3	3												3
CO5	3	3												2

(Strong – 3; Moderate – 2; Weak – 1)
I-Year-II Semester
ES1202LPROBLEM SOLVING USING PYTHON LAB

L	Т	Р	С
0	0	3	1.5

Course Objectives

- To acquire programming skills in core Python.
- To acquire Object Oriented Skills in Python
- To develop the skill of designing Graphical user Interfaces in Python
- To develop the ability to write database applications in Python

List of Problems

- 1. Write a program that asks the user for a weight in kilograms and converts it to pounds. There are 2.2 pounds in a kilogram.
- 2. Write a program that asks the user to enter three numbers (use three separate input statements). Create variables called total and average that hold the sum and average of the three numbers and print out the values of total and average.
- 3. Write a program that uses a *for* loop to print the numbers 8, 11, 14, 17, 20, ..., 83, 86, 89.
- 4. Write a program that asks the user for their name and how many times to print it. The program should print out the user's name the specified number of times.
- 5. Use a *for* loop to print a triangle like the one below. Allow the user to specify how high the triangle should be.

```
*
**
***
***
```

- 6. Generate a random number between 1 and 10. Ask the user to guess the number and print a message based on whether they get it right or not.
- 7. Write a program that asks the user for two numbers and prints *Close* if the numbers are within .001 of each other and Not close otherwise.
- 8. Write a program that asks the user to enter a word and prints out whether that word contains any vowels.
- 9. Write a program that asks the user to enter two strings of the same length. The program should then check to see if the strings are of the same length. If they are not, the program should print an appropriate message and exit. If they are of the same length, the program should alternate the characters of the two strings. For example, if the user enters *abcde* and *ABCDE* the program should print out *AaBbCcDdEe*.Write a program that asks the user for a large integer and inserts commas into it according to the standard American convention for commas in large numbers. For instance, if the user enters 1000000, the output should be 1,000,000.
- 10. In algebraic expressions, the symbol for multiplication is often left out, as in 3x+4y or 3(x+5). Computers prefer those expressions to include the multiplication symbol, like

3*x+4*y or 3*(x+5). Write a program that asks the user for an algebraic expression and then inserts multiplication symbols where appropriate.

- 11. Write a program that generates a list of 20 random numbers between 1 and 100.
 - a) Print the list.
 - b) Print the average of the elements in the list.
 - c) Print the largest and smallest values in the list.
 - d) Print the second largest and second smallest entries in the list
 - e) Print how many even numbers are in the list.
- 12. Write a program that asks the user for an integer and creates a list that consists of the factors of that integer.
- 13. Write a program that generates 100 random integers that are either 0 or 1. Then find the longest run of zeros, the largest number of zeros in a row. For instance, the longest run of zeros in [1,0,1,1,0,0,0,0,1,0,0] is 4.
- 14. Write a program that removes any repeated items from a list so that each item appears at most once. For instance, the list [1,1,2,3,4,3,0,0] would become [1,2,3,4,0].
- 15. Write a program that asks the user to enter a length in feet. The program should then give the user the option to convert from feet into inches, yards, miles, millimeters, centimeters, meters, or kilometers. Say if the user enters a 1, then the program converts to inches, if they enter a 2, then the program converts to yards, etc. While this can be done with if statements, it is much shorter with lists and it is also easier to add new conversions if you use lists.
- 16. Write a function called *sum_digits* that is given an integer num and returns the sum of the digits of num.
- 17. Write a function called *first_diff* that is given two strings and returns the first location in which the strings differ. If the strings are identical, it should return -1.
- 18. Write a function called *number_of_factors* that takes an integer and returns how many factors the number has.
- 19. Write a function called *is_sorted* that is given a list and returns True if the list is sorted and False otherwise
- 20. Write a function called root that is given a number x and an integer n and returns $x^{1/n}$. In the function definition, set the default value of n to 2.
- 21. Write a function called primes that is given a number n and returns a list of the first n primes. Let the default value of n be 100.
- 22. Write a function called merge that takes two already sorted lists of possibly different lengths, and merges them into a single sorted list.
 - a) Do this using the sort method. b) Do this without using the sort method.
- 23. Write a program that asks the user for a word and finds all the smaller words that can be made from the letters of that word. The number of occurrences of a letter in a smaller word can't exceed the number of occurrences of the letter in the user's word.
- 24. Write a program that reads a file consisting of email addresses, each on its own line. Your program should print out a string consisting of those email addresses separated by semicolons.

- 25. Write a program that reads a list of temperatures from a file called *temps.txt*, converts those temperatures to Fahrenheit, and writes the results to a file called ftemps.txt.
- 26. Write a class called Product. The class should have fields called name, amount, and price, holding the product's name, the number of items of that product in stock, and the regular price of the product. There should be a method *get_price* that receives the number of items to be bought and returns a the cost of buying that many items, where the regular price is charged for orders of less than 10 items, a 10% discount is applied for orders of between 10 and 99 items, and a 20% discount is applied for orders of 100 or more items. There should also be a method called *make_purchase* that receives the number of items to be bought and decreases amount by that much.
- 27. Write a class called Time whose only field is a time in seconds. It should have a method called *convert_to_minutes* that returns a string of minutes and seconds formatted as in the following example: if seconds is 230, the method should return '5:50'. It should also have a method called *convert_to_hours* that returns a string of hours, minutes, and seconds formatted analogously to the previous method.
- 28. Write a class called Converter. The user will pass a length and a unit when declaring an object from the class—for example, c = Converter(9, inches'). The possible units are inches, feet, yards, miles, kilometers, meters, centimeters, and millimeters. For each of these units there should be a method that returns the length converted into those units. For example, using the Converter object created above, the user could call c.feet() and should get 0.75 as the result.
- 29. Write a Python class to implement pow(x, n).
- 30. Write a Python class to reverse a string word by word.
- 31. Write a program that opens a file dialog that allows you to select a text file. The program then displays the contents of the file in a textbox.
- 32. Write a program to demonstrate Try/except/else.
- 33. Write a program to demonstrate try/finally and with/as.

Course Outcomes: After completing this course, Students will be able to-

CO1: Comprehend how software easily to build right out of the box.

CO2: Demonstrates the use of an interpreted language for problem solving through control statements including loops and conditionals.

CO3: Practice with data structures for quick programming solutions.

CO4: Demonstrates software building for real needs by breaking out code into reusable functions and modules.

CO5:Comprehend the software reliability through exception handling.

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	3	2	2	-	-	-	2	-	-	-
CO2	2	2	2	2	2	-	-	-	2	-	-	-
CO3	2	2	2	2	3	-	-	-	2	-	-	-
CO4	2	1	2	2	2	-	-	-	3	2	-	-
CO5	-	3	3	2	3	-	-	-	3	2	-	-

CO – PO MAPPING:

[1-Slight (low), 2-Moderate (Medium), 3-Substantial (High)]

I-Year-II Semester MC1201

CONSTITUTIONOF INDIAN

L	Т	Р	С
2	0	0	0

Course objectives:

The main objectives are

- 1. To Enable the student to understand the importance of constitution
- 2. To understand the structure of executive, legislature and judiciary
- 3. To understand philosophy of fundamental rights and duties
- 4. To understand the autonomous nature of constitutional bodies like Supreme Court and high court controller and auditor general of India and election commission of India.
- 5. To understand the central and state relation financial and administrative.

UNIT-I

Introduction to Indian Constitution: Constitution' meaning of the term, Indian Constitution - Sources and constitutional history, Features - Citizenship, Preamble, Fundamental Rights and Duties, Directive Principles of State Policy.

UNIT-II

Union Government and its Administration Structure of the Indian Union: Federalism, Centre-State relationship, President: Role, power and position, PM and Council of ministers, Cabinet and Central Secretariat, Lok Sabha, Rajya Sabha, The Supreme Court and High Court: Powers and Functions;

UNIT-III

State Government and its Administration Governor - Role and Position - CM and Council of ministers, State Secretariat: Organisation, Structure and Functions

UNIT-IV

Local Administration - District's Administration Head - Role and Importance, Municipalities -Mayor and role of Elected Representative - CEO of Municipal Corporation Panchayati: Functions PRI: Zila Panchayat, Elected officials and their roles, CEO Zila Panchayat: Block level Organizational Hierarchy - (Different departments), Village level - Role of Elected and Appointed officials - Importance of grass root democracy

UNIT-V

Election Commission: Election Commission- Role of Chief Election Commissioner and Election Commissionerate State Election Commission: Functions of Commissions for the welfare of SC/ST/OBC and women

Course Outcomes: Upon successful completion of the course, the student will be able to

COI	Know the sources,	features and	principles	of Indian	Constitution.
-----	-------------------	--------------	------------	-----------	---------------

- **CO2** Learn about Union Government, State government and its administration.
- **CO3** Get acquainted with Local administration and Pachayati Raj.
- **CO4** Be aware of basic concepts and developments of Human Rights.
- **CO5** Gain knowledge on roles and functioning of Election Commission

Reference books:

- 1. Durga Das Basu, Introduction to the Constitution of India, Prentice Hall of India Pvt. Ltd.. New Delhi
- 2. Subash Kashyap, Indian Constitution, National Book Trust
- 3. J.A. Siwach, Dynamics of Indian Government & Politics
- 4. D.C. Gupta, Indian Government and Politics
- 5. H.M.Sreevai, Constitutional Law of India, 4th edition in 3 volumes (Universal Law Publication)
- 6. J.C. Johari, Indian Government and Politics Hans
- 7. J. Raj Indian Government and Politics
- 8. M.V. Pylee, Indian Constitution Durga Das Basu, Human Rights in Constitutional Law, Prentice Hall of India Pvt. Ltd.. New Delhi
- 9. Noorani, A.G., (South Asia Human Rights Documentation Centre), Challenges to Civil Right), Challenges to Civil Rights Guarantees in India, Oxford University Press 2012

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	3			3		2	3	-	3	2
CO2	2	-	2			2		2	2	-	3	2
CO3	3	-	3			2		2	2	-	3	3
CO4	2	-	3			2		2	2	-	3	3
CO5	3	-	1			3		3	3	-	3	2

CO-PO Mapping:

II-Year-I Semester BS2101

Mathematics-III

L	Т	Р	С
3	1	0	3

Pre-Requisites:

- 1. Basics of Matrix Algebra
- 2. Partial Differentiation
- 3. Multiple Integrals
- 4. Ordinary Differential Equations

Course Objectives: To learn

- 1. The concept of rank of a matrix which is used to know the consistency of system of linear equations and also to find the eigenvectors of a given matrix.
- 2. Cayley-Hamilton theorem to find the inverse and power of a matrix and determine the nature of the quadratic form.
- 3. The gradient of a scalar function, divergence and curl of a vector function
- 4. To evaluate line, surface and volume integrals and construct relation between line, surface and volume integrals using vector integral theorems.
- 5. To familiarize the techniques in solutions of partial differential equations.

	Syllabus					
Unit No	Contents	Mapped CO				
Ι	Solving system of linear equations, Eigen values and Eigenvectors: (12 hrs)	CO1				
	Rank of a matrix by Echelon form and normal form-solving system of					
	homogeneous and non-homogeneous linear equations-Gauss elimination, Gauss					
	Jordan for solving system of equations- Eigen values and Eigen vectors and their properties.					
II	Cayley-Hamilton theorem and quadratic forms: (12 hrs)	CO2				
	Cayley-Hamilton theorem (without proof)–Finding inverse and power of a matrix					
	by Cayley-Hamilton theorem-Reduction to Diagonal form-Quadratic forms and					
	nature of the quadratic forms-Reduction of quadratic form to canonical forms by					
	orthogonal transformation.					
	Application: Free vibration of two mass systems.					
III	Vector Differentiation:(10 hrs)	CO3				
	Scalar and Vector point functions-Vector Differential operator- Gradient -					
	Directional derivatives - Divergence - Curl - Laplacian second order operator-					
	Vector identities- Scalar Potential.					
IV	Vector Integration: (12 hrs)	CO4				
	Line integral – Work done – Circulation- Surface integral- Volume integral					
	Vector integral theorems (without proof): Green's theorem in a plane- Stoke's					
	theorem- Gauss Divergence theorem.					

V	Solutions of Partial differential Equations: (14 hrs)	CO5
	Formation of partial differential equations by elimination of arbitrary constants	
	and arbitrary functions - Solutions of first order linear (Lagrange) equation and	
	nonlinear (standard types) equations.	
	Second order PDE: Solutions of linear partial differential equations with	
	constant coefficients – RHS term of the type	
	e^{ax+by} , $\sin(ax+by)$, $\cos(ax+by)$, $x^m y^n$.	
Cont	ent Beyond the Syllabus:	
Unit-	I:Finding the current in electrical circuits	
Unit-	III&IV: Cylindrical coordinates and Spherical coordinates	
TT ·/		

Unit-V:Charpit's method.

Cour	se Outcomes
Upon	successful completion of the course, the student will be able to
CO	Analyze the solution of the system of linear equations and to find the Eigenvalues and
1	Eigen vectors of a matrix. (L4)
CO	Apply Cayley-Hamilton theorem to determine inverse and power of a matrix and identify
2	the nature of the quadratic form (L3)
CO	Interpret the physical meaning of different operators such as gradient, curl and
3	divergence. (L5)
CO	Determine line, surface and volume integrals. Apply Green's, Stoke's and Gauss
4	divergence theorems to calculate line, surface and volume integrals. (L5& L3)
CO	Identify the solution methods for partial differential equation that model physical
5	processes. (L3)
Text	books:
1.	B.S. Grewal, Higher Engineering Mathematics, 44 th Edition, Khanna Publishers.
2.	B.V. Ramana, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill
	Education.
Refer	rence books
1.	Erwin Kreyszig, Advanced Engineering Mathematics, 10 th Edition, Wiley-India.
2.	H. K. Das, Advanced Engineering Mathematics, 22 nd Edition,S. Chand & Company Ltd.
3.	David Poole , Linear Algebra- A modern introduction, 4 th edition, Cengage.
4.	Peter O' Neil, Advanced Engineering Mathematics, Cengage
5.	Srimantha Pal, S C Bhunia, Engineering Mathematics, Oxford University Press.
e- Re	sources & other digital material
1. <u>htt</u>	ps://www.youtube.com/watch?v=LJ-
Lo	JhbBA4&list=PLbMVogVj5nJQ2vsW_hmyvVfO4GYWaaPp7
(Fo	or Unit-I, Mod1 :1-7 lectures, Mod 6: 25 th lecture, Mod 6: 26 th lecture&For Unit-II Mod 7:
25	^h -27 th lectures)
25	¹¹ -27 ^{ul} lectures)

2. <u>https://www.youtube.com/watch?v=9MCjyQSRmR8&list=PLFW6lRTa1g80fZ1giRbqbe_X</u>

	dXPdkkyqY&ab_channel=NPTEL-NOCIITMNPTEL-NOCIITM
	(For Unit-I 1-17 lectures)
3.	https://www.youtube.com/watch?v=ksS_yOK1vtk&list=PLbRMhDVUMngfIrZCNOyPZw
	HUU1pP66vQW&ab_channel=IITKharagpurJuly2018IITKharagpurJuly2018
	(For Unit-III 33-52 lectures, For Unit-IV 53-56 lectures)
4.	http://www.infocobuild.com/education/audio-video-courses/mathematics/Mathematics-III-
	<u>IIT-Roorkee/lecture-16.html</u>
	(For Unit-V lectures: 30-32)
5.	https://www.youtube.com/watch?v=PDUHeFyq6sA&list=PLoVRJrAl0FT0oYJJQbchL1hiA
	<u>UjlJ4y4O&index=42&ab_channel=AKTUDigitalEducationAKTUDigitalEducation</u> (For
	Unit-V lectures: 41-44)

Micro-Syllabus

Unit-1:Solving system of linear equations, Eigen values and Eigen Vectors : (12 hrs)

Rank of a matrix by Echelon form and normal form–solving system of homogeneous and nonhomogeneous linear equations–Gauss elimination, Gauss Jordan for solving system of equations– Eigen values and Eigen vectors and their properties.

Unit No	Module	Micro content	
		Echelon form	
	Pank of a matrix	Normal form	
1a.Rank of a matrix		Normal form by reducing it into PAQ	
&Solving system of		form	
linear equations		Homogeneous Linear system	
	Solutions to the system of	Non homogeneous linear system	
	linear equations	Gauss elimination method	
		Gauss Jordan method	
1h Figan values and	Eigen values and Eigen	Figen Values and Figen vectors	
Figen vectors of a	vectors of a matrix	Eigen values and Eigen vectors	
matrix & Properties	Properties	Properties of Eigen values and Eigen	
matrix & roperties	Toperties	vectors	

Unit-2:Cayley-Hamilton theorem and quadratic forms: ((12 hrs)

Cayley-Hamilton theorem (without proof)–Finding inverse and power of a matrix by Cayley-Hamilton theorem–Reduction to Diagonal form–Quadratic forms and nature of the quadratic forms–Reduction of quadratic form to canonical forms by orthogonal transformation.

Application: Free vibration of two mass systems.

Unit No	Module	Micro content
2.a. Cayley-Hamilton	Cayley-Hamilton theorem	Verification of Cayley-Hamilton theorem
theorem &		Find the inverse of a matrix using Cayley-

Applications		Hamilton theorem
		Find the higher powers of a matrix using
		Cayley-Hamilton theorem
	Free vibration of two	Find the natural frequencies and normal
		modes using Free vibration of two mass
	mass systems	systems
2.b. Diagonalization	Diagonalization of a	Diagonalization of a matrix
of a matrix & Reduction of the quadratic forms into	matrix, Rank, index, nature, signature, nature of the Quadratic forms	Reduction of the quadratic forms into canonical form by orthogonal transformation
canonical form		

Unit-3: Vector Differentiation: (10 hrs)

Scalar and Vector point functions-Vector Differential operator- Gradient – Directional derivatives – Divergence – Curl – Laplacian second order operator- Vector identities- Scalar Potential.

Unit No	Module	Micro content
3 a Dal applied to		Unit normal vector
scalar and vector	Gradient,Divergence andCurl	Angle between the two surfaces
point functions		Directional derivatives
point functions		Divergence of a vector-Solenoidal
		Curl of a vector-Irrotational
3. b. Scalar potential,	Scalar potential functions,	Scalar potential function
Del applied twice to	Laplacian operators,	Problems on Laplacian operator
point functions.	Vector identities	Vector identities

Unit-4: Vector Integration: (12 hrs)

Line integral – Work done – Circulation- Surface integral- Volume integral

Vector integral theorems (without proof): Green's theorem in a plane- Stoke's theorem- Gauss Divergence theorem.

Unit No	Module	Micro content
As Integration of	Line surface and volume	Work done by the force
vectors	integrals	Surface integral
vectors	Integrais	Volume integral
Ab Vactor integral	Relations between line,	Green's theorem in the plane
theorems	surface and volume	Stoke's theorem
uleorems	integrals.	Gauss divergence theorem

Unit-5:Solutions of Partial differential Equations:(14 hrs)

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions – Solutions of first order linear (Lagrange) equation and nonlinear (standard types) equations.

Second order PDE: Solutions of linear partial differential equations with constant coefficients -

RHS term of the type e^{ax+by} , $\sin(ax+by)$, $\cos(ax+by)$, $x^m y^n$.					
Unit No	Module	Micro content			
	Formation of partial	Formation of partial differential equations by eliminating the arbitrary constants			
5 a. Formation of a	differential equations	Formation of partial differential equations by eliminating the arbitrary functions			
partial differential	Linear (Lagrange's)	Method of grouping			
equations and Solutions to the	partial differential equations	Method of multipliers			
partial differential equations of first		f(p,q) = 0			
order	Non-linear partial	f(z, p, q) = 0			
	differential equations	f(x, p) = g(y, q)			
		z = px + qy + f(p, q)			
		Finding the Complementary function			
	Homogeneous partial	Particular integral of the type e^{ax+by}			
	second order with	Particular integral of the type			
	constant coefficients	$\sin(ax+by)$ or $\cos(ax+by)$			
5.b. Second order		Particular integral of the type $x^m y^n$			
equations	Non-homogeneous partial	Finding the Complementary function			
equations	differential equations of	Particular integral of the type e^{ax+by}			
	second order with	Particular integral of the type			
	constant coefficients	$\sin(ax+by)$ or $\cos(ax+by)'$			
		Particular integral of the type $x^m y^n$			

Course	Outcomes
Upon su	accessful completion of the course, the student will be able to
CO1	Analyze the solution of the system of linear equations and to find the Eigenvalues and
	Eigen vectors of a matrix. (L4)
CO2	Apply Cayley-Hamilton theorem to determine inverse and power of a matrix and
	identify the nature of the quadratic form (L3)
CO3	Interpret the physical meaning of different operators such as gradient, curl and
	divergence. (L5)
CO4	Determine line, surface and volume integrals. Apply Green's, Stoke's and Gauss
	divergence theorems to calculate line, surface and volume integrals. (L5& L3)
CO5	Identify the solution methods for partial differential equation that model physical
	processes. (L3)
Text bo	oks:

- 1. **B.S. Grewal,** Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
- **2. B.V. Ramana,** Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.

Reference books

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India.
- 2. **H. K. Das,** Advanced Engineering Mathematics, 22ndEdition,S. Chand & Company Ltd.
- 3. **David Poole**, Linear Algebra- A modern introduction, 4th edition, Cengage.
- 4. Peter O' Neil, Advanced Engineering Mathematics, Cengage
- 5. Srimantha Pal, S C Bhunia, Engineering Mathematics, Oxford University Press.

e- Resources & other digital material

- 1. <u>https://www.youtube.com/watch?v=LJ-</u> LoJhbBA4&list=PLbMVogVj5nJQ2vsW_hmyvVfO4GYWaaPp7
- (For Unit-I, Mod1 :1-7 lectures, Mod 6: 25th lecture, Mod 6: 26th lecture&For Unit-II Mod 7: 25th -27th lectures)
- 3. <u>https://www.youtube.com/watch?v=9MCjyQSRmR8&list=PLFW6lRTa1g80fZ1giRbqbe_X</u> <u>dXPdkkyqY&ab_channel=NPTEL-NOCIITMNPTEL-NOCIITM</u>
- 4. (For Unit-I 1-17 lectures)
- 5. <u>https://www.youtube.com/watch?v=ksS_yOK1vtk&list=PLbRMhDVUMngfIrZCNOyPZw</u> <u>HUU1pP66vQW&ab_channel=IITKharagpurJuly2018IITKharagpurJuly2018</u>
- 6. (For Unit-III 33-52 lectures, For Unit-IV 53-56 lectures)
- 7. <u>http://www.infocobuild.com/education/audio-video-courses/mathematics/Mathematics-III-</u> IIT-Roorkee/lecture-16.html
- 8. (For Unit-V lectures: 30-32)
- 9. <u>https://www.youtube.com/watch?v=PDUHeFyq6sA&list=PLoVRJrAl0FT0oYJJQbchL1hiA</u> <u>UjlJ4y4O&index=42&ab_channel=AKTUDigitalEducationAKTUDigitalEducation</u> (For Unit-V lectures: 41-44)

CO-PO Mapping :

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1	3	2										1		
CO2	3	2										1		
CO3	3	2										1		
CO4	3	2										1		
CO5	3	2										1		

II- Year I- Semester	Name of the Course		Т	P	С
	Data Structures	3	0	0	3

Prerequisites: Programming in C.

Course Objectives:

- To make students learn the basic concepts of Data Structures and Algorithms.
- To solve problems using data structures such as linear lists, stacks, queues.
- To explore advanced data structures such as balanced search trees.
- To be familiar with Graphs and their applications.
- To analyze various sorting techniques.

	Syllabus					
Unit	Contents	Mapped				
No		СО				
	Linear Lists (12 hrs)					
	Introduction to Data Structures, Definition, Need & Types of Data Structures					
т	Algorithms: Introduction, Time complexity and Space complexity, Performance	COI				
L	and Analysis	COI				
	Linear lists (Arrays) – Introduction, Operations, Searching.					
	Sorting - Insertion Sort, Quick Sort, Merge Sort and Radix Sort.					
	Stack & Queue (10 hrs)					
II	Stacks: Introduction, Operations, implementation, Applications.	CO2				
	Queues: Introduction, Operations, implementation, Applications, Circular Queue					
	Linked Lists (10 hrs)					
TTT	Single Linked List: Introduction, Representation, Operations, Applications.					
111	Circular Lists: Introduction, Representation, Operations.					
	Double linked lists – Representation, operations.					
	TREES (8 hrs)					
TX 7	Trees: Introduction, Terminology, Representation of Trees	CO4				
11	Binary Trees: Properties, Representations, Traversals, Types of Trees	C04				
	Binary Search Trees: Definition, Operations.					
	GRAPHS (12 hrs)					
X 7	Graphs: Introduction, Definition, Representation, Degree of vertex, Types of	COF				
v	graphs, Elementary Graph Operations, Graph Traversals – Depth First Search,					
	Breadth First Search, Spanning trees-Prim's algorithm, Krushkal's algorithm					

Course Outcomes

Upon	Upon successful completion of the course, the student will be able to				
CO1	Implement various operations on linear lists. (L2)				
CO2	Apply data structure strategies like stacks and queues for exploring complex data				
02	structures. (L3)				
CO3	3 Identify performance and trade-offs of static and dynamic data structures. (L3)				
CO4	Incorporate data structures into the applications such as binary trees, binary search trees.				
04	(L3)				
CO5	Identify appropriate data structure algorithms for graphs. (L3)				
Learning Resources					

Text Books:

1. Data structures, Algorithms and Applications in C, S. Sahni, University Press (India) Pvt. Ltd, 2nd edition, Universities Press, Pvt. Ltd.

2. Data structures and Algorithm Analysis in C, Mark Allen Weiss, Pearson Education. Ltd, Second Edition.

3. Data Structures, Schaum's Outline, Seymour Lipschutz, Kindle Edition

Reference Books

1. Introduction to Algorithms, by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, MIT Press.

2. Classical Data Structures, Second Edition, Debasis Samanta, PHI

e- Resources & other digital material

Data Structures Visualizations : <u>https://www.cs.usfca.edu/~galles/visualization/Algorithms.html</u> Code Archery Youtube Channel:

https://www.youtube.com/playlist?list=PLrKBFf87Cy9CNZpzi3poq8BFWc0h4f0vL

MICRO SYLLABUS

Unit 1:Linear Lists (12 hrs)

Introduction to Data Structures, Definition, Need & Types of Data Structures Algorithms: Introduction, Time complexity and Space complexity, Performance and Analysis

Unit NoModuleMicro content		
		Introduction to Data Structures
		Definition
		Need & Types of Data Structures
	Algorithms:	Introduction
		Time complexity and Space complexity,
1.a.		Performance and Analysis,
		Asymptotic Notations - Big Oh(O),
		Small Oh(o) and Theta Notation (),
		necessary examples
	Linear lists (Arrays)	Introduction, Operations, Searching.

1.b	Sorting -	Insertion Sort, Quick Sort, Merge Sort and
1.0	Sorting -	Merge Sort and Radix Sort.

Unit-2:Stack & Queue (10 hrs)

Stacks: Introduction, Operations, implementation, Applications. **Queues**: Introduction, Operations, implementation, Applications, Circular Queue.

Unit No	Module	Micro content
2.a.	Stacks:	Introduction, Operations – push, pop, underflow, overflow, peek and implementation, Applications
		– Infix to Postfix Conversion, Postfix evaluation.
		Introduction,
		Operations – enqueue, dequeue, underflow,
2.a.	Queues:	overflow and implementation, Applications -
		Circular Queue (operations), FIFO, Hot Potato
		Problem Simulation.

Unit-3:Linked Lists (10 hrs)

Single Linked List: Introduction, Representation, Operations, Applications.

Circular Lists: Introduction, Representation, Operations.

Double linked lists – Representation, operations.

Unit No	Module	Micro content					
3.a.	Single Linked	Introduction, Differences between arrays & linked lists. Representation, Operations – insert, delete, concat,					
5.00	List:	count and search, Applications – Polynomial representation, addition, multiplication.					
	Circular Lists:	Introduction, Representation and implementation.					
3.b.	Double linked lists	Representation, Operations – insert, delete and search.					

Unit-4: TREES (8 hrs)

Trees: Introduction, Terminology, Representation of Trees

Binary Trees: Properties, Representations, Traversals, Types of Trees

Binary Search Trees: Definition, Operations.

Unit No	Module	Micro content
	Trees:	Introduction, Terminology, Representation of Trees
		Properties, Representations, Traversal – Inorder
4.a.		Traversal, Preorder Traversal, Postorder Traversal
	Binary Trees :	(Recursive and Non Recursive) Types of trees -
		complete binary tree, Full binary tree, Thread Binary
		Trees, Expression Tree.

4 h	Binary Search	Definition, Operations - insertion, deletion and find
4.0	Trees:	min, find max, count, leaf and Searching.

Unit-5: GRAPHS (12 hrs)

Graphs: Introduction, Definition, Representation, Degree of vertex, Types of graphs, Elementary Graph Operations, Graph Traversals - Depth First Search, Breadth First Search, Spanning trees-Prim's algorithm, Krushkal's algorithm..

Unit No	Module	Micro content
		Introduction to graphs, Definition, Types of graphs,
5.a.		Degree of vertex.
	Graphs:	Representation - Adjacency matrix & Adjacency list.
		Elementary Graph Operations – Add Vertex, Add
		Edge, Delete Vertex, Delete Edge, Find Vertex and
5.b		Find Edge.
		Graph Traversals – Depth First Search, Breadth First
		Search
		Spanning trees-Prim's algorithm, Kruskal's algorithm.

Course Outcomes				
Upon s	Upon successful completion of the course, the student will be able to			
CO1	Implement various operations on linear lists. (L2)			
CO2	Apply data structure strategies like stacks and queues for exploring complex data structures. (L3)			
CO3	Identify performance and trade-offs of static and dynamic data structures. (L3)			
CO4	Incorporate data structures into the applications such as binary trees, binary search trees. (L3)			
CO5	Identify appropriate data structure algorithms for graphs. (L3)			
Learning Resources				
Text B	Books:			
1. Data structures, Algorithms and Applications in C, S. Sahni, University Press (India) Pvt. Ltd,				
2nd edition, Universities Press, Pvt. Ltd.				
2. Dat	a structures and Algorithm Analysis in C, Mark Allen Weiss, Pearson Education. Ltd,			
Second	d Edition.			
3 Data	Structures Schaum's Outline Seymour Lipschutz Kindle Edition			

3. Data Structures, Schaum's Outline, Seymour Lipschutz, Kindle Edition

Reference Books

1. Introduction to Algorithms, by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, MIT Press.

2. Classical Data Structures, Second Edition, Debasis Samanta, PHI
e- Resources & other digital material
Data Structures Visualizations : https://www.cs.usfca.edu/~galles/visualization/Algorithms.html
Code Archery Youtube Channel:
https://www.youtube.com/playlist?list=PLrKBFf87Cy9CNZpzi3poq8BFWc0h4f0vL

CO-PO-PSO Mapping Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSPO1	PSPO2
CO-1	2	2	1	-	-	-	-	-	-	-	-	-	1	1
CO-2	1	2	2	-	-	-	-	-	-	-	-	-	2	1
CO-3	1	-	2	2	-	-	-	-	-	-	-	-	2	1
CO-4	2	-	2	1	-	-	-	-	-	-	-	-	1	1
CO-5	-	2	1	2	-	-	-	-	-	-	-	-	1	1

II-Year-I Semester PC2101

Electrical Machines-1

L	Т	Р	С
3	0	0	3

PRE-REQUISITES: 1) Basic Circuit Analysis

Course objectives: The student should be able to

- 1. To understand the unifying principles of energy conversion and DC Generator.
- 2. To Understand the significance of Back EMF and Production of Torque in DC Motor.
- 3. To learn the characteristics, performance, methods of speed control and testing methods of DC motors.
- 4. To predetermine the performance of single phase transformers with equivalent circuit models.
- 5. To understand the parallel operation of transformers and three-phase totwo phase Conversion.

Syllabus			
Unit No	Contents	Mapped CO	
Ι	Electromechanical Energy Conversion and introduction to DC machines (13 hrs)	CO1	
	 Electromechanical Energy Conversion (06 hrs) Principles of electromechanical energy conversion – singly excited system – concept of Co-Energy- force and torque derivation- multi excited system (qualitative treatment). Construction and principle of operation of DC machine(07 hrs) EMF equation for generator – Classification of DC machines based on excitation – OCC of DCShunt generator- Determination of Critical resistance and critical speed- Armature reaction and Commutation -Numerical problems. 		
II	Performance of D.C. Machines (10 hrs) Torque and back-EMF equation of dc motor– characteristics of shunt, series and compound motors - losses and efficiency- applications of dc motors- Numerical problems.	CO2	
III	 Starting, Speed Control and Testing of D.C. Machines (15 hrs) Starting, Speed Control of D.C. Machines (05 hrs) Necessity of starter -3 point and 4 point starters - Speed control of Shunt motor by armature voltage and field control. Testing of D.C.Machines(10 hrs) 	CO3	

	Testing methods - Swinburne's Test – Hopkinson'sTest -Brake Test on Shunt Motor–Load test on shunt generator- Numerical problems.	
IV	Single-phase Transformers (06 hrs)	CO4
	Principle of operation- Constructional details - EMF equation - operation on no load and on load - phasor diagrams.	
	Equivalent Circuit and Performance (08 hrs)	
	Equivalent circuit –Voltage regulation – losses and efficiency – effect of variation of frequency and supply voltage on losses – All day efficiency-Numerical problems.	
V	Transformers Testing and Three Phase Transformers (12 hrs)	CO5
	Single phase Transformer Testing(08 hrs)	
	Tests on single phase transformers – open circuit and short circuit tests – Sumpner's test - Separation of losses – parallel operation with equal voltage ratios- Auto Transformer- comparison with two winding transformers- Numerical problems.	
	 Tests on single phase transformers – open circuit and short circuit tests Sumpner's test - Separation of losses – parallel operation with equal voltage ratios- Auto Transformer- comparison with two winding transformers-Numerical problems. Three Phase Transformers(04hrs) 	
	Tests on single phase transformers – open circuit and short circuit tests – Sumpner's test - Separation of losses – parallel operation with equal voltage ratios- Auto Transformer- comparison with two winding transformers- Numerical problems. Three Phase Transformers(04hrs) Poly phase connections - Y/Y, Y/, /Y, / and open -Scott connection.	
Cont	Tests on single phase transformers – open circuit and short circuit tests – Sumpner's test - Separation of losses – parallel operation with equal voltage ratios- Auto Transformer- comparison with two winding transformers- Numerical problems. Three Phase Transformers(04hrs) Poly phase connections - Y/Y, Y/, /Y, / and open -Scott connection.	

- 3. Parallel operation conditions, advantages and with un equal voltage ratios.
- 4. Simplified Equivalent Circuit of Single Phase Transformer.

	Course Outcomes				
Upon s	Upon successful completion of the course, the student will be able to				
CO1	Understand the concepts of energy conversion and principle operation of DC Generator.				
	(Remember and Understand)				
CO2	Examine the significance of Back EMF and Production of Torque in DC				
	Motor. (Apply)				
CO3	Analyze the speed control methods and performance of DC Machine.				
	(Analyze).				
CO4	Quantify the performance of single phase transformers. (Evaluate)				
CO5	Empathies parallel operation of transformers and three-Phase to two-phase				
003	Conversion (Understand Apply and Apply as)				
	Conversion. (Onderstand, Apply and Analyze).				

Learning Resources

Text books:

- 1. Theory & Performance of Electrical Machines by J.B.Guptha. S.K.Kataria& Sons.
- 2. Electrical Machines P.S. Bhimbra, Khanna Publishers.

Reference books:

- 1. Electrical Machines by D. P.Kothari, I.J. Nagarth, Mc Graw Hill Publications, 4th edition.
- Electrical Machinery by AbijithChakrabarthi and Sudhipta Debnath, Mc Graw Hill education 2015.
- 3. Electrical Machinery Fundamentals by Stephen J Chapman McGraw Hill education 2010.
- 4. Electric Machinery by A.E. Fitzgerald, Charleskingsley, Stephen D.Umans, TMH.

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/108/105/108105017
- 2. https://nptel.ac.in/courses/103/102/108102146
- 3. www.nptelvideos.in/2012/11/electrical-machines-i.html
- 4. https://www.electrical4u.com/losses-in-dc-machine

Micro-Syllabus

Unit 1:Electromechanical Energy Conversion and introduction to DC machines (13 hrs) Electromechanical Energy Conversion (06 hrs)

Principles of electromechanical energy conversion – singly excited system – concept of Co-Energy-force and torque derivation- multi excited system (qualitative treatment).

Construction and principle of operation of DC machine(07 hrs)

EMF equation for generator – Classification of DC machines based on excitation – OCC of DC Shunt generator- Determination of Critical resistance and critical speed- Armature reaction and Commutation -Numerical problems.

Unit No	Module	Micro content
	Principles of	Principles of energy conversion
	electromechanical	Block diagram representations
1.a or 2.a	energy conversion	Power flow diagrams for dc machine
Electromechanical	singly excited	Definition of single excited system
Energy		Representation with figure.
Conversion	shighy exciled	Co-energy concept in linear system
	System	Derivation of force and torque in non linear and
		linear systems.

	Multi excited system	Definition and representation of multi excited system.
		Principle operation of single loop dc generator
		Construction of dc generator and Emf equation derivation-numerical problems.
1.b or 2.b Construction and principle of operation of DC machine	DC generator And classification	Types of dc generators- based on excitation- separately excited –self excited-shunt-series- compound(long and short shunt cumulative and differential)-Numerical problems on self excited (only on shunt and series). – OCC characteristics of DC shunt generator by experimental procedure- Determination of Critical resistance and critical speed from OCC- Armature reaction and commutation.

Unit-2:Performance of D.C. Machines (10 hrs)

Torque and back-EMF equation of dc motor- characteristics of shunt, series and compound motors - losses and efficiency- applications of dc motors- Numerical problems.

Unit No	Module	Micro content
3.a or 4.a Performance of D.C. Machines	Torque and back-EMF equation of dc motor	Motor principle operation-significance of back EMF-Derivation of Torque –Numerical problems on torque
3.b or 4.b Performance	Characteristics, losses and efficiency	Characteristics of shunt, series and compound motors –applications of dc motors.
D.C. Machines		losses and efficiency -Numerical problems.

Unit-3: Starting, Speed Control and Testing of D.C. Machines (15 hrs) Starting, Speed Control of D.C. Machines (05 hrs)

Necessity of starter –3 point and 4 point starters – Speed control of Shunt motor by armature voltage and field control.

Testing of D.C. Machines(10 hrs)

Testing methods - Swinburne's Test – Hopkinson's Test -Brake Test on Shunt Motor–Load test on shunt generator- Numerical problems.

Unit No Module Micro content

		Necessity of starter – Starting by 3 point and 4			
5.a or 6.aStarting,	Starters	point starters construction and operation (only elementary treatment)			
Speed Control of					
D.C. Machines	Speed control of Shunt	armature voltage and field control methods for			
	motor	shunt motor			
5.b or 6.b Testing of D.C. Machines	Testing of D.C. Machines	brake test, Swinburne's method – principle of regenerative or Hopkinson's method - Load test on dc shunt generator procedure-Numerical problem on brake test, Swinburne's test.			

Unit-4: Single-phase Transformers (06 hrs)

Principle of operation- Constructional details - EMF equation - operation on no load and on load - Phasor diagrams.

Equivalent Circuit and Performance (08 hrs)

Equivalent circuit –Voltage regulation – losses and efficiency – effect of variation of frequency and supply voltage on losses – All day efficiency-Numerical problems.

Unit No	Module	Micro content			
7.a or 7.b Single-phase Transformers	Principle of operation	Principle of operation -Types (core, shell types) and constructional details.			
		E.M.F equation –Numerical problems.			
	Operation of single phase Transformer	Operation on no load and on load – lagging, leading and unity power factors loads - phasor diagrams of transformers –Numerical problems.			
8.a or 8.b Equivalent Circuit & Performance:	Equivalent circuit& Voltage regulation	Equivalent circuit –secondary is referred to primary and vice versa-Numerical problems on equivalent circuit parameters- derivation of voltage regulation for lagging and leading loads.			
	Performance	Losses and efficiency – Numerical problems- effect of variation of frequency and supply voltage on losses – All day efficiency-Numerical problems.			
Unit-5: Transform	mers Testing and Three Pl	hase Transformers (12 hrs)			

Single phase Transformer Testing(08 hrs)

Tests on single phase transformers – open circuit and short circuit tests – Sumpner's test -separation of losses – parallel operation with equal voltage ratios- Auto Transformer-comparison with two winding transformers-Numerical problems.

Three Phase Trans	formers (04 hrs)					
Poly phase connecti	ons - Y/Y , $Y/$, $/Y$, /	and open -Scott connection.				
Unit No	Module	Micro content				
 9.a or 10.aTransformers Testing and auto transformer 9.b or 10.b Three Phase Transformers 		Open circuit and short circuit tests -Sumpner's test - separation of losses test-				
	Tests on single phase transformers	Conditions for parallel operation-Parallel operation with equal voltage ratios derivation-Numerical problem.				
		Auto transformer operation(only Elementary treatment)– comparison with two winding transformer.				
	Three Phase Transformers	Poly phase connections - Y/Y, Y/ , /Y, / and open -Scott connection (only elementary treatment).				

Course Outcomes: Upon successful completion of the course, the student will be able to

	Course Outcomes					
Upon s	Upon successful completion of the course, the student will be able to					
CO1	Understand the concepts of energy conversion and principle operation of DC Generator.					
	(Remember and Understand)					
CO2	Examine the significance of Back EMF and Production of Torque in DC					
	Motor. (Apply)					
CO3	Analyze the speed control methods and performance of DC Machine.					
	(Analyze).					
CO4	Quantify the performance of single phase transformers. (Evaluate)					
CO5	Empathies parallel operation of transformers and three-Phase to two- phase					
	Conversion. (Understand, Apply and Analyze).					

Learning Resources
Text books:
1. Theory & Performance of Electrical Machines by J.B.Guptha. S.K.Kataria& Sons.
2. Electrical Machines – P.S. Bhimbra, Khanna Publishers.

Reference books:

1. Electrical Machines by D. P.Kothari, I.J. Nagarth, Mc Graw Hill Publications, 4th edition.

2. Electrical Machinery by AbijithChakrabarthi and Sudhipta Debnath, Mc Graw Hill education 2015.

3. Electrical Machinery Fundamentals by Stephen J Chapman McGraw Hill education 2010.

4. Electric Machinery by A.E. Fitzgerald, Charleskingsley, Stephen D.Umans, TMH.

e- Resources & other digital material
1.https://nptel.ac.in/courses/108/105/108105017
2.https://nptel.ac.in/courses/103/102/108102146
3.www.nptelvideos.in/2012/11/electrical-machines-i.html
4. https://www.electrical4u.com/losses-in-dc-machine

CO-PO Mapping :

CO/	DO1	DOA	DOJ	DOA	DO5	DOC	DOT	DOQ	DOG	DO10	DO11	DO12	DCO 1	
PO	POI	PO2	POS	P04	P05	PU6	P07	PU8	PO9	POIO	POII	POIZ	PSO-1	PSO-2
CO1	2	2		2								2		1
CO2	2	2		-								-		-
CO3	2	2		-								2		1
CO4	2	2		2								2		1
CO5	1	1		2								-		-

II-Year-I Semester PC2102

Electrical Circuit Analysis

L	Т	Р	С
3	1	0	3

Prerequisites: Basic Circuit Analysis,

Integrations, Laplace transforms and Differential equations

Course Objectives: The student should be able to

- 1. To study the concepts of balanced and unbalanced three-phase systems.
- 2. To study the transient behaviour of electrical circuits with DC excitation
- 3. To study the transient behaviour of electrical circuits with AC excitation.
- 4. To study the analysis of two port network.
- 5. To understand the concept of Network synthesis.

	Syllabus	
Unit	Contents	Mapped
No		CO
Ι	Three Phase Systems(10hrs) Types of three phase systems - Phase sequence- relation between line and phase voltages and currents - analysis of balanced three phase systems - Analysis of three	CO1
	phase unbalanced systems: Loop method – Milliman's method	
II	Transient Analysis in DC circuits(11hrs) Transient response of R-L, R-C, R-L-C circuits for DC excitation, Solution using differential equations and Laplace transforms	CO2
III	Transient Analysis in AC circuits(11hrs) Transient response of R-L, R-C, R-L-C circuits for pulse and AC excitations, Solution using differential equations and Laplace transforms.	CO3
IV	Two port Networks(10hrs) Two port network parameters – Z, Y, ABCD and Hybrid parameters and their relations, Cascaded networks	CO4
v	Network Synthesis(10hrs) Positive real function - basic synthesis procedure - LC immittance functions - RC impedance functions and RL admittance function - RL impedance function and RC admittance function - Foster and Cauer methods	CO5

	Course Outcomes
Upon s	uccessful completion of the course, the student will be able to
CO1	Various three phase balanced and unbalanced systems {Apply level, KL3}
CO2	Transient response of electrical networks for DC excitation. {Apply level,

	KL3&Analyse level, KL4}
CO	3 Transient response of electrical networks for AC excitations{Apply level,
	KL3&Analyse level, KL4}
CO	4 Two port network parameters {Apply level, KL3}
CO	5 Equivalent electrical network for a given transfer function. {Apply level, KL3}
	Learning Resources
Tex	t books:
1	1. Circuits & Networks Analysis & Synthesis by A. Sudhakar and Shyammohan S Palli,
	Tata McGraw- Hill.
	2. Circuit Theory by A.ChakrabartiDanapat Rai & Co publisher.
Refe	erence books
1	1. Fundamentals of Electric Circuits" Charles K.Alexander, Mathew N.O.Sadiku, Tata
	McGraw-Hill.
4	2. Engineering Circuit Analysis by William Hayt and Jack E.Kemmerley, Mc Graw Hill
	Company,6 th edition
	3. Network synthesis: Van Valkenburg; Prentice-Hall of India Private Ltd
2	4. 3000 Solved Problems in Electrical Circuit by Schaum's solved problem series Tata
	McGraw-Hill.
4	5. Network Analysis by N.C.Jagan, C.Lakshmi Narayana BS publications 2 nd edition
e- R	esources & other digital material
1. <u>h</u>	ttps://www.youtube.com/watch?v=MHwM1C1zUz4
2. <u>h</u>	ttps://www.youtube.com/watch?v=xaeob9lTXS0
3. <u>h</u>	ttps://www.youtube.com/watch?v=GasWAlIvvD8&list=PL16EE39765482C57F
4. <u>h</u>	ttps://www.youtube.com/watch?v=2D_eGLGcUXQ&list=PL16EE39765482C57F&index=5
5. <u>h</u>	ttps://www.youtube.com/watch?v=UltkCsoh6Bw&list=PL16EE39765482C57F&index=7

Micro-Syllabus

Unit-1:Threephasecircuits(10hrs)

Phasesequence-staranddeltaconnection-relationbetweenlineandphasevoltagesandcurrentsanalysisofbalancedthreephase circuits-Analysisofthreephase unbalancedcircuits: Loopmethod –Star-Deltatransformationtechnique

Unit No	Module	Micro content
		Threephasesystemintroduction
1a.Three	Phasesequence-	Advantagesofthreephaseoversinglephas
phasecircuitCo	staranddeltaconnection	e
nnections		Phasesequence
		Staranddeltaconnections
		ThreephaseBalancedandunbalancedsyst
		em

		Relationbetweenphaseandlinevolt
		agescurrentsstar-star
	Relationbetweenlineand	Relationbetweenphaseandlinevoltagesc
	phase voltagesand currents	urrents
	for bothstar and	star-Delta
	Deltaconnectednetworks	Relationbetweenphaseandlinevolt
		agescurrentsdelta-star
		Relationbetweenphaseandlinevolt
		agescurrentsdelta-delta
		Relationbetweenphaseandlinevolt
1b.		agescurrentsstar-star-
Analysis of	Determinationoflineandphas	Numericalproblems
threephase	eparametersof both balanced	Relationbetweenphaseandlinevolt
balancedandunbalan	andunbalancedsystems	agescurrentsstar-Delta-
cedcircuits		Numericalproblems
		Relationbetweenphaseandlinevolt
		agescurrentsdelta-star-
		Numericalproblems
		Relationbetweenphaseandlinevolt
		agescurrentsdelta-delta-
		Numericalproblems
		Analysisofunbalancedsystem-
		Loopmethod
		Millman'smethod

Unit-2:TransientAnalysisinDCcircuits(11hrs)

TransientresponseofR-L,R-C,R-L-CcircuitsforDCexcitations,Solutionusingdifferentialequations andLaplacetransforms.

Unit No	Module Microcontent		
		Responseof sourcefreeRLcircuit	
	Transientresponseof R-L	ResponseofsourceRLcircuitwithDCexci	
2a.		tation	
Transientresponse		ResponseofsourcefreeRCcircuit	
ofR-L,R-C,R-L-C	Transient response of P C	ResponseofsourceRCcircuitwithDCexci	
circuitsforDCexcit	Transfelit response of K-C	tation	
ations	Transient response of D I	Responseof sourcefreeRLCcircuit	
	Transferit Tesponse of K-L-	ResponseofsourceRLCcircuitwithDC	
	C	excitation	

2b.Transientrespons				
e of R-L,R-C, R-L-				
С		Related	numerical problem	of R-L,
circuitsforDCexci	Determination of Transient	R-C	and	R-L-
tations-	response of R-L,R-C,R-L-	Ccircuit	susingLaplaceordiffer	rentialeq
numericalpro	CcircuitsforDCexcitations	uationm	ethod	
blems				

Unit-3:TransientAnalysisinACcircuits(11hrs)

Transient response of R-L, R-C, R-L-C circuits for AC excitations, Solution using differential equations and Laplace transforms.

Unit	Module	Microcontent
		Responseof sourcefreeRLcircuit
3a.Transientrespo	TransientresponseofR-L	ResponseofsourceRLcircuitwithACexcita
nse of R-L,R-C,		tion
R-L-C		ResponseofsourcefreeRCcircuit
circuitsforDCex	TransientresponseofR-C	ResponseofsourceRCcircuitwithACexcit
citations		ation
	TransientresponseofR-L-	Responseof sourcefreeRLCcircuit
	С	Response of source RLC
		circuit with ACexcitation
3b.	Determination	
Transient	ofTransientresponseofR-	RelatednumericalproblemofR-L,R-
responseofR-L,R-	L,R-C,R-L-C	CandR-L-C circuitsusinglaplace
C,R-L-C	circuits for	ordifferentialequationmethod
circuits for	DCexcitations	
DCexcitations-		
numericalproblems		

Unit-4:TwoPortNetworks(10hrs)

Twoportnetworkparameters-

Z,Y,ABCDandHybridparametersandtheirrelations,Cascadednetworks.

Unit No	Module	Microcontent
		MathematicalanalysisofZand
4.0	Determination	ABCDparameters
Ha.	ofnetworkparameters	DeterminationofZandABCDpara
romotors		meters-numericalproblems
Tameters		Relation between Z and ABCD
		parameters
		Mathematical analysis of Y and
4b.		Hybrid parameters

Twoportnetworkpa		Determination of Y and Hybrid					
rameters	Determination	parameters- numerical problems					
	ofnetworkparameters	Relation between Y and Hybrid parameters					
		Analysis of Cascaded networks					
Unit-5:Networksynthe	esis(10hrs)						
Positiverealfunction-bas	sicsynthesisprocedure-LCimmi	ittancefunctions-					
RCimpedancefunctions	andRLadmittancefunction	-					
RLimpedancefunctiona	RLimpedance function and RC admittance function-Foster and Cauermethods.						
Unit No	Module	Microcontent					
		SynthesisofLCImmitancenetworkusi					
	ngFosterandCauer methods						
5a.		SynthesisofRLImpedencenetworkusing					
Networksynthesis	LCandRLNetworkSynt	Foster andCauermethods					
	hesis	SynthesisofRLadmittancenetworkusi					
		ngFosterandCauer methods					
		SynthesisofRCImpedencenetworkusi					
5b.Networksynt	RC	ngFosterandCauer methods					
hesis	NetworkSynth	SynthesisofRCadmittancenetworkusi					
	esis	ngFosterandCauer methods					

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Various three phase balanced and unbalanced systems {Apply level, KL3}
CO2	Transient response of electrical networks for DC excitation. {Apply level,
	KL3&Analyse level, KL4}
CO3	Transient response of electrical networks for AC excitations{Apply level,
	KL3&Analyse level, KL4}
CO4	Two port network parameters {Apply level, KL3}
CO5	Equivalent electrical network for a given transfer function. {Apply level, KL3}

Text books:

- 1. Circuits & Networks Analysis & Synthesis by A. Sudhakar and Shyammohan S Palli, Tata McGraw- Hill.
- 2. Circuit Theory by A.ChakrabartiDanapat Rai & Co publisher.

Reference books

1. Fundamentals of Electric Circuits" Charles K.Alexander, Mathew N.O.Sadiku, Tata

McGraw-Hill.

- 2. Engineering Circuit Analysis by William Hayt and Jack E.Kemmerley,Mc Graw Hill Company,6th edition
- 3. Network synthesis: Van Valkenburg; Prentice-Hall of India Private Ltd
- 4. 3000 Solved Problems in Electrical Circuit by Schaum's solved problem series Tata McGraw- Hill.
- 5. Network Analysis by N.C.Jagan, C.Lakshmi Narayana BS publications 2nd edition

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	-	-	-	-	-	-	-	-	-	2	2	1
CO2	1	2	-	-	-	-	-	-	-	-	-	1	2	1
CO3	2	2	-	-	-	-	-	-	-	-	-	1	2	1
CO4	2	2	-	-	-	-	-	-	-	-	-	2	2	1
CO5	2	1	-	-	-	-	-	-	-	-	-	1	1	1

II-Year-I Semester PC2102

Electromagnetic Fields

L	Т	Р	С
3	1	0	3

PRE-REQUISITES: Co-Ordinate systems, Differential equations, Integration, vector algebra

Course Objectives: The student should be able to

- 1. Study the electric field and potentials due to different configurations of static charge and Maxwell's first equation
- 2. Study the behavior of conductors and dielectrics, evaluation of capacitance for different configurations.
- 3. Study the Biot Savart's Law, Ampere Circuital Law and applications
- 4. Study the Lorentz force equation
- 5. Understand the concept inductance and time varying fields

Syllabus					
Unit	Contents	Mapped			
No		CO			
Ι	Unit-1: Electrostatic Fields(16 hrs)Coulomb's Law, Electric Field Intensity (EFI),EFI due to a line, surface and volume charge, Work done in moving a point charge in an electrostatic field, Electric Potential, Properties of potential function, Potential gradient, Gauss's law, Application of Gauss's Law, Maxwell's first law, Laplace's and Poison's equations, Solution of Laplace's equation in one variable.	CO1			
п	Unit-2: Dielectrics and Capacitance (12 hrs) Electric dipole, Dipole moment, Potential and EFI due to an electric dipole, Torque on an Electric dipole in an electric field, Behavior of conductors in an electric field, Electric field inside a dielectric material, Polarization, Dielectric – Conductor and Dielectric – Dielectric boundary conditions, Capacitance, Capacitance of parallel plate and spherical and co-axial capacitors with composite dielectrics, Energy stored and energy density in a static electric field, Current density, Conduction and Convection current densities, Ohm's law in point form – Equation of continuity.	CO2			
III	Unit-3: Static magnetic fields (12 hrs) Biot-Savart's law, Magnetic field intensity (MFI), MFI due to a straight current carrying filament, MFI due to circular, rectangular, square and solenoid current Carrying wire, Maxwell's second Equation, Ampere's circuital law and its applications, MFI due to an infinite sheet of current and a long current carrying	CO3			

	filament, Differential form of Ampere's circuital law (Maxwell's third equation).	
IV	Unit-4: Force in Magnetic fields(12 hrs)Magnetic force on Moving charges in a Magnetic field, Lorentz force equation, Force on a current element in a magnetic field, Force on a straight and a long current carrying conductor in a magnetic field, Force between two straight long and parallel current carrying conductors, Magnetic dipole and dipole moment, A differential current loop as a magnetic dipole, Torque on a current loop placed in a magnetic field.	CO4
V	 Unit-5: Electromagnetic Induction(12 hrs) Inductance: Self and Mutual inductance, Determination of self-inductance of a solenoid and toroid, Mutual inductance between a straight long wire and a square loop wire in the same plane, Energy stored and density in a magnetic field. Time varying fields: Faraday's laws of electromagnetic induction, Integral and point forms, Maxwell's fourth equation, statically and dynamically induced EMFs, Modification of Maxwell's equations for time varying fields, Displacement current, Poynting theorem and Poynting vector. 	CO5
Con	tent Beyond the syllabus: Co-ordinate systems rectangular, cylindrical and spherical systems	
	• Uniqueness theorem for the solution of Laplace equation	

Cours	se Outcomes	POs, PSOs	KL
Upon	Upon successful completion of the course		
CO1	The student will be able to calculate the electric field and		
	potentials using Gauss's law and Laplace equation	PO3, PSO2	1,3
	(Remember, Understand, and Apply)		
CO2	The student will be able to evaluate capacitance for different	DO1 DSO2	22
	configurations (Understand, Apply, Analyze and valuate)	PO1, PSO2	2,5
CO3	The student will be able to find magnetic field intensity of		
	different configurations using Biot-Savart's law and Ampere's	PO1, PSO2	1,2
	law (Apply, Analyze, valuate, and create)		
CO4	The student will be able to calculate magnetic forces and torque		
	produced by currents in magnetic fields (Understand, Apply,	PO2, PSO2	2,3
	and Analyze)		
CO5	The student will be able to quantify inductance and evaluation	PO2, PSO2	1,2

of induced EMF in time varying fields (Apply, Analyze and	
create)	

Learning Resources

Text books:

- 1. "Elements of Electro Magnetics" by Matthew N.O.Sadiku, 7th edition, Oxford Publications
- **2.** "Engineering Electro Magnetics" by William H. Hayt& John. A. Buck, 7thEditon Mc. Graw-Hill Companies, 2006.

Reference books:

- **1.** "Electro Magnetic Fields" by Dr.Y.Mallikarjuna Reddy, 2nd edition, Universities Press.
- **2.** "Introduction to Electro Dynamics" by D J Griffiths, 2nd edition, PHI Pvt. Ltd.
- **3.** "Electro Magnetics" by J. D Kraus , 4th edition ,Mc Graw-Hill Inc. 1992.
- **4.** "Electro Magnetic Theory" by U.A. Bakshi and A.V.Bakshi, Technical Publications

e- Resources & other digital material

- 1. https://www.sciencedirect.com/topics/medicine-and-dentistry/electromagnetic-field
- 2. <u>https://phys.libretexts.org/</u>
- 3. https://nptel.ac.in/courses/108/106/108106073/
- 4. <u>https://nptel.ac.in/courses/117/103/117103065/</u>
- 5. https://nptel.ac.in/courses/108/104/108104087/
- 6. <u>https://nptel.ac.in/courses/115/101/115101005/</u>

Micro-Syllabus

Unit-1: Electrostatic Fields

Coulomb's Law ,Electric Field Intensity (EFI) ,EFI due to a line, surface and volume charge, Work done in moving a point charge in an electrostatic field, Electric Potential , Properties of potential function, Potential gradient, Gauss's law, Application of Gauss's Law, Maxwell's first law, Laplace's and Poison's equations, Solution of Laplace's equation in one variable.

Unit	Module	Micro content
	Coulomb's Law	Statement, explanation, Force due to
		number of charges
		Problems – Finding force between two
		point charges, charges located at the
1. Electrostatic		corners of a triangle and square
Fields	Electric Field Intensity (EFI)	Definition, expression and \vec{E} due to
		number of charges
	EFI due to a line, surface and	\vec{E} due to finite length of line charge,
	volume charge	infinite line charge, circular ring,
		circular disc, infinite sheet

Work done in moving a point charge in an electrostatic field	$W = -Q \int_{A}^{B} \vec{E} \cdot \vec{d}$
Electric Potential	Definition and potential due to point
	charge, line charge of finite length and
	circular disc.
Properties of potential function	Properties only
Potential gradient	Derivation for $E = - grad(V)$
Gauss's law	Electric flux, flux density, relation
	between \vec{D} and \vec{E} , statement and proof
	for Gauss law
Application of Gauss's Law	To find \vec{E} due to infinite line, sheet, co-
	axial cables, concentric spherical shells
	and spheres
Maxwell's first law,	Divergence theorem, proof for div (D)
div (D) =pv	$=\rho_{v}$
Laplace's and Poison's equations	Statements and proofs.
Solution of Laplace's equation in	Applications to find potential, flux
one variable	density or field intensity due to
	concentric spheres, coaxial cables and
	coaxial cones

Unit-2: Dielectrics and Capacitance:

Electric dipole, Dipole moment, Potential and EFI due to an electric dipole, Torque on an Electric dipole in an electric field, Behavior of conductors in an electric field, Electric field inside a dielectric material, Polarization, Dielectric – Conductor and Dielectric – Dielectric boundary conditions, Capacitance, Capacitance of parallel plate and spherical and co-axial capacitors with composite dielectrics, Energy stored and energy density in a static electric field, Current density, Conduction and Convection current densities, Ohm's law in point form – Equation of continuity.

Unit	Module	Micro content
	Electric dipole	Definition, representation, difference
		between physical and pure dipoles
	Dipole moment	Definition and expression
	Potential and EFI due to an	Derivations and problems
	electric dipole	
2. (A).	Torque on an Electric dipole in an	Derivations and problems
Dielectrics	electric field	
	Behavior of conductors in an	Explanation with properties
	electric field	
	Polarization	Definition and expression
	Electric field inside a dielectric	Derivation
	material	

	Dielectric – Conductor and	Derivations and problems
	Dielectric – Dielectric boundary	
	conditions	
	Capacitance, Capacitance of	Definition, expression, derivations and
	parallel plate capacitor with	problems
	composite dielectrics	
	Capacitance of spherical and co-	Derivations
1 (D)	axial capacitors	
2. (D). Conscitones	Energy stored and energy density	Definitions and derivations
Capacitance	in a static electric field	
	Current density, Conduction and	Definitions
	Convection current densities,	
	Ohm's law in point form	Proof
	Equation of continuity	Statement and proof

Unit-3: Static magnetic fields:

Biot-Savart's law, Magnetic field intensity (MFI), MFI due to a straight current carrying filament, MFI due to circular, rectangular, square and solenoid current Carrying wire, Maxwell's second Equation, Ampere's circuital law and its applications, MFI due to an infinite sheet of current and a long current carrying filament, Differential form of Ampere's circuital law (Maxwell's third equation).

Unit	Module	Micro content
	Magnetic field intensity (MFI)	Concepts and definitions
	Biot-Savart's law	Statement and proof
	MFI due to a straight current	For finite and infinite length filaments-
	carrying filament	derivation and problems
	MFI due to circular, square and	Derivations, numericals and MFI due to
	solenoid current Carrying wire	Polygon of n sides.
	Maxwell's second Equation,	Statement and proof
3 Statio	div(B)=0	
J. Statt Magnetic fields	Ampere's circuital law	Statement and proof – Integral form
Magnetic fields	Ampere's law applications, MFI	Derivation and numerical examples,
	due to an infinite sheet of current	MFI due to solenoid, toroid
	and a long current carrying	
	filament	
	Differential form of Ampere's	Statement and proof, Numerical
	circuital law	examples
	(Maxwell's third equation, Curl	
	(H) =Jc,)	

Unit-4: Force in Magnetic fields:

Magnetic force on Moving charges in a Magnetic field, Lorentz force equation, Force on a current element in a magnetic field, Force on a straight and a long current carrying conductor in a

magnetic field, Force between two straight long and parallel current carrying conductors, Magnetic dipole and dipole moment, A differential current loop as a magnetic dipole, Torque on a current loop placed in a magnetic field.

Unit	Module	Micro content
	Magnetic force on moving charges	Concepts and derivation
	in a Magnetic field	
	Lorentz force equation	Derivation and numericals
	Force on a current element in a magnetic field	Derivation and numericals
	Force on a straight and a long	Derivation and numericals
	current carrying conductor in a	
4. Force in	magnetic field	
Magnetic	Force between two straight long	Derivation and nature of force and
fields	and parallel current carrying	numericals
	conductors	
	Magnetic dipole and dipole	Definitions expressions
	moment	
	A differential current loop as a	Explanation
	magnetic dipole	
	Torque on a current loop placed in	Derivation and numericals
	a magnetic field.	

Unit-5: Electromagnetic Induction

Inductance: Self and Mutual inductance, Determination of self-inductance of a solenoid and toroid, Mutual inductance between a straight long wire and a square loop wire in the same plane, Energy stored and density in a magnetic field.

Time varying fields: Faraday's laws of electromagnetic induction, Integral and point forms, Maxwell's fourth equation, Statically and dynamically induced EMFs, Modification of Maxwell's equations for time varying fields, Displacement current, Poynting theorem and Poynting vector.

Unit	Module	Micro content				
	Self and Mutual inductance	Definitions and expressions,				
		Coefficient of coupling				
	Determination of self-inductance	Derivations and problems				
5 (A)	of a solenoid and toroid					
5. (A). Inductoria	Mutual inductance between a	Derivation				
muuctance	straight long wire and a square					
	loop wire in the same plane					
	Energy stored and density in a	Definitions, derivations and problems				
	magnetic field.					
5 (B) Time	Faraday's laws of electromagnetic	Statement				
5. (b). 1 line	induction					
varying	Integral and point forms,	Derivations - Curl (E) = - $\partial B/\partial t$				
---------	-----------------------------------	--	--	--	--	--
fields	Maxwell's fourth equation					
	Statically and dynamically	Expressions, derivations and problems				
	induced EMFs					
	Modification of Maxwell's	Modified Ampere's law, time and				
	equations for time varying fields	frequency varying fields				
	Displacement current	Definition, significance and problems				
	Poynting Theorem and Poynting	Statement and proof only				
	vector					

Course Outcomes: Upon successful completion of the course

CO1	The student will be able to calculate the electric field and potentials using Gauss's law and Laplace equation (Remember, Understand, and Apply)
CO2	The student will be able to evaluate capacitance for different configurations
	(Understand, Apply, Analyze and valuate)
CO3	The student will be able to find magnetic field intensity of different configurations using
	Biot-Savart's law and Ampere's law (Apply, Analyze, valuate, and create)
CO4	The student will be able to calculate magnetic forces and torque produced by currents in
	magnetic fields (Understand, Apply, and Analyze)
CO5	The student will be able to quantify inductance and evaluation of induced EMF in time
	varying fields (Apply, Analyze and create)

	Learning Resources								
Text b	ooks:								
1.	"Elements of Electro Magnetics" by Matthew N.O.Sadiku, Oxford Publications, 7th								
	edition								
2.	"Engineering Electro Magnetics" by William H. Hayt& John. A. Buck Mc. Graw-Hill								
	Companies, 7 th Editon.2006.								
Refere	nce books:								
1.	"Electro Magnetic Fields" by Dr.Y.Mallikarjuna Reddy, Universities Press. 2 nd edition								
2.	"Introduction to Electro Dynamics" by D J Griffiths, PHI Pvt. Ltd, 2 nd edition.								

- 3. "Electro Magnetics" by J. D Kraus Mc Graw-Hill Inc. 4th edition 1992.
- 4. "Electro Magnetic Theory" by U.A. Bakshi and A.V.Bakshi, Technical Publications

e- Resources & other digital material

1. https://www.sciencedirect.com/topics/medicine-and-dentistry/electromagnetic-field

2.	https://phys.libretexts.org/
3.	https://nptel.ac.in/courses/108/106/108106073/
4.	https://nptel.ac.in/courses/117/103/117103065/
5.	https://nptel.ac.in/courses/108/104/108104087/
6.	https://nptel.ac.in/courses/115/101/115101005/

CO-PO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P01-	PO11	PO12
CO1	2	2	3		-	-	-	-	-	-	-	-
CO2	3	2	2	2	-	1	-	-	-	-	-	1
CO3	3	2	3	2	-	1	-	-	-	-	-	1
CO4	2	2	2	2	1	1	-	-	-	-	-	1
CO5	3	2	1	1	-	-	-	-	-	-	-	-
CO6	2	2	1	1	_	-	1	-	-	-	-	-

ELECTRICAL MACHINES-1 LAB

L	Т	Р	С			
0	0	3	1.5			

PRE-REQUISITES: 1) Electrical Machines-1 Theory

Preamble:Electrical Machines-1 Lab provides the essential facilities to the students to augment their concepts about the fundamentals of rotating machines and Transformers. The lab is equipped with DC Shunt, Series, Compound machines, Single phase and three phase Transformers. The lab covers the determination of characteristics, speed control methods of DC rotating machines. Performance calculations of dc rotating machines and Static device.

Course Objectives: The student should be able to

- 1. To plot the magnetizing characteristics and understand the load characteristics of DC shunt generator.
- 2. Learn the methods of speed control of DC shunt motors.
- 3. To determine the performance of DC machines by direct and indirect loading methods.
- 4. To predetermine the efficiency and regulation of single-phase transformer and assess their performance.
- 5. To study the conversion of three phase to two-phase by Scott connection.

LIST OF EXPERIMENTS

Any Ten of the following experiments are to be conducted:

- 1. Magnetization characteristics of DC shunt generator-critical Resistance and critical speed.
- 2. Load test on DC shunt generator. Determination of characteristics.
- 3. Load test on DC Compound generator. Determination of characteristics.
- 4. Brake test on DC Shunt motor. Determination of performance characteristics.
- 5. Separation of losses in DC Shunt Motor.
- 6. Hopkinson's test on DC shunt machines (Predetermination of efficiency).
- 7. Swinburne's test on DC shunt motor.
- 8. Speed control of DC shunt motor.
- 9. OC& SC test on single phase transformer.
- 10. Sumpner's test on single phase transformers.
- 11. Scott connection of transformers
- 12. Separation of core losses of a single-phase transformer.

List of Additional Experiments: Any of the two experiments are to be conducted

- 13. Load test on DC shunt generator. Determination of characteristics.
- 14. Field test on DC series machines. Determination of efficiency.
- 15. Brake test on DC compound motor. Determination of performance characteristics.

Course Outcomes: Upon successful completion of the course, the student will be able to

	Course Outcomes
CO1	Analyze the characteristics and performance of DC generator. (Analyze)
CO2	Analyze the speed control and testing methods of DC motors. (Analyze)
CO3	Determine the performance of DC machines by direct and indirect loading methods.
	(Remember and Understand).
CO4	Perform various types of tests on transformers for assessing losses. (Evaluate)
CO5	Three-phase to two phase transformation. (Understand, Apply and Analyze)

Learning Resources

Text books:

1. Theory & Performance of Electrical Machines by J.B.Guptha. S.K.Kataria& Sons.

2. Electrical Machines – P.S. Bhimbra, Khanna Publishers.

Reference books:

- 1. Electrical Machines by D. P.Kothari, I.J. Nagarth, Mc Graw Hill Publications, 4th edition.
- 2. Electrical Machinery by AbijithChakrabarthi and Sudhipta Debnath, Mc Graw Hill education 2015.
- 3. Electrical Machinery Fundamentals by Stephen J Chapman McGraw Hill education 2010.
- 4. Electric Machinery by A.E. Fitzgerald, Charles kingsley, Stephen D.Umans, TMH.

e- Resources & other digital material

1.https://nptel.ac.in/courses/108/105/108105017

2.https://nptel.ac.in/courses/103/102/108102146

3.www.nptelvideos.in/2012/11/electrical-machines-i.html

4. https://www.electrical4u.com/losses-in-dc-machine

CO-PO Mapping:

Mapping	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
C01	2	2	1	1	-	-	-	-	-	-	-	1	-	1
C02	2	2	1	1	-	-	-	-	-	-	-	1	-	-
C03	2	2	1	1	-	-	-	-	-	-	-	1	-	1
C04	2	2	1	1	-	-	-	-	-	-	-	1	-	1
C05	2	2	1	-	-	-	-	-	-	-	-	-	-	-

II-Year-I Semester PC2102L

ELECTRICAL CIRCUIT ANALYSIS LAB

L	Т	P	С				
0	0	3	1.5				

Course Objectives:

- 1. Familiarity with DC and AC circuit analysis techniques.
- 2. Analyze complicated circuits using different network theorems.
- 3. Analyse the resonance condition of ac circuits
- 4. Determine the self and mutual inductance of coupled coils.
- 5. Acquire skills of using MATLAB software for electrical circuit studies.

LIST OF EXPERIMENTS

1.	Verification of Thevenin's and Norton's theorem
2.	Verification of maximum power transfer theorem
3.	Verification of super position theorem
4.	Verification of compensation theorem
5.	Verification of Milliman's theorem using hard ware
6.	Verification of series resonance of Ac circuit
7.	Verification of Kirchhoff's current law and voltage law using Matlab Simulink.
8.	Verification of mesh analysis using Matlab Simulink.
9.	Verification of nodal analysis using Matlab Simulink.
10.	Determination of average value, rms value, form factor, peak factor of
	sinusoidal wave, square wave using Matlab Simulink.
11.	Verification of parallel resonance of Ac circuit using Matlab Simulink
12.	Verification of self inductanceand mutual inductance using Matlab Simulink
13.	Determination of Choke coil parameters
14.	Determination of Z and Y Parameters of a network
15.	Determination of Transmission and hybrid parameters of a network

Course Outcomes:

Upon the completion of Electrical Circuit and simulation practical course, the student will be able to attain the Following:

- 1. Familiarity with DC and AC circuit analysis techniques.
- 2. Analyze complicated circuits using different network theorems.
- 3. Analyse the resonance condition of ac circuits
- 4. Determine the self and mutual inductance of coupled coils.
- 5. Acquire skills of using MATLAB software for electrical circuit studies.

Text Books:

1. Fundamentals of Electric Circuits by CHARLES K.ALEXANDER, Matthew N.O.SADIKU

2. Engineering Circuit Analysis by William H. Hayt and E.Kemmerly

Reference books:

1. Circuit Theory by CHAKRABARTI

2. Network Analysis by M.E.VanValkenburg

CO-PO Mapping:

Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	2		2	1					1	2	2
CO2	2	1	1	1		2	1					1	2	1
CO3	2	2	1	1		1	1					1	2	2
CO4	2	2	2	1		2	2					2	2	2
CO5	2	1	2	1		1	1					2	2	1

II-Year-I SemesterFUNDAMENTALS OF INTERNET OFSOC2101THINGS

L	Т	Р	С		
1	0	2	2		

PRE-REQUISITES: 1) Basic programming knowledge

Preamble: The Internet of Things (IoT) is a course about the new paradigm of objects interacting with people, with information systems, and with other objects. The course will focus on creative thinking and on hands-on project development.

Course objectives: The main objectives are

- 1. Describe what IoT is and how it works today as well as recognise the factors that contributed to the emergence of IoT.
- 2. To give a fundamental knowledge on the basic phenomena on which operation of sensor transformation of energy is based.
- 3. Design an IoT platforms design methodology.
- 4. To train the students to build IoT systems using Raspberry pi for IoT platforms.
- 5. To train the students to build IoT systems using Arduino for IoT platforms.

	Syllabus	
Unit	Contents	Mapped
No		CO
Ι	Introduction to IoT(12 hrs)Definition and characteristics of IoT, Physical Design and Logical Design of IoT,IoT Architecture and Protocols. IoT Enabling Technologies, IoT levels. (Basicconcepts only). Difference between IoTand M2M.	CO1
II	Sensors and actuators:(11 hrs)Definition of sensor, Classifications of sensors and actuators, Principle of sensors, Selection of sensors, Generation of sensors.	CO2
III	IoT Platforms Design Methodology(10 hrs)Introduction, Step by step procedure of IoT Design Methodology, Challenges in IoT Design, IoT System Management.	CO3
IV	Interfacing with Arduino(13 hrs)Introduction, Types of Arduinos, Arduino IDE, Basic Commands for Arduino,Interfacing Arduino with LED, Interfacing Arduino with LCD. ControllingArduino with python.	CO4
v	Interfacing with Raspberry Pi(10 hrs)Basic building blocks of an IoT device, Introduction to Raspberry Pi, hardware & software requirements for Raspberry Pi, Raspberry interfaces, Programming Raspberry Pi with python-Controlling LED with Raspberry Pi - Interfacing an LED and switch with Raspberry Pi-Interfacing a Light Sensor (LDR) with Raspberry Pi- Interfacing of a DC motor with Raspberry Pi.	CO5
List	of Experiments:	<u>.</u> [

- 1. Raspberry Pi Motion Sensor Alarm using PIR Sensor
- 2. Raspberry Pi based Smart Phone Controlled Home Automation
- 3. Interfacing DHT11 (Temperature and Humidity) Sensor with Raspberry Pi
- 4. Interfacing ultrasonic Sensor with Raspberry Pi
- 5. Interfacing camera Sensor with Raspberry Pi
- 6. DC Motor Control with Raspberry Pi
- 7. Stepper Motor Control with Raspberry Pi
- 8. Interfacing DS18B20 (Temperature Sensor) with Raspberry Pi and Arduino.
- 9. Interfacing Flame Sensor with Raspberry Pi and Arduino.
- 10. Interfacing LED with Raspberry Pi and Arduino.

	Course Outcomes
Upon s	successful completion of the course, the student will be able to
CO1	Explain the emergence and challenges in IoT. {Explain level, KL2}
CO2	Understand the importance of sensors and actuators. {understand level, KL3}
CO3	Understand the design methodologies and application areas of IoT.{ Evaluate level,
	KL4}
CO4	Design and develop programs in Raspberry Pi for sensor applications. {Analyze level,
	KL4}
CO5	Interface and deploy sensors with Arduino { Evaluate level, KL5}

Learning Resources

Text books:
1. "Internet of Things A Hands-On- Approach", VijayMadisetti, Arshdeep Bahga1 st edition,
University press, 2014.
2. "Internet of things with Raspberry Pi and arduino" Rajesh Singh, Anita Gehlot, Lovi Raj
Gupta, Bhupendra Singh, and Mahendra Swain, 1st edition, CRC Press, 2020.
Reference books:
1. "Internet of Things A to Z: Technologies and Applications" Qusay F. Hassan,1st edition,
Wiley Publishers, 2018.
2. "Introduction to IoT" <u>Sudip Misra, Anandarup Mukherjee, Arijit Roy</u> , 1 st edition,
Cambridge University Press, 2021.
e- Resources & other digital material

e- Resources & other digital material

1. https://nptel.ac.in/courses/106/105/106105166/

2. https://nptel.ac.in/courses/108/108/108108098/

3. https://www.classcentral.com/course/iot-4338

4. https://www.coursera.org/learn/interface-with-arduino?specialization=iot

Micro-Syllabus

Unit-1: Introduction	Unit-1: Introduction to IoT (12 hrs)						
Understanding IoT	Understanding IoT fundamentals, IoT Architecture and protocols, Various Platforms for IoT,						
Real time examples of IoT, Overview of IoT components and IoT Communication Technologies,							
Challenges in IoT.							
Unit No	Module	Micro content					
		Definition and characteristics of IoT					
		Physical Design and Logical Design of IoT					
1.a .Introduction	Introduction to LoT	IoT Architecture and Protocols					
to IoT		IoT Enabling Technologies					
		Difference between IoT and M2M					
		IoT Communication Technologies					
1 h Challenges in		Big Data Management.					
1.0 .Chanenges in	Challenges in IoT	Connectivity challenges					
101		Mission critical applications					
Unit-2:Sensors and	l actuators:	(11 hrs)					
Definition of senso	r, Classifications of sen	sors and actuators, Principle of sensors, Selection of					
sensors, Generation	of sensors.						
Unit NoModuleMicro content							
		Definition of sensor					
2 a Sensors	About Sensors	Classifications of sensors					
2.4.5015015	About Selisois	Principle of sensors					
		Selection of sensors, Generation of sensors					
2 b Actuators	About Actuators	Definition of Actuators					
2.0.1 101015	Tibout Pictuators	Classifications of Actuators					
Unit-3:IoT Platfor	ms Design Methodolog	y (10 hrs)					
Introduction, Step b	y step procedure of IoT	Design Methodology, Challenges in IoT Design, IoT					
System Managemer	nt.						
Unit No	Module	Micro content					
3.a.Introduction to	IoT Platforms	Introduction					
IoT Platforms		Step by step procedure of IoT Design Methodology					
3.b.Challenges in	Challenges in IoT	Challenges in IoT Design					
IoT Platforms	Chancinges in 101	IoT System Management.					
Unit-4:Interfacing with Arduino (13 hrs)							
Introduction, Types of Arduino, Arduino IDE, Basic Commands for Arduino, Interfacing							
Arduino with LED,	Interfacing Arduino wit	h LCD.Controlling Arduino with python.					
Unit No	Module	Micro content					
4.a.Introduction to	Basic features &	Introduction to Arduino					

Arduino	types Types of Arduino	
		Arduino IDE, Basic Commands for Arduino
	g Interfacing with Arduino	Interfacing Arduino with LED
4.b .Interfacing with Arduino		Interfacing Arduino with LCD
		Controlling Arduino with python

Unit-5:Interfacing with Raspberry Pi

(10 hrs)

Basic building blocks of an IoT device, Introduction to Raspberry Pi, hardware & software requirements for Raspberry Pi, Raspberry interfaces, Programming Raspberry Pi with python-Controlling LED with Raspberry Pi - Interfacing an LED and switch with Raspberry Pi-Interfacing a Light Sensor (LDR) with Raspberry Pi-Interfacing of a DC motor with Raspberry Pi.

Unit No	Module	Micro content
		Introduction to Raspberry Pi
5.a.Introduction to	Basic features & types	hardware & software requirements for Raspberry Pi
Raspberry Pi		Raspberry pi IDE, Basic Commands for Raspberry
		pi
5 h Interfacing	Interfacing with	Interfacing an LED and switch with Raspberry Pi
yith Pospherry Di	Raspberry Pi	Interfacing a Light Sensor (LDR) with Raspberry Pi
with Raspoerty 11		Interfacing of a DC motor with Raspberry Pi

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Explain the emergence and challenges in IoT. {Explain level, KL2}
CO2	Understand the importance of sensors and actuators. {understand level, KL3}
CO3	Understand the design methodologies and application areas of IoT. { Evaluate level, KL4}
CO4	Design and develop programs in Raspberry Pi for sensor applications. {Analyze level,
	KL4}
CO5	Interface and deploy sensors with Arduino { Evaluate level, KL5}

Text books:

- 1. "Internet of Things A Hands-On- Approach", Vijay Madisetti, Arshdeep Bahga1st edition, University press, 2014.
- 2. "Internet of things with Raspberry Pi and arduino" Rajesh Singh, Anita Gehlot, Lovi Raj Gupta,Bhupendra Singh, and Mahendra Swain, 1st edition, CRC Press, 2020.

Reference books:

- 1. "Internet of Things A to Z: Technologies and Applications" Qusay F. Hassan,1st edition, Wiley Publishers, 2018.
- 2. "Introduction to IoT" <u>Sudip Misra, Anandarup Mukherjee, Arijit Roy</u>, 1st edition, <u>Cambridge University Press</u>, 2021.

CO-PO Mapping :

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1	3	1												
CO2	3		1										1	
CO3			2		3									1
CO4			2		3									
CO5			2		3									

II-Year-I Semester SOC2101

INDUSTRIAL SAFETY ,CODES AND STANDARDS

L	Т	Р	С	
1	0	2	2	

PRE-REQUISITES:

Course objectives: The student should be able to

- 1. Study the concept and importance of safety in industries.
- 2. Study the basic hazards in chemical industry and their control methods.
- 3. Study the various hazards in engineering industry and their safety methods.
- 4. Know the major electrical hazards and their safety control schemes.
- 5. Study the causes of fire accidents and their controlling schemes and also know the importance of machine guarding

Syllabus						
Unit	Contents	Mapped				
No		CO				
I	Introduction to safety (08 hrs) The Concept of Safety, Derivation of the Concept of Safety, Nature of the Concept of Safety, Philosophy of Safety, Safety Terminology, Basic safety requirements, Message of the work "SAFETY, Safety Psychology, Need of Safety Psychology, Behaviour Based Safety (BBS).	C01				
Π	Safety in Chemical Industry(10 hrs) Need of Safety in Chemical Industry, Types of Chemical Industry ,Statutory Provisions & Indian Standards, Types of Chemical Hazards & Controls, Material (Property) Hazards and Controls, Storage &, Process Hazards & their Controls, Utility& Pollution Hazards & Controls. Instrumentation for Safe Plant Operations, Safe Transfer of Chemicals, Safe Transportation of Chemicals, Indian Standards & National Building Code for industries.	CO2				
III	Safety in Engineering Industry(9hrs) Need of Safety in Engineering Industry, Indian Standards, Introduction to Hot & Cold Processes, Hot Working of Metals, Safety in Other Operations, Heat Treatment Operations, General Health Hazards & Control Measures in Engineering Industry, Safety in Use of Machine Tools, Selection and Care of Cutting Tools, Safe Operations & Maintenance of Machines, safety in other operation like welding & fire. Heat Treatment operations, General Health Hazards & Control Measures in Engineering Industry.	CO3				
IV	Electrical Safety(8 hrs) Electricity, its Usefulness and Hazards, Statutory Provisions & Indian Standards, Effects of Electrical Parameters on Human Body ,Safety Measures for Electric work , Different types of Protections , Portable Electrical Apparatus, Earthing standards ,Electric Work in Hazardous Atmosphere , Static Electricity ,Energy Conservation and Safety.	CO4				

	Fire Hazards & Machine Guarding (09 hrs)				
	Fire Hazards: Fire Phenomena, Classification of Fire and Extinguishers,				
	Statutory and other standards, Design for Fire Safety, Fire Prevention and				
V	Protection System.(06 hrs)	CO5			
	Machine Guarding: Requirements of Machine Guarding ,Indian Standards ,				
	Principles of Machine Guarding ,Types and Selection of Guards ,Materials for				
	Guard Construction(03 hrs)				
Con	tent Beyond the syllabus:				
Acci	dent Causation and Prevention: Causation or Occurrence, Reasons for Accident				
Prev	ention, Factors Impeding Safety, Basic Terms in Accident Prevention.				
Safe	ty Management: The Concept of Management, Management Principles, Safety				
Man	agement and its Responsibilities, Safety environment.				
Che	Chemical industry: Inspection, Testing & Maintenance, Work Permits of Hazardous Work,				
Repo	orts of Some Expert Committees,				
Fire	explosion and Guarding importance: Explosion Phenomena, Inspection, Maintena	nce and			
Traiı	ning for Fire Protection , Ergonomics of Machine Guarding , Maintenance and Repairs	of			
Guar	rds,				
Pers	onal Protective Equipment: Need and Limitation, Selection and Classification, Trai	ning,			
PPE	Testing Procedures & Standards				

	Course Outcomes
Upon	successful completion of the course, the student will be able to
CO1	Understand the Basics & importance of safety in industries. {Understand level, KL2}
CO2	Explain the hazards in chemical industry and their control methods. {Apply level, KL3}
CO3	Analyze chemical industry hazards and their control methods.{Analyze level, KL4}
CO4	Evaluate the major electrical hazards and their safety schemes. {Evaluate level,
	KL5}
CO5	Analyze fire safety methods and machine guarding. {Apply level, KL4}

Learning Resources
Text books:
1. Dr. K U. Mistry- Fundamentals of Industrial Safety and Health, SiddharthPrakashan, Ahmadabad.
2. Industrial Hazards and Safety Handbook, King and Magid, Butterworth

Reference books:

- 1. Fundamentals of Electrical Safety, V. Manoilov, Mir Publishers, Moscow.
- 2. Occupational Safety Management and Engineering, Willie Hammer, Prentice-Hall.
- 3. Chemical Hazards in the Workplace, Measurement & Control, Gangadhar Choudhary, American Chemical Society
- 4. Accident Prevention Manual for Industrial Operations, National safety Council, Chicago, Illinois.
- 5. The Factories Act 1948 and the Gujarat Factories Rules 1963.

e- Resources & other digital material

- 1. Industrial Accident Prevention, H. W. Heinrich, McGraw-Hill BC.
- 2. Electrical Safety Forum site www.electricalsafety.com
- 3. Chemical safety <u>www.chemicalsafety.co.in</u>
- 4. Young Worker Health and Safety www.youngworkers.org
- 5. Fire web <u>www.fireweb.com</u>
- 6. National Institute of Occupational Health (NIOH) http://www.nioh.org/
- 7. National Institute of Disaster Management http://www.ni dm. net/ index.htm

Micro-Syllabus

Unit – 1: Introduction to safety (08 hrs)

The Concept of Safety, Derivation of the Concept of Safety, Nature of the Concept of Safety, Philosophy of Safety, Safety Terminology, Basic safety requirements, Message of the work "SAFETY, Safety Psychology, Need of Safety Psychology, Behaviour Based Safety (BBS).

Unit No	Module	Micro content
1a.Introduction to safety	Introduction to safety	The concept of safety ▶ Dead Vs. Live Resources, ▶ Health Vs. Wealth and ▶ Industrialization Vs accidents. Derivation and nature of concept of safety What is Philosophy Philosophy of Accident Causation Philosophy of Total Safety Concept, Need of Safety Psychology, Industrial Psychology
1b.SafetyPsycholog y	SafetyPsycholog y	Safety Psychology, Accident Causative Factors Motivation for Safety Behaviour Based Safety (BBS)

Unit-2: Safety in Chemical Industry(10 hrs)

Need of Safety in Chemical Industry, Types of Chemical Industry ,Statutory Provisions & Indian Standards ,Types of Chemical Hazards & Controls ,Material (Property) Hazards and Controls ,.

Storage &, ProcessHazards& their Controls, Utility& Pollution Hazards & Controls. (7 hrs)

Instrumentation for Safe Plant Operations , Safe Transfer of Chemicals , Safe Transportation of Chemicals, Indian Standards & National Building Code for industries. (3 hrs)

Unit No	Module	Micro content						
		NeedofSafetyinChemicalIndustry						
		StatutoryProvisions,IndianStandards						
		TypesofChemicalHazards&Controls						
		Material(Property)Hazardsand Controls						
2 Safety in		Storage	Hazards	&Controls,				
2 Sarcty III Chemical	Safety in Chemical Industry	ProcessHazards&Controls,UtilityHazards&Control						
Industry		S						
muustiy		PollutionHazards&Controls						
		InstrumentationforSafePlantOperations						
		SafeTransferofChemicals,SafeTransportationofChemi						
		cals						

Unit-3: Safety in Engineering Industry(9hrs)

Need of Safety in Engineering Industry, Indian Standards, Introduction to Hot & Cold Processes, Hot Working of Metals, Safety in Other Operations, Heat Treatment Operations, General Health Hazards & Control Measures in Engineering Industry, Safety in Use of Machine Tools, Selection and Care of Cutting Tools, Safe Operations & Maintenance of Machines, safety in other operation like welding & fire. Heat Treatment operations, GeneralHealth Hazards & Control Measures in Engineering, GeneralHealth Hazards & Control Neuroperation like welding & fire.

Unit No	Module	Micro content				
		Need of safety in Engineering Industry				
		StatutoryProvisions,IndianStandards				
		IntroductiontoHot&ColdProcesses				
		Types of Hot and Cold Processes				
		Types of Furnaces, Uses				
		➢ Steel Manufacture, Hazards and Safety				
20 Safata in		Measures				
Sa.Salety In	Safety in Engineering	Manufacture of Steel Machine Tools				
Engineering	Industry	Hazards &Safety Measures				
mustry		Heat Treatment Operations				
		General Health Hazards & Control Measures in				
		Engineering Industry				
		Safety in Use of Machine Tools ,Selection and				
		Care of Cutting Tools				
		Safe Operations & Maintenance of Machines				
		safety in other operation like welding & fire				

Heat Treatment operations, Hazards & Safety
Measures
GeneralHealth Hazards & Control Measures in
Engineering Industry

Unit-4: Electrical Safety(8 hrs)

Electricity, its Usefulness and Hazards, Statutory Provisions & Indian Standards, Effects of Electrical Parameters on Human Body ,Safety Measures for Electric work , Different types of Protections , Portable Electrical Apparatus, Earthing standards ,Electric Work in Hazardous Atmosphere , Static Electricity ,Energy Conservation and Safety.

Unit No	Module	Micro content				
		Electricity, its Usefulness and Hazards				
		Statutory Provisions & Indian Standards,				
		Effects of Electrical Parameters on Human Body,				
		Physiology of Electric Shocks				
		Effects of Amperages				
		Effects of Voltages				
		Resistance of Skin				
		Resistance of Materials				
		Safety Measures for Electric work				
		Different types of Protections				
		\succ Capacity and Protection of conductors,				
		joints and connectors				
		Overload and Short Circuit Protection				
		Earth Fault Protection				
4a.		No Load Protection				
Electrical safety	Electrical safety	Earth, Insulation and Continuity Tests				
		Earthing Standards				
		Protection against Surges and Voltages Eluctuation				
		Hazards of Borrowed Neutrals Human Body.				
		Lockout & Tag-out				
		Portable Electrical Apparatus				
		Earthing standards				
		Electric Work in Hazardous Atmosphere				
		Static Electricity				
		Electrostatic Charges & Discharges				
		 Operations and Machines generating Static 				
		charge.				
		Hazards and Controls				

Energy Conservation and Safety

Unit-5: Fire Hazards & Machine Guarding (09 hrs)

Fire Hazards: Fire Phenomena, Classification of Fire and Extinguishers, Statutory and other standards, Design for Fire Safety, Fire Prevention and Protection System.(**06 hrs**)

Machine Guarding: Requirements of Machine Guarding ,Indian Standards , Principles of Machine Guarding ,Types and Selection of Guards ,Materials for Guard Construction(**03 hrs**)

Unit No	Module	Micro content				
		Fire Phenomena				
		➢ Nature of Fire,				
		Need of Fire Safety,				
		 Chemistry & Pyramid of Fire Sprinklers, 				
		Water spray, Foam,				
		Stages of Fire,				
		Spread of Fire,				
		Definitions,				
		Factors Contributing to Fire Flammable				
		Substances,				
		Common Cause of Industrial Fire.				
		Classification of Fire and Extinguishers				
	Fire Hazards	Statutory Provisions,				
		Indian Standards,				
		Guidelines of Regional Tariff Advisory,				
5a.Fire Hazards		NFPA code (NFC).				
		Design for Fire Safety				
		 Fire Resistance of Building Materials, 				
		Fire Safety of Building, Plant, Exit,				
		 Fire Prevention and Protection systems, 				
		 General Control Measures, 				
		 Fire Detection and Alarm Systems, 				
		Fire Load Determination.				
		Fire Suppression or Extinguishing Systems				
		 Portable Fire Extinguishers, 				
		Fixed Fire Installations : Hydrants,				
		Sprinklers, Water spray, Foam,				
		Automatic Fire Detection & Extinguishing				
		System,				
		\succ Control of Fire and Explosion in				
		Flammable Substances,				
		 Fighting Fires of Pesticides, 				

		Electrical Fires.
5b. Machine Guarding	Machine Guarding	Requirements of Machine GuardingIndian StandardsPrinciples of Machine Guarding,> Definitions,> Elimination of Hazard,> Groups of Dangerous Parts,> According to Motions,> According to H.A. Hepburn.Types and Selection of Guards:> Built-in Safety Devices,> Incidental Safety Devices and Methods,> Guarding of Different MachinesMaterials for Guard Construction.

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Understand the Basics & importance of safety in industries {Understand level, KL2}
CO2	Explain the hazards in chemical industry and their control methods .{ Apply level, KL3 }
CO3	Analyze chemical industry hazards and their control methods. {Analyze level, KL4}
CO4	Evaluate the major electrical hazards and their safety schemes. {Evaluate level, KL5}
CO5	Analyze fire safety methods and machine guarding. {Apply level, KL4}

Text books:

1. Dr. K U. Mistry- Fundamentals of Industrial Safety and Health, SiddharthPrakashan, Ahmadabad.

2. Industrial Hazards and Safety Handbook, King and Magid, Butterworth.

Reference books:

- 1. . Fundamentals of Electrical Safety, V. Manoilov, Mir Publishers, Moscow.
- 2. Occupational Safety Management and Engineering, Willie Hammer, Prentice-Hall.

3. Chemical Hazards in the Workplace, Measurement & Control, GangadharChoudhary, American Chemical Society

- 4. Accident Prevention Manual for Industrial Operations, National safety Council, Chicago, Illinois.
- 5. The Factories Act 1948 and the Gujarat Factories Rules 1963.

CO-PO Mapping:

		_												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1	3													
CO2	3												1	
CO3	2	1												
CO4	2	2	1											1
CO5	3	1												1

II-Year-I Semester SOC2101

DC DRIVES

L	Т	Р	С
1	0	2	2

PRE-REQUISITES: 1) DC Drives

Course objectives: The student should be able to

- 6. Study the fundamentals of Drives .
- 7. Study the principle and working of DC motors.
- 8. Studies the parameterization, Wiring and its Application .
- 9. Study the principle and working of DC Drives.
- 10. Study Features of DC Drives.

Syllabus					
Unit No	Contents	Mapped CO			
Ι	 Basic of Power Electronic , Concept of Drive & Expectation from Drive , Starters (6 hrs) Basic principles of Diodes, Thyristors, IGBT, BJT, Comparison of power electronics, Application (02 hrs) Basic fundamentals of Drives (02 hrs) Basic concept, Wiring (02 hrs) 	CO1			
II	DC MOTOR (08 hrs) Basic on DC motors-working, principle, (02 hrs) types of DC motors (02 hrs) Parameterization (04 hrs)	CO2			
III	Features of SINAMIC DCM DC Drive (06 hrs) Introduction, parameterization, Wiring, Application	CO3			
IV	Concept of DC DRIVE (06hrs) Concept of DC Drive in details (02 hrs) types of dc drives (02 hrs) working, principle (02 hrs)	CO4			
V	Features of DC Drive (06 hrs)Important features .(02 hrs)Selection of DC Drive and its applications .(02 hrs)Design and protection for DC Drives (02hrs)	CO5			
Con Ind	itent Beyond the syllabus: uction motor drives: Volts/Hertz Control, Vector or Field oriented control.	11			

Industrial application: Drive consideration for Textile mills, Steel rolling mills, Cement mills, Paper mills, Machine tools. Cranes & hoist drives.

LIST OF EXPERIMENTS

1. To obtain speed control of Switched Reluctance Motor using DSP controller

TMS320F2812.

- 2. To obtain speed control of Permanent magnet synchronous Motor using SPARTAN 6 FPGA controller.
- 3. To obtain speed control of three phase induction motor using dsPIC controller MICRO-4011.
- 4. To visualize the speed and position control of servo motor by various inputs of DSP CONTROLLER kit.
- 5. To study the operation of speed control of dc motor fed from four quadrant chopper using FPGA controller
- 6. To simulate the three phase voltage source inverter with resistive load using SPWM.
- 7. To simulate the chopper fed dc motor (matlab)
- 8. To study the simulation of Z source inverter using matlab simulink.

	Course Outcomes				
Upon s	successful completion of the course, the student will be able to				
1					
CO1	Understand the fundamentals of Drives .{ Understand level. KL2 }				
001					
CO2	Explain the principle and working of DC motors $\{Annly level, KL3\}$				
00-	2. Prime and principle and working of 2 c motors (1. P.P. y 1000, 1. 20)				
CO3	Analyze parameterization Wiring and its Application {Analyze level KIA}				
005	Thatyze parameterization, writing and its reprication (Thatyze rever , TEP)				
CO4	Evaluate the working of DC Drives (Evaluate level KL5)				
004	Evaluate the working of DC Drives [Evaluate level, KL5]				
COF	Another the Design and another than for DC Drives (Another Lord, 1714)				
UU5	Analyze the Design and protection for DC Drives. {Apply level, KL4}				

Text books:

- 1. "Electric Drive: Control of DC and AC Drives" by Srinivas Vemula and Ramaiah Veerlapati.
- 2. VEDAM SUBRAMANIAM "Electric drives (concepts and applications)", Tata McGraw-Hill.2001.
- 3. "Electric motor drives", R. Krishnan, PHI.
- 4. "Electric Motor & Drives". Austin Hughes, Newnes.
- 5. "Modern Power Electronics & Ac drives", B.K. Bose, Pearson Education.

Reference books:

- 1. PILLAI.S.K, "A first course on Electric drives", Wiley Eastern Limited, 1998
- 2. M.D. SINGH, K.B.KHANCHANDANI, "Power electronics", Tata McGraw-Hill.1998

e- Resources & other digital material

- 1. http://www.hccl.ie/uploads/1/4/7/3/1473854/ha472742_iss4a_ac-dc_catalog.pdf
- 2. https://www.industrial-electronics.com/MDPTG_4.html
- 3. http://freetutorials.name/Reference1/Electrical_Engineering.html

Micro-Syllabus

Unit – 1 Basic of Power Electronic, Concept of Drive & Expectation from Drive, Starters (6 hrs)

Basic principles of Diodes, Thyristors, IGBT, BJT, Comparison of power electronics, Application (**02 hrs**)

Basic fundamentals of Drives (02 hrs)

Basic concept, Wiring (02 hrs)

Unit No	Module	Micro content			
1a.		Basic principles of Diodes, Thyristors, IGBT, BJT			
Basic of Power	Electronic, Concept of Drive	Comparisons of power electronics			
Electronic,		Applications			
Concept of Drive		Advantages and Disadvantages.			
	Concept of Drive & Expectation from	Basic fundamentals of Drives			
		Classifications of Drives			
1b. Concept of		Power Modulators, Control Unit, Motor Duty			
Drive &		classes			
Expectation from		Types of Braking			
Drive, Starters	Dirve, Starters	Load Equalisation of Electrical Drives, Basic			
		concept, Wiring			
		Advantages and Disadvantages.			

Unit-2: DC MOTOR (08 hrs)

Basic on DC motors-working, principle, (02 hrs)

types of DC motors (02 hrs)

Parameterization (04 hrs)

Unit No	Module	Micro content			
		Basic on DC motors-			
	DC MOTOD	working and principle			
2a. DC MOTOR	DC WOTOK	types of DC motors			
		Advantages and Disadvantages.			
		Types of DC motors			
2b. Types of DC	Types of DC motors	Working and principle			
motors		Parameterization			
		Advantages and Disadvantages.			
Unit-3: Features of SINAMIC DCM DC Drive (06 hrs) Introduction, parameterization, Wiring, Applications					
Unit No	Module	Micro content			

Unit No	wiodule	NIICro content
		Introduction of SINAMIC DCM
3a. Features of	Features of SINAMIC	parameterization
SINAMIC DCM	DCM	Wiring
		Applications

		Advantages and Disadvantages.		
2h DC Drive	DC Drive Convertor	Introduction of DC Converter		
SD. DC Drive	DC Drive Converter	Types of DC Converter		
Converter		Advantages		
Unit-4: Concept of	f DC DRIVE (06hrs)	-		
Concept of DC Driv	ve in details (02 hrs)			
types of dc drives (02 hrs)			
working, principle	(02 hrs)			
Unit No	Module	Micro content		
		Concept of DC Drive		
4a. DC Drive	DC Drive	construction & working principle		
		Advantages and Disadvantages		
		Types of DC Drives		
4b. Types of dc	Types of dc drives	Characteristics and its specifications		
drives		Advantages and Disadvantages		
Unit-5. Fostures o	f DC Drive (06 brs)			
Important features of	of DC Drives (02 hrs)			
Selection of DC Dr	ive and its applications (02	2 hrs)		
Design and protecti	on for DC Drives (02hrs)	11 5)		
Unit	Module	Micro content		
Cint		Important features of AC DRIVE		
		Selection of AC Drive		
5a. Features of	Features of DC Drives	Applications		
DC Drives		Adventence and Disadventence		
		Advantages and Disadvantages		
5b.		Design of DC Drives		
Design and	Design and protection	Protection of Drives		
protection for DC	for DC Drives	Applications		
Drives		Advantages and Disadvantages		

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Understand the fundamentals of Drives . {Understand level, KL2}
CO2	Explain principle and working of DC motors. {Apply level, KL3}
CO3	Analyze parameterization {Analyze level, KL4}
CO4	Evaluate the working of DC Drives. {Evaluate level, KL5}
CO5	Analyze Design and protection for DC Drives.{Apply level, KL4}

Learning	Resources
----------	-----------

Text books:

- 1. "Electric Drive: Control of DC and AC Drives" by Srinivas Vemula and Ramaiah Veerlapati.
- 2. VEDAM SUBRAMANIAM "Electric drives (concepts and applications)", Tata McGraw-Hill.2001.
- 3. "Electric motor drives", R. Krishnan, PHI.
- 4. "Electric Motor & Drives". Austin Hughes, Newnes.
- 5. "Modern Power Electronics & Ac drives", B.K. Bose, Pearson Education.

Reference books:

- 1. PILLAI.S.K, "A first course on Electric drives", Wiley Eastern Limited, 1998
- 2. M.D. SINGH, K.B.KHANCHANDANI, "Power electronics", Tata McGraw-Hill.1998

e- Resources & other digital material

1. http://www.hccl.ie/uploads/1/4/7/3/1473854/ha472742_iss4a_ac-dc_catalog.pdf

- 2. https://www.industrial-electronics.com/MDPTG_4.html
- 3. http://freetutorials.name/Reference1/Electrical_Engineering.html

CO-PO Mapping

	Р	PO	PO1	PO1	PO1	PSO	PSO							
	0	2	3	4	5	6	7	8	9	0	1	2	-1	-2
	1													
CO1	3													
CO2	3													
CO3	2	1												
CO4	3		1											
CO5	3													

II-Year-I Semester SOC2101

PYTHON LIBRARY TOOLS

L	Т	Р	С	
1	0	2	2	

PRE-REQUISITES: Python Programming

Matplotlib is written in Python and makes use of NumPy, the numerical mathematics extension of Python. We assume that the readers of this tutorial have basic knowledge of Python.

Course objectives: The student should be able to

- Learn how to use Jupyter notebooks
- Learn how to work with NumPy data types
- Be proficient in pandas Series
- Be proficient in pandas Data Frames
- Understand how to use data visualization
- Know how to import and clean data
- Introduce statistical tools for working with data sets
- An introduction to the problems of working with PDF data sources

	Syllabus					
Unit	it Contents					
No		CO				
Ι	Unit I:NUMPY: Introduction, Installation of numpy, Features, Uses, Ndarray object, Data types, array attributes, Array creation, indexing and slicing. Binary operations, matrix operations, numpy functions, numpy sorting and searching, Numpy copy Vs view, linear algebra, I/O with numpy.	CO1				
II	UNIT:2 : SCIPY: Introduction, basic functionality, cluster, constants, Fftpack, Integrate, Interpolate, I/O, linalg, Image Processing, optimizers, matlab arrays.	CO2				
III	Unit 3: PANDAS: Introduction, data structures, pandas- series, data frame, panel, basic functionality, Function applications. Reindexing, Iteration, sorting, indexing and satical functions, window function, cleaning data.	CO3				
IV	Unit:4 MATPOLTLIB: Introduction, Environment Setup, Anaconda distribution, Jupyter Notebook, Pyplot API, Simple Plot, PyLab module, Object-oriented Interface, Figure Class, Axes Class, Multiplots.	CO4				
V	Unit: 5 PLOTLY : Introduction,Environment Setup,Online and Offline Plotting ,Package Structure, Exporting to Static Images,Legends ,Format Axis and Ticks,Subplots and Inset Plots ,Bar Chart and Pie Chart .	CO5				

Content Beyond the syllabus:

- identify core aspects of programming and features of the Python language
- Understand and apply core programming concepts like data structures, conditionals, loops, variables, and functions
- Use different tools for writing and running Python code
- Design and write fully-functional Python programs using commonly used data structures, custom functions, and reading and writing to files
- Introduce machine learning tools for working with data sets
- Work through a complete data analysis to understand how the tools interact with each other.

List of Experiments

- 1) Determination of chock coil parameters
- 2) Determination of z and y parameters of a network
- 3) Determination of transmission and hybrid parameters of a network
- 4) Determination of self inductance and mutual inductance of coupled circuits
- 5) Determination of form factor ,peak factor of sinusoidal wave ,square wave using MAT LAB simulink
- 6) Draw the performance characteristics of series resonance
- 7) Draw the performance characteristics of parallel resonance
- 8) Magnetization characteristics of dc shunt generator-critical resistance and critical speed
- 9) Load test on dc shunt generator
- 10) Brake test dc shunt motor
- 11) Hopkinson's test on dc shunt machines .predetermination of efficiency
- 12) Swinburne's test on dc shunt motor
- 13) Speed control of dc shunt motor
- 14) OC and SC test on single phase transformer
- 15) Separation of core losses of a single phase transformer

	Course Outcomes						
Upon s	successful completion of the course, the student will be able to						
CO1	Understand the operation Introduction, Installation of numpy {Understand level, KL2}						
CO2	Explain the operation of Environment Setup, Anaconda distribution.{Apply level, KL3}						
CO3	Analyzedata structures, pandas- series {Analyze level, KL4}						
CO4	EvaluateEnvironment Setup, Anaconda distribution, Jupyter Notebook in maypoltlib.						
	{Evaluate level, KL5}						
CO5	AnalyzeEnvironment Setup,Online and Offline Plotting. {Apply level, KL4}						

Learning Resources

Text books:

The Python Language Reference Manual (version 3.2)

1. Guido van Rossum, and Fred L. Drake, Jr. (Editor),ISBN: 1906966141,Network Theory Ltd, 120 pages (Revised November 2006).

Reference books:

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/108/102/108102047/
- 2. https://www.coursera.org/learn/electric-power-systems
- 3. https://www.classcentral.com/course/electric-power-systems-12053#
- 4. https://pdhonline.com/courses/e104a/e104a_new.htm
- 5. https://emp.lbl.gov/sites/all/files/advanced-transmission-technologies.pdf
- 6. https://www.hitachi.com/rev/pdf/2002/r2002_04_106.pdf
- 7. http://regulationbodyofknowledge.org/wp-content/uploads/2013/03/NERA_Structure.pdf

Micro-Syllabus

Unit-1: NUMPY:

(12 hrs)

NumPy is a Python library that provides a simple yet powerful data structure: the n-dimensional array. This is the foundation on which almost all the power of Python's data science toolkit is built, and **learning NumPy** is the first step on any Python data scientist's journey.

Unit No	Module	Micro content
		Introduction, Installation of numpy,
		Features, Uses, Ndarray object
1.a .Introduction	Introduction to NUMPY	Data types, array
to NUMPY		attributes, Array creation
		indexing and slicing
		Binary operations, matrix operations
1 h Challenges in	Challenges in	numpy functions, numpy sorting and searching
		Numpy copy Vs view
		linear algebra, I/O with numpy.

Unit-2:SCIPY:

(11 hrs)

SciPy, a scientific library for Python is an open source, readers, who want to *learn* the basic features along with the various functions of *SciPy*.

Unit No	Module	Micro content
		Definition of SCIPY
2 a SCIPV	Introduction to	basic functionality, cluster, constants,
2.a. 5CH 1	SCIPY	Fftpack, Integrate
		Interpolate, I/O, linalg,
2.b. Image	About Image	About the Image Processing
Processing	Processing	optimizers, matlab arrays

Unit-3:PANDAS				(1	l0 hrs)	
Introduction, data	structures, pandas- serie	es, data frame,	panel,	basic fun	ctionality,	Function
applications. Reind	exing, Iteration, sorting	, indexing and	satical	functions	, window	function,
cleaning data.						

Unit No	Module	Micro content
3.a.Introduction to	PANDS Platforms	Introduction
PANDS		data structures, pandas- series, data frame
3.b.Challenges in	Challenges in IoT	Challenges in Function applications. Reindexing,
PANDS		window function, cleaning data.
Unit-4: MATPOL	ГLIB	(13 hrs)

Unit-4: MATPOLTLIB

Introduction, Environment Setup, Anaconda distribution, Jupyter Notebook, Pyplot API, Simple Plot, PyLab module, Object-oriented Interface, Figure Class, Axes Class, Multiplots

Unit No	Module	Micro content
4 a Introduction to		Introduction to MATPLOTLIB
MATPLOTLIR	Basic features & types	Environment Setup, Anaconda distribution
		, Jupyter Notebook
41 D.L.I		Pyplot API, Simple Plot,
4.b. PyLab module	PyLab module ,	PyLab module, Object-oriented Interface
,		Figure Class, Axes Class, Multiplots

Unit-5: PLOTLY

(10 hrs)

Introduction, Environment Setup, Online and Offline Plotting , Package Structure, Exporting to Static Images, Legends, Format Axis and Ticks, Subplots and Inset Plots, Bar Chart and Pie Chart.

Unit No	Module	Micro content	
		Introduction, Environment Setup	
5.a.Introduction to PLOTLY	Basic features &	Online and Offline Plotting, Package Structure	
	JF	Exporting to Static Images, Legends	
5 h Format Avia	Format Axis and	Format Axis and Ticks, Subplots and Inset Plots	
J.U. POIIIlat AXIS		Bar Chart and Pie Chart	

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Explain the I	Introduction	to NUMPY.	{Expla	in level,	, KL2 }
------------	---------------	--------------	-----------	--------	-----------	----------------

CO2	Understand the importance of SciPy, a scientific library for Python is an open source.
	{understand level, KL3}
CO3	Understand the design methodologies Environment Setup, Anaconda distribution, Jupyter
	Notebook.{ Evaluate level, KL4}
CO4	Design and develop programs Environment Setup, Anaconda distribution, IN MATPLOTLIB.
	{Analyze level, KL4}
CO5	Online and Offline Plotting in PLOTLY Evaluate level , KL5

Text books:

The Python Language Reference Manual (version 3.2)

3. Guido van Rossum, and Fred L. Drake, Jr. (Editor), ISBN: 1906966141, Network Theory Ltd, 120 pages (Revised November 2006).

Reference books:

"The Python Language Reference Manual (version 3.2)

3. Guido van Rossum, and Fred L. Drake, Jr. (Editor),ISBN: 1906966141,Network Theory Ltd, 120 pages (Revised November 2006).

CO-PO mapping Table with Justification

Cor	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations													
	(High: 3, Medium: 2, Low: 1)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1	3	1												
CO2	3		1										1	
CO3			2		3									1
CO4			2		3									
CO5			2		3									

II-Year-I SemesterESSENCE OF INDIAN TRADITIONALMC2101KNOWLEDGE

L	Т	Р	С
2	0	0	0

Pre-Requisites:

- 1. Basics of General Science
- 2. Basics of Social Studies

Course Objectives: The objectives of the course are to impart:

To facilitate the students with the concepts of Indian traditional knowledge and to make them understand the Importance of roots of knowledge system.

The course aim of the imparting basic principle of third process reasoning and inference sustainability is at the course of Indian traditional knowledge system

To understand the legal framework and traditional knowledge and biological diversity act 2002 and geographical indication act 2003.

The courses focus on traditional knowledge and intellectual property mechanism of traditional knowledge and protection.

To know the student traditional knowledge in different sector.

	Syllabus	
Unit No	Contents	Mapped CO
I	Unit-I: (10 hrs) Introduction to traditional knowledge: Define traditional knowledge, nature and characteristics, scope and importance, kinds of traditional knowledge, the physical and social contexts in which traditional knowledge develop, the historical impact of social change on traditional knowledge systems. Indigenous Knowledge (IK), characteristics, traditional knowledge vis-à-vis indigenous knowledge, traditional knowledge Vs western knowledge traditional knowledge vis-à-vis formal knowledge	CO1
II	Unit-II: (8 hrs) Protection of traditional knowledge: the need for protecting traditional knowledge Significance of TK Protection, value of TK in global economy, Role of Government to harness TK.	CO2
III	Unit-III:(8 hrs) Legal framework and TK: A: The Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006, Plant Varieties Protection and Farmers Rights Act, 2001 (PPVFR Act);B:The Biological Diversity Act 2002 and Rules 2004, the protection of traditional knowledge bill, 2016. Geographical indications act 2003.	CO3

(10 hrs)

IV	Unit-IV: (10 hrs) Traditional knowledge and intellectual property: Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge, Certain non IPR mechanisms of traditional knowledge protection, Patents and traditional knowledge, Strategies to increase protection of traditional knowledge, global legal FORA for increasing protection of Indian Traditional Knowledge.	CO4
V	Unit-V:(8 hrs) Traditional knowledge in different sectors: Traditional knowledge and engineering, Traditional medicine system, TK and biotechnology, TK in agriculture, Traditional societies depend on it for their food and healthcare needs, Importance of conservation and sustainable development of environment, Management of biodiversity, Food security of the country and protection of TK.	CO5
Con	tent Beyond the Syllabus:	
Unit	-I: NGOS Role in TK.	
Unit	-III: Forest Conservation Act, 1980	
Unit	-IV:IPR	

	Course Outcomes								
	Upon successful completion of the course, the student will be able to								
CO1	Able to Understandtraditional knowledge, nature and characteristics, scope and								
COI	importance, kinds of traditional knowledge								
CO2	Able to UnderstandProtection of traditional knowledge								
CO3	Able to understand and apply Legal framework and Traditional Knowledge								
CO4	Able to UnderstandTraditional knowledge and intellectual property								
CO5	Able to Understand Traditional knowledge in different sectors								
Text b	ooks:								
1.	Traditional Knowledge System in India, by Amit Jha, 2009.								
Refere	ence books								

- 1. Traditional Knowledge System in India, by Amit Jha, 2009.
- 2. Traditional Knowledge System and Technology in India by Basanta Kumar Mohanta and Vipin Kumar Singh, Pratibha Prakashan 2012.
- 3. Traditional Knowledge System in India by Amit Jha Atlantic publishers, 2002
- 4. "Knowledge Traditions and Practices of India" Kapil Kapoor, Michel Danino

e- Resources & other digital material

1.http://moef.gov.in/en/resource/e-books/

2.https://www.youtube.com/watch?v=LZP1StpYEPM 2.http://nptel.ac.in/courses/121106003/

Micro-Syllabus

Unit-I:

Introduction to traditional knowledge: Define traditional knowledge, nature and characteristics,

scope and importance, kinds of traditional knowledge, the physical and social contexts in which traditional knowledge develop, the historical impact of social change on traditional knowledge systems. Indigenous Knowledge (IK), characteristics, traditional knowledge vis-à-vis indigenous knowledge, traditional knowledge Vs western knowledge traditional knowledge vis-à-vis formal knowledge

Unit No	Module	Micro content
		Define traditional knowledge, nature and
		characteristics,
		scope and importance, kinds of traditional
	Nature and characteristics, scope and importance, kinds of traditional knowledge,	knowledge, the physical and social contexts in
1 Introduction to		which traditional knowledge develop,
traditional		the historical impact of social change on
knowledge		traditional knowledge systems.
Knowledge		Indigenous Knowledge (IK), characteristics,
		traditional knowledge vis-à-vis indigenous
		knowledge, traditional knowledge Vs western
		knowledge traditional knowledge vis-à-vis formal
		knowledge.

Unit-II: (8 hrs)

Protection of traditional knowledge: the need for protecting traditional knowledge Significance of TK Protection, value of TK in global economy, Role of Government to harness TK.

Unit No	Module	
		the need for protecting traditional knowledge
2. Protection of	Protection of	Significance of TK Protection, value of TK in
traditional	traditional knowledge	global economy
knowledge		Role of Government to harness TK.

Unit-III:(8 hrs)

Legal framework and TK: A: The Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006, Plant Varieties Protection and Farmers Rights Act, 2001 (PPVFR Act);B:The Biological Diversity Act 2002 and Rules 2004, the protection of traditional knowledge bill, 2016. Geographical indications act 2003.

Unit No	Module	Micro content
3a.Legal framework and TK	Traditional Forest Dwellers	The Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006
	Act, 2006	2001 (PPVFR Act)
3.b.The Biological	The Biological	The Biological Diversity Act 2002 and Rules
Diversity Act 2002	Diversity Act 2002	2004,
and Rules 2004,	and Rules 2004,	the protection of traditional knowledge bill, 2016

Unit-IV:(10 hrs)

Traditional knowledge and intellectual property: Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge, Certain non IPR mechanisms of traditional knowledge protection, Patents and traditional knowledge, Strategies to increase protection of traditional knowledge, global legal FORA for increasing protection of Indian Traditional Knowledge.

Unit No	Module	Micro content
		Systems of traditional knowledge protection
		Legal concepts for the protection of traditional
		knowledge
4.Traditional		Certain non IPR mechanisms of traditional
knowledgeand	Systems of traditional	knowledge protection, Patents and traditional
intellectual	knowledge protection	knowledge
property		Strategies to increase protection of traditional
		knowledge
		Global legal FORA for increasing protection of
		Indian Traditional Knowledge.

Unit-V:(8 hrs)

Traditional knowledge in different sectors: Traditional knowledge and engineering, Traditional medicine system, TK and biotechnology, TK in agriculture, Traditional societies depend on it for their food and healthcare needs, Importance of conservation and sustainable development of environment, Management of biodiversity, Food security of the country and protection of TK.

Unit No	Module	Micro content							
		Traditional knowledge and engineering							
		Micro content Traditional knowledge and engineering Traditional medicine system, TK a biotechnology TK in agriculture, Traditional societies depend it for their food and healthcare needs, Importance of conservation and sustainab development of environment, Management biodiversity, Ecoed accurity of the country and protection of T							
		biotechnology							
5.Traditional knowledge in	Traditional knowledge in different sectors	TK in agriculture, Traditional societies depend on it for their food and healthcare needs,							
different sectors:	Impo	Importance of conservation and sustainable							
		development of environment, Management of							
		biodiversity,							
		Food security of the country and protection of TK.							

CO-PO Mapping :

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO-1	PSO-2
CO1						-	3			-				
CO2						-	3			-				
CO3						-	3			-				

CO4			3	3	3	-		
CO5			-	3		-		

II-Year-II Semester BS2201

COMPLEX VARIABLES AND STATISTICAL METHODS

L	Т	Р	С
3	1	0	3

Pre-Requisites:

- 1. Calculus
- 2. Partial Differentiation
- 3. Multiple Integrals
- 4. Basics of Probability

Course objectives: To learn

- 1. Differentiation and integration of complex functions.
- 2. Expansion of complex functions using Taylor's and Laurent's series and residue of complex functions.
- 3. The ideas of probability and random variables and various discrete and continuous probability distributions and their properties.
- 4. The statistical methods of studying data samples using test of hypothesis.
- 5. The basic ideas of statistical measures like correlation and regression.

	Syllabus	
Unit No	Contents	Mapped CO
I	Functions of complex variable and complex integration: Introduction – Continuity – Differentiability – Analyticity – Properties – Cauchy-Riemann equations in cartesian and polar coordinates – Harmonic and conjugate harmonic functions – Milne-Thompson method. (05hrs) Complex integration: Line integral – Cauchy's integral theorem – Cauchy's integral formula (all without proofs). (05 hrs)	CO1
п	Series expansions and Residue Theorem: Radius of convergence –Expansion in Taylor's series, Maclaurin's series - Laurent's series.(05 hrs) Types of singularities: Isolated – pole of order m – Essential – Residues – Residue theorem (without proof).(05hrs)	CO2
III	 Probability, Distributions and Sampling Theory: Probability-Baye'stheorem-Random variables-Discrete and Continuous random variables-Distribution function-Mathematical Expectation and Variance- Application approach: Binomial, Poisson and Normal distributions.(07 hrs) Population and samples-Sampling distribution of Means -Point and Interval estimations. Applications: Maximum error of estimate Bayesian estimate.(07 hrs) 	CO3

	Test of Hypothesis:	
IV	Introduction-Hypothesis-Null and Alternative Hypothesis-Type I and Type II	
	errors-Level of significance-One tail and two-tail tests-Tests concerning one mean	CO4
	and two means (Large and Small samples)-Tests on proportions.	
	Applications: Chi-square test and F-test on small samples. (14 hrs)	
v	Curve fitting and Correlation:	
	Method of least squares-Straight line-Parabola-Exponential-Powercurves-	CO5
	Correlation-Correlation coefficient-Rank correlation-Regression coefficient and	
	properties-Regression lines-Multiple regression.(12 hrs)	
Content Beyond the Syllabus:		
Unit-3: Maximum error of estimate – Bayesian estimate.		
Unit-4: Chi-square test and F-test on small samples.		
Unit-5: Multiple regressions.		

Course Outcomes		
Upon successful completion of the course, the student will be able to		
CO1	Apply Cauchy-Riemann equations to complex function in order to determine whether a	
	given continuous function is analytic. (L3)	
CO2	Find the differentiation, integration of complex functions used in engineering problems	
	and make use of Cauchy residue theorem to evaluate certain integrals. (L3)	
CO3	Apply discrete and continuous probability distributions and Design the components of a	
	classical hypothesis test. (L3 &L6)	
CO4	Infer the statistical inferential methods (hypothesis testing) based on small and large	
	sampling tests. (L4)	
CO5	Interpret the association of characteristics and through correlation and regression tools.	
	(L4)	
Text books:		
1. B.S. Grewal, Higher Engineering Mathematics, 44 th Edition, Khanna Publishers.		
2. S. C. Gupta and V. K. Kapoor, Fundamentals of Mathematical Statistics, 11/e (Reprint)		
2019, Sultan Chand & Sons Publications.		
3. B.V. Ramana, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill		
Education.		
Reference books		
1. Miller and Freund's, Probability and Statistics for Engineers, 7/e, Pearson, 2008.		
2. T. K. V. Iyenger, Probability and Statistics, S. Chand & Company Ltd, 2015.		
3. Jay I. Devore, Probability and Statistics for Engineering and the Sciences, 8 th Edition,		
	Cengage.	
4.	4. Erwin Kreyszig, Advanced Engineering Mathematics, 10 th Edition, Wiley-India.	
5.	H. K. Das, Advanced Engineering Mathematics, 22 nd Edition,S. Chand & Company Ltd.	
e- Resources & other digital material		

 $1. \ \underline{https://www.youtube.com/watch?v=Mwpz1zjPlzI\&list=PLbMVogVj5nJS_i8vfVWJG16}$
	<u>mPcoEKMuWT</u> (For Complex Variables)
2.	https://www.youtube.com/playlist?list=PLiUVvsKxTUr66oLF6Pzirc1EgSstMbRZR
	(For Complex Variables from 1-13)
3.	https://www.youtube.com/watch?v=COI0BUmNHT8&list=PLyqSpQzTE6M_JcleDbrVy
	PnE0PixKs2JE (For Probability and Statistics)
4.	https://www.youtube.com/watch?v=VVYLpmKRfQ8&list=PL6C92B335BD4238AB
	(For Probability and Statistics)
5.	https://www.mathsisfun.com/data/standard-normal-distribution-table.html
	(Information about Normal distribution)
6.	https://www.statisticshowto.com/tables/t-distribution-table/
	(Information about T- distribution)
Statist	tical Tables to be allowed in examinations:
1.	Normal distribution table
2.	T- distribution table

Micro-Syllabus

Unit-1: Functions of a complex variable and complex integration:	(12 hrs)
Introduction - Continuity - Differentiability - Analyticity - Properties - Cauchy	/-Riemann
equations in Cartesian and polar coordinates - Harmonic and conjugate harmonic fu	unctions –
Milne-Thompson method.	

Complex integration: Line integral – Cauchy's integral theorem – Cauchy's integral formula. (all without proofs).

Unit No	Module	Micro content				
	Introduction of Analytic function	Cauchy-Riemann equations in cartesian form.				
		Cauchy-Riemann equation in Polar form.				
		Verify the given function is analytic or not.				
		Prove that real and imaginary parts of analytic				
	Harmonic	function are harmonic.				
1a.Analytic	function	Finding conjugate harmonic function for given				
functions		part of analytic function.				
	Orthogonal trajectory	Prove that real and imaginary parts of analytic				
		function are Orthogonal.				
		Find orthogonal trajectory of given function.				
	Finding analytic	Using Milne-Thomson method find analytic				
	function	function whose real or imaginary are known.				
	Introduction of	Evaluation of Complex Integration Using line				
	Complex	integral along the given curve.				
1b.Complex integration	integration					
	Cauchy's	Verification of Cauchy's integral theorem.				
	Integration	Evaluation of Complex integration using				

Cauchy's integral theorem.				
Evaluation	of	Complex	integration	using
Cauchy's in	tegra	al formula.		

Unit-2: Series expansions and Residue Theorem:

(12 hrs)

Radius of convergence – Expansion in Taylor's series, Maclaurin's series - Laurent's series. Types of singularities: Isolated – pole of order m – Essential – Residues – Residue theorem (without proof)

Unit No	Module	Micro content
	Taylor's	Expand given function as Taylor's series about $z = a$.
2a Series Expansion of	Expansion	Expand given function as Taylor's series in powers of z.
Complex function	Laurent's	Expand given function as Laurent series about $z = a$.
	Expansion	Expand given function as Laurent series in powers of z.
	Evaluation of	Find poles and residue at each pole of $f(z)$.
2b.Residuetheorem	integration using residue theorem	Evaluate integral of $f(z)$ using residue theorem.

Unit-3: Probability, Distributions and Sampling Theory:(14 hrs)Probability-Baye'stheorem-Random Variables-Discrete and Continuous random variables-
Distribution Function-Mathematical Expectation and Variance-Binomial, Poisson and Normal
distributions.

Population and samples-Sampling distribution of Means -Point and Interval estimations - Maximum error of estimate.

Unit No	Module	Micro content
		Find probability using Baye'e theorem.
3.a.ProbabilityDistributions	Probability	Write probability distribution for given
,		random variable. And find mean, variance and
		S.D. of random variable.
		Mean and variance of Binomial, Poisson and
	Probability distributions	normal distributions.
		Find probability of Binomial event.
3.b.Random variables and		Find probability of Poisson event.
Sampling Theory		Find probability of Normal event.
	Sampling theory	Write sampling distribution of sample mean.
		And find mean of sampling distribution and
		S.D. of sampling distribution.

Unit 4: Test of Hypothesis:

(14 hrs) Introduction-Hypothesis-Null and Alternative Hypothesis-Type I and Type II Errors-Level of significance-One tail and two-tail tests-Tests concerning one mean and two means (Large and Small samples)-Tests on proportions.

Unit No	Module	Micro content					
	Test significance	Test significance of single mean or					
4.a.Test of Hypothesis	of large complex	proportions.					
	of large samples	Test significance of two means or proportions.					
	Test significance	Test significance of single mean.					
4.b.Test of hypothesis	of small samplas	Test significance of two means.					
	or sman samples	Test significance of variances.					

Unit 5: Curve fitting and Correlation:

(12 hrs)

Method of least squares-Straight line -Parabola-Exponential-Power curves -Correlation-Correlation coefficient -Rank correlation -Regression coefficient and properties-Regression lines.

Unit No	Module	Micro content			
		Fit the data in to line equation.			
5.a.Curve fitting	By least square approximation	Fit the data into a second-degree polynomial or parabola.			
- ···· - ·····························	method fit the data	Fit the data into power curve $y = a x^b$			
	in to given curve	Fit the data into power curve $y = a b^x$			
		Fit the data into power curve $y = ae^{bx}$			
	Correlation	Find correlation coefficient.			
5.b.Correlation and regression	Correlation	Find Karl Pearson's coefficient of correlation.			
0	Regression	Find regression coefficient and lines.			

Course	e Outcomes							
Upon s	Upon successful completion of the course, the student will be able to							
CO1	Apply Cauchy-Riemann equations to complex function in order to determine whether a							
	given continuous function is analytic. (L3)							
CO2	Find the differentiation, integration of complex functions used in engineering problems							
	and make use of Cauchy residue theorem to evaluate certain integrals. (L3)							
CO3	Apply discrete and continuous probability distributions and Design the components of a							
	classical hypothesis test. (L3 &L6)							
CO4	Infer the statistical inferential methods (hypothesis testing) based on small and large							
	sampling tests. (L4)							
CO5	Interpret the association of characteristics and through correlation and regression tools.							
	(L4)							
Text be	ooks:							

- 1. **B.S. Grewal,** Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
- **2.** S. C. Gupta and V. K. Kapoor, Fundamentals of Mathematical Statistics, 11/e (Reprint) 2019, Sultan Chand & Sons Publications.
- **3. B.V. Ramana,** Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.

Reference books

- 1. Miller and Freund's, Probability and Statistics for Engineers, 7/e, Pearson, 2008.
- 2. T. K. V. Iyenger, Probability and Statistics, S. Chand & Company Ltd, 2015.
- 3. **Jay I. Devore,** Probability and Statistics for Engineering and the Sciences, 8th Edition, Cengage.
- 4. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India.
- 5. **H. K. Das**, Advanced Engineering Mathematics, 22ndEdition,S. Chand & Company Ltd.

e- Resources & other digital material

- 1. <u>https://www.youtube.com/watch?v=Mwpz1zjPlzI&list=PLbMVogVj5nJS_i8vfVWJG16</u> <u>mPcoEKMuWT</u> (For Complex Variables)
- <u>https://www.youtube.com/playlist?list=PLiUVvsKxTUr66oLF6Pzirc1EgSstMbRZR</u> (For Complex Variables from 1-13)
- 3. <u>https://www.youtube.com/watch?v=COI0BUmNHT8&list=PLyqSpQzTE6M_JcleDbrVy</u> <u>PnE0PixKs2JE</u>(For Probability and Statistics)
- 4. <u>https://www.youtube.com/watch?v=VVYLpmKRfQ8&list=PL6C92B335BD4238AB</u> (For Probability and Statistics)
- 5. <u>https://www.mathsisfun.com/data/standard-normal-distribution-table.html</u> (Information about Normal distribution)
- 6. <u>https://www.statisticshowto.com/tables/t-distribution-table/</u>(Information about T-distribution)

Statistical Tables to be allowed in examinations:

- 7. Normal distribution table
- 8. T- distribution table

CO-PO Mapping :

	PO	PO1	PO1	PO1	PSO-1	PSO-2								
	1	2	3	4	5	6	7	8	9	0	1	2		
CO1		2												
CO2		2												
CO3	2	1												
CO4	1	1												
CO5	2	3												

II-Year-II SemesterTHERMAL AND HYDRO PRIMEES2201MOVERS

L	Т	Р	С
3	0	0	3

Prerequisites: Engineering Mathematics, Engineering Physics, Engineering Thermodynamics **Course Objectives:The student should be able to**

1. Identify the unique vocabulary associated with thermodynamics through the precise definition of basic concepts and also apply the laws of thermodynamics to cycles, cyclic devices.

2. Familiarize with the various I.C.Engine systems along with their function and necessity, also performance analysis of I.C. Engines and Gas turbine Power plants.

3. Provide the basic knowledge of components being used in steam power plant cycles and to analyze the energy transfers and transformations in steam turbine.

4. Describe briefly the concepts of different fluid properties, present numerous examples related to variation of pressure in a fluid and measurement of pressure and flow rate.

5. Illustrate briefly impact of jets, hydraulic pumps and also evaluate the performance of hydraulic turbines.

	Syllabus	
Unit No	Contents	Mapped CO
I	 BASIC CONCEPTS OF THERMODYNAMICS: Thermodynamic System, Surrounding, Boundary, Universe, Control Volume, Control Surface, Classes of Systems, State, Thermodynamic Properties, Process and Cycles, Thermodynamic Equilibrium, Reversibility, Quasi static Process. ZEROTH LAW OF THERMODYNAMICS: Equality of temperature. FIRST OF THERMODYNAMICS: Statement, Internal energy, Flow work, The Steady Flow Process-Steady Flow Energy Equation, simple Problems. SECOND LAW OF THERMODYNAMICS: Kelvin-Planck & Clausius Statements of Second law of Thermodynamics, Differences between reversible and Irreversible Process, Carnot Cycle and its specialties. (13 hrs) 	CO1
II	 AIR STANDARD CYCLES: Otto, Diesel and Dual cycles, its comparisons, Brayton Cycle. I. C. ENGINES : Classification, Working principles, Valve and Port Timing Diagrams, Engine systems- fuel injection, carburetion, ignition, cooling and lubrication – Parameters of performance, Determination of Frictional Power & Indicated Power, Engine performance evaluation. GAS TURBINES: Simple gas turbine plant, Classification, Analysis of closed and open cycle plants, Applications, Performance parameters, Basic Problems. (13 hrs) 	CO2
III	STEAM TURBINES: Working Principle, Classification, Simple Impulse Turbine, Vector diagrams of velocities, Combined Velocity diagram, Work done on the blade, Axial Thrust, Blade efficiency, stage efficiency, overall efficiency,	CO3

	Effect of blade friction on velocity diagram, simple problems on Impulse	
	turbine, Compounding of Impulse Turbine, Reaction Turbine, Velocity Diagram	
	for Reaction Turbine, Degree of Reaction (only theory Part on reaction	
	Turbines). (13 hrs)	
	FUNDAMENTALS OF FLUID MECHANICS: Definition of fluid, differences	
	between a solid and fluid, physical properties of fluids- Density, Specific Weight,	
	Specific gravity, viscosity, Types of Fluids and Fluid flows, Continuity and	
IV	Bernoulli's equations.	CO4
	MEASUREMENT OF PRESSURE AND FLOW: Pascal's law for pressure	CO4
	at a point, pressure variation in a fluid at rest, Absolute, gauge, Atmospheric	
	and vacuum pressures, Simple Manometers- Piezometer, U-tube and	
	Differential manometers, Venture meter and Orifice meter. (13 hrs)	
	IMPACT OF JETS: Impulse momentum equation, Impact of Jet on stationary	
	and moving vanes (flat and curved).	
	HYDRAULIC TURBINES: Essential elements of a hydroelectric power plant,	
	head and efficiencies of hydraulic turbines, Classification of turbines, Working	
\mathbf{V}	principle, Efficiency calculation and Design principles for Pelton Wheel, Francis	CO5
	and for Kaplan turbines.	
	PUMPS: Types of pumps, main components and working principle of centrifugal	
	and reciprocating type pumps (theory part only), Submersible pump working.	
	(13 hrs)	
A du	anced tonics in this course. Submersible nump working	

Advanced topics in this course: Submersible pump working

Course O	Course Outcomes						
Upon succ	essful completion of the course, the student will be able to						
CO1	Explain the fundamental concepts of Thermodynamics and also apply the laws of						
	thermodynamics to cycles, cyclic devices. {Apply level, KL3}						
CO2	Understand about the working of IC engines and gas turbine plants including its						
	performance evaluation. {Apply level, KL3}						
CO3	Analyze the energy transfers and transformations while steam is flowing through the						
	blades of steam turbine. {Analyze level, KL4}						
CO4	Understand about fluid properties and also apply the Bernoulli's theorem for						
	flowing fluids. {Apply level, KL3}						
CO5	Compute the performance of hydraulic turbines and also understand working of the						
	hydraulic pumps. {Apply level, KL3}						

Learning Resources

Text books:

1. Thermal Engineering by Mahesh Rathore, McGraw-Hill, 2010.

2. Hydraulics and Fluid mechanics including Hydraulic machinery by MODI and SETH, Standard Book House Publications, 2019.

Reference books

- 1. I.C. Engines by V. Ganesan, McGraw-Hill,4th edition.
- 2. Thermal Engineering by RK Rajput, Lakshmi Publications, 2010.
- 3. Fluid Mechanics and Hydraulic Machines by R.K.Rajput, Lakshmi Publications, Sixth Edition
- 4. "Fluid Mechanics" by Victor. L. Streeter & E. Benjamin Wylie, McGraw-Hill, Indian edition.

e- Resources & other digital material

1. <u>https://nptel.ac.in/courses/112/105/112105171/</u>

- 2. <u>https://nptel.ac.in/courses/112/105/112105183/</u>
- 3. https://nptel.ac.in/courses/105/101/105101082/
- 4. https://nptel.ac.in/courses/105/103/105103095/
- 5. http://nptel.ac.in/courses/112105123/
- 6. http://nptel.ac.in/courses/112108148/

Micro-Syllabus

Unit-1:

BASIC CONCEPTS OF THERMODYNAMICS: Thermodynamic System, Surrounding, Boundary, Universe, Control Volume, Control Surface, Classes of Systems, State, Thermodynamic Properties, Process and Cycles, Thermodynamic Equilibrium, Reversibility, Quasi static Process.

ZEROTH LAW OF THERMODYNAMICS: Equality of temperature.

FIRST LAW OF THERMODYNAMICS: Statement, Internal energy, Flow work, The Steady Flow Process-Steady Flow Energy Equation, simple Problems.

SECOND LAW OF THERMODYNAMICS: Kelvin-Planck & Clausius Statements of Second law of Thermodynamics, Differences between reversible and Irreversible Process, Carnot Cycle and its specialties.

Unit	Module	Module Micro content						
1a.or 2a. Basic Concepts of Thermodynamics & Zeroth Law of	Basic Concepts of Thermodynamics	Thermodynamic System, Surrounding, Boundary, Universe, Control Volume, Control Surface, Classes of Systems. State, Thermodynamic Properties, Process and Cycles. Thermodynamic Equilibrium,Reversibility, Quasi static Process.						
Thermodynamics	Zeroth Law of Thermodynamics	Zeroth Law of Thermodynamics-Statement with Examples.						
1b.or 2b.FirstLawofThermodynamics&SecondLawof	First Law of Thermodynamics	Statement, Internal energy, Simple Problems on Internal energy. Flow work,The Steady Flow Process-Steady Flow Energy Equation. Simple Problems on Steady Flow Energy Equation						
Thermodynamics	Second Law of	Kelvin-Planck & Clausius Statements.						

Thermodynamics	Differences	between	reversible	and	Irreversible
	Process.				
	Carnot Cycle	e and its sp	pecialties.		

Unit-2:

AIR STANDARD CYCLES: Otto, Diesel and Dual cycles, its comparisons, Brayton Cycle.

I. C. ENGINES: Classification, Working principles, Valve and Port Timing Diagrams, Engine systems- fuel injection, carburetion, ignition, cooling and lubrication – Parameters of performance, Determination of Frictional Power & Indicated Power, Engine performance evaluation.

GAS TURBINES: Simple gas turbine plant, Classification, Analysis of closed and open cycle plants, Applications, Performance parameters, Basic Problems.

Unit	Module	Micro content				
		Otto, Diesel and Dual cycles.				
3a.or 4a.	Air Standard Cycles	Comparisons of Otto, Diesel and Dual cycles				
Air Standard		Brayton Cycle				
&		Classification, Working principles				
I. C. Engines	I. C. Engines	Valve and Port Timing Diagrams				
		Engine systems- carburetion, fuel injection,				
		ignition, cooling and lubrication.				
		Parameters of performance, Determination of Frictional Power & Indicated Power.				
	I. C. Engines	Engine performance evaluation.				
3b. or 4b. I. C. Engines		Simple problems on performance of IC Engines.				
&		Simple gas turbine plant, Classification.				
Gas Turbines		Analysis of closed and open cycle plants,				
	Gas Turbines	Applications				
		Performance parameters, Simple Problems on				
		open cycle.				

Unit-3:

STEAM TURBINES: Working Principle, Classification, Simple Impulse Turbine, Vector diagrams of velocities, Combined Velocity diagram, Work done on the blade, Axial Thrust, Blade efficiency, stage efficiency, overall efficiency, Effect of blade friction on velocity diagram, simple problems on Impulse turbine, Compounding of Impulse Turbine, Reaction Turbine, Velocity Diagram for Reaction Turbine, Degree of Reaction (only theory Part on reaction Turbines).

Unit	Module	Micro con			
5a. or 6a.	Steam Turbines	Working	Principle,	Classification,	Simple

Steam Turbines		Impulse Turbine.
		Vector diagrams of velocities, Combined
		Velocity diagram.
		Work done on the blade, Axial Thrust.
		Blade efficiency, stage efficiency, overall
		efficiency.
		Effect of blade friction on velocity diagram.
		Simple problems on Impulse turbine.
5h or 6h		Compounding of Impulse Turbine.
Steam Turbines	Steam Turbines	Reaction Turbine, Velocity Diagram for
Steam Turbines		Reaction Turbine.
		Degree of Reaction. (Only theory on Reaction
		Turbines)

Unit-4:

FUNDAMENTALS OF FLUID MECHANICS: Definition of fluid, differences between a solid and fluid, physical properties of fluids- Density, Specific Weight, Specific gravity, viscosity, Types of Fluids and Fluid flows, Continuity and Bernoulli's equations.

MEASUREMENT OF PRESSURE AND FLOW: Pascal's law for pressure at a point, pressure variation in a fluid at rest, Absolute, gauge, Atmospheric and vacuum pressures, Simple Manometers- Piezometer, U-tube and Differential manometers, Venture meter and Orifice meter.

Unit	Module	Micro content				
		Definition of fluid, Differences between a solid and fluid.				
7a. or 8a. Fundamentals of	Fundamentals of Fluid Mechanics	Physical properties of fluids- Density, Specific Weight, Specific gravity, viscosity, Simple Problems.				
Fluid Mechanics		Types of Fluids and Fluid flows.				
		Continuity and Bernoulli's equations,Simple				
		Problems				
		Pascal's law for pressure at a point, Pressure				
		variation in a fluid at rest, Simple problems				
7b. or 8b.		Absolute, gauge, Atmospheric and vacuum				
Measurement of	Measurement of Pressure	pressures, Simple Problems.				
Pressure and	and Flow	Simple Manometers- Piezometer, U-tube and				
Flow		Differential manometers, Simple Problems .				
		Venture meter and Orifice meter, Simple				
		Problems.				

Unit-5:

IMPACT OF JETS: Impulse momentum equation, Impact of Jet on stationary and moving vanes (flat and curved).

HYDRAULIC TURBINES:Essential elements of a hydroelectric power plant, head and efficiencies of hydraulic turbines, Classification of turbines, Working principle, Efficiency calculation and Design principles for Pelton Wheel, Francis and for Kaplan turbines.

Unit	Module	Micro content				
9a.or 10a.	Lucres of a feature	Impulse momentum equation.				
Impact of Jets	Impact of Jets	Impact of Jet on stationary and moving vanes				
		(flat and curved), Simple problems.				
		Essential elements of a hydroelectric power				
Oh on 10h		plant				
90.0f 100.	Hydraulic Turbines	Head and efficiencies of hydraulic turbines				
Turbinos		Classification of turbines, Working principles.				
1 ut Diffes		Efficiency calculation and Design principles for				
		Pelton Wheel, Francis and for Kaplan turbines.				

Course O	utcomes
Upon succ	essful completion of the course, the student will be able to
CO1	Explain the fundamental concepts of Thermodynamics and also apply the laws of
	thermodynamics to cycles, cyclic devices. {Apply level, KL3}
CO2	Understand about the working of IC engines and gas turbine plants including its
	performance evaluation. {Apply level, KL3}
CO3	Analyze the energy transfers and transformations while steam is flowing through the
	blades of steam turbine. {Analyze level, KL4}
CO4	Understand about fluid properties and also apply the Bernoulli's theorem for
	flowing fluids. {Apply level, KL3}
CO5	Compute the performance of hydraulic turbines and also understand working of the
	hydraulic pumps. {Apply level, KL3}

Learning Resources

Text books:

1. Thermal Engineering by Mahesh Rathore, McGraw-Hill, 2010.

2. Hydraulics and Fluid mechanics including Hydraulic machinery by MODI and SETH, Standard Book House Publications, 2019.

Reference books

- 1. I.C. Engines by V. Ganesan, McGraw-Hill,4th edition.
- 2. Thermal Engineering by RK Rajput, Lakshmi Publications, 2010.
- 3. Fluid Mechanics and Hydraulic Machines by R.K.Rajput, Lakshmi Publications, Sixth Edition

4. "Fluid Mechanics" by Victor. L. Streeter & E. Benjamin Wylie, McGraw-Hill, Indian edition.

e- Resources & other digital material

5. <u>https://nptel.ac.in/courses/112/105/112105171/</u>

6. <u>https://nptel.ac.in/courses/112/105/112105183/</u>

- 7. https://nptel.ac.in/courses/105/101/105101082/
- 8. https://nptel.ac.in/courses/105/103/105103095/
- 5. http://nptel.ac.in/courses/112105123/
- 6. http://nptel.ac.in/courses/112108148/

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1	3	3	1	-	-	2	-	-	-	-	-	1	2	2
CO2	3	3	1	-	-	2	1	-	-	-	-	1	2	2
CO3	3	3	1	-	-	2	-	-	-	-	-	1	2	2
CO4	3	3	1	-	-	2	-	-	-	-	-	1	2	2
CO5	3	3	1	-	-	2	-	-	-	-	-	1	2	2

II-Year-II Semester PC2201

POWER SYSTEMS-1

L	Т	Р	С
3	0	0	3

PRE-REQUISITES: 1) Basic Circuit Analysis

Course objectives: The student should be able to

- 1. study the principle of operation of hydro and thermal power stations.
- 2. study the principle of operation of nuclear, gas, diesel power stations and nonconventional energy sources.
- 3. compute transmission line parameters and understand the concepts of GMD/GMR.
- 4. know the working of substation equipment and to calculate voltage and power loss in distribution systems.
- 5. study different types of load curves and tariffs applicable to consumers.

Syllabus			
Unit	Contents		
No		CO	
	Hydel and Thermal Power Plants		
	Hydro Electric Power Station: Principle of operation, Schematic arrangement		
т	& its components, Selection of site, Advantages and Disadvantages. (05 hrs)	CO1	
1	Thermal Power Station (Steam): Principle of operation, Schematic	COI	
	arrangement & its components, Selection of site, Efficiency, Advantages and		
	Disadvantages. (06 hrs)		
	Nuclear, Gas, Diesel Power Plants and Non-conventional Energy Sources		
	Nuclear Power Station: Principle of operation, Schematic arrangement & its		
	components, Selection of site, working of BWR, PWR, FBR. (07 hrs)		
II	Gas and Diesel Power Stations: Principle of operation and Equipment (Block	CO2	
	diagram approach only). (02 hrs)		
	Non-conventional Energy Sources: Working principle of solar, wind, geo		
	thermal and tidal power stations (Elementary treatment only). (04 hrs)		
	Transmission Line Parameters		
	Types of conductors, calculation of resistance, inductance and capacitance of		
III	single phase and three phase lines with symmetrical and unsymmetrical spacing,	CO3	
	transposition, bundled conductors, concept of GMD and GMR, effect of earth on		
	capacitance, skin and proximity effects, Numerical Problems. (12 hrs)		
	Substations and Distribution Systems		
	Substations: Classification, Equipment and its location, Layout of 33/11 kV		
w	substation. (06 hrs)	CO4	
1 V	Distribution Systems: Classification, Design features, Voltage drop and power	04	
	loss calculations, Comparison between DC and AC distribution systems,		
	Numerical Problems. (06 hrs)		
N/	Economics aspects of Power Generation and Tariff	CO5	
v	Economic aspects of Power Generation: Loadcurve, load duration, integrated	005	

load duration curves and mass curve, connected load, maximum demand, demand factor, load factor, diversity factor, plant capacity factor, plant use factor, utilization factor, base and peak load plants, Numerical problems. (06 hrs) **Tariff:** Costs of generation and its division, objectives, characteristics, classification, Numerical problems. (06 hrs)

Advanced topics in this course:

Powering A Generation: Generating Electricity using Fossil-fuelled plants, Cogeneration, Combined-cycle and Biomass plants, Geothermal plants, and Decentralized generation. (Elementary treatment only)

Advanced Transmission Technologies: High-temperature super conducting technology, Advanced composite conductors. (Elementary treatment only)

New Technologies for Electric power Distribution Systems: Concept of Intelligent Substations (Elementary treatment only).

Tariff structure design process: Identification of tariff structures, tariff constraints (Elementary treatment only)

	Course Outcomes		
Upon	Upon successful completion of the course, the student will be able to		
CO1	Understand the working of hydro and thermal power plants{Understand level, KL2}		
CO2	Explain the working of nuclear, gas, diesel power plants and non-conventional energy		
	sources.{Apply level, KL3}		
CO3	Analyze transmission lines parameters {Analyze level, KL4}		
CO4	Evaluate the performance of AC and DC distribution systems. { Evaluate level, KL5 }		
CO5	Analyze the different load curves and tariff methods. {Apply level, KL4}		

	Learning Resources	
Text b	ooks:	
1.	A text book on Power System Engineering by M.L. Soni, P.V.Gupta, U.S. Bhatnagar and	
	A. Chakrabarti, Dhanpat Rai & Co Pvt. Ltd.	
2.	Generation, Distribution and Utilization of Electric Energy by C.L.Wadhawa, New Age	
	International Private Limited.	
Reference books		
1.	Electrical power systems by C.L.Wadhwa, New Age International (P) Ltd, Publishers,	
	1998.	
2.	Electrical Power Distribution Systems by V. Kamaraju, TMH.	
3.	Elements of Electrical Power Station Design by M.V. Deshpande, PHI.	
4.	Modern Power System Analysis by I.J.Nagarath and D.P.Kothari, Tata	
	McGraw Hill, 2ndEdition	
e- Resources & other digital material		
4		

- 1. https://nptel.ac.in/courses/108/102/108102047/
- 2. https://www.coursera.org/learn/electric-power-systems

- 3. https://www.classcentral.com/course/electric-power-systems-12053#
- 4. https://pdhonline.com/courses/e104a/e104a_new.htm
- 5. https://emp.lbl.gov/sites/all/files/advanced-transmission-technologies.pdf
- 6. https://www.hitachi.com/rev/pdf/2002/r2002_04_106.pdf
- http://regulationbodyofknowledge.org/wpcontent/uploads/2013/03/NERA_Electricity_Tariff_Structure.pdf

Micro Syllabus

Unit – 1: Hydel and Thermal Power Plants

Hydro Electric Power Station: Principle of operation, Schematic arrangement & its components, Selection of site, Advantages and Disadvantages. (05 hrs)

Thermal Power Station (Steam): Principle of operation, Schematic arrangement & its components, Selection of site, Efficiency, Advantages and Disadvantages. (06 hrs)

Unit No	Module	Micro content
		Principle of operation (Working),
1a		Schematic arrangement (Diagram),
Hydro Electric	Hydro Electric Power Station	Factors to be considered for selection of site,
Power Station		Equipment used and its operation,
		Advantages and Disadvantages.
	Thermal Power Station (Steam)	Principle of operation (Working),
1h Thormal		Schematic arrangement (Diagram),
Dowor Station		Factors to be considered for selection of site,
(Steem)		Efficiency (Formula orientation),
(Steam)		Equipment used and its operation,
		Advantages and Disadvantages.

Unit-2:Nuclear, Gas, Diesel Power Plants and Non-conventional Energy Sources

Nuclear Power Station: Principle of operation, Schematic arrangement & its components, Selection of site, working of BWR, PWR, FBR. (07 hrs)

Gas and Diesel Power Stations: Principle of operation and Equipment (Block diagram approach only). (02 hrs)

Non-conventional Energy Sources: Working principle of solar, wind, geo thermal and tidal power stations (Elementary treatment only). **(04 hrs)**

Unit No	Module	Micro content
	Nuclear Power Station	Principle of operation (Working),
• • • •		Schematic arrangement (Diagram),
2a. Nuclear		Factors to be considered for selection of site,
Power Station		Equipment used and its operation,
		Working of BWR (Diagram and its operation,
		Advantages and Disadvantages)

		Working of PWR (Diagram and its operation, Advantages and Disadvantages) Working of FBR (Diagram and its operation,
		Advantages and Disadvantages)
2b. Gas and Diesel Power Stations,	Gas and Diesel Power Stations	Principle of operation (Working), Equipment used and its operation (Block diagram approach only).
conventional Energy Sources	Non-conventional Energy Sources	Working principle of solar, wind, geo thermal and tidal power stations (Elementary treatment only).

Unit-3:Transmission Line Parameters

Types of conductors, calculation of resistance, inductance and capacitance of single phase and three phase lines with symmetrical and unsymmetrical spacing, transposition, bundled conductors, concept of GMD and GMR, effect of earth on capacitance, skin and proximity effects, Numerical Problems. (12 hrs)

Unit No	Module	Micro content
		Types of conductors,
		calculation of resistance,
2.		Line Inductance& Capacitance
Ja. Transmission	Transmission Line	Magnetic Field Intensity due to a Long Current
I ransmission I ino Doromotors		Carrying Conductor
(Theory &	$\mathbf{D}_{\mathbf{D}}$	Inductance of Two-Wire Transmission Line
(Theory & Derivation)	Derivation)	Flux Linkages of One Conductor in a Group of
Derivation)		Conductors
		Inductance of 3- Unsymmetrically Spaced
		Transmission Line
		Composite Conductors
		Inductance of Composite Conductors
		Inductance of Double Circuit 3- Line
2h		Concept of GMD & GMR
JU. Transmission	Transmission Line	Bundled Conductors
I ino Paramotors	Parameters	Skin and Proximity Effect
(Calculations &	(Calculations &	Two Infinite Lines of Charge
Problems)	Problems)	Capacitance of a 1- Transmission Line
T TODICIIIS)		Capacitance of a 3-phase, unsymmetrical spaced
		transmission line
		Capacitance of a Double Circuit Line
		Effect of Earth on the Capacitance of Conductors

Unit-4:Substations and Distribution Systems

Substations: Classification, Equipment and its location, Layout of 33/11 kV substation. (**06 hrs**) **Distribution Systems:** Classification, Design features, Voltage drop and power loss calculations, Comparison between DC and AC distribution systems, Numerical Problems. (**06 hrs**)

Unit No	Module	Micro content
		Factors to be considered for selection of site,
		Classification based on service requirement
		Transformer substations
		Switching substations
		Synchronous substations
		Frequency change substations
	Factors & Classification	Converting substations
		Industrial substations
		Classification based on design
		Indoor substations
		Outdoor substations
		Underground substations
4 a.		\succ Pole mounted and plinth mounted
Substations		substations
~		Equipment used and its operation only
		Bus-bars
		Insulators
	Equipment and Layout	Isolating switches
		Circuit breakers
		Power transformers
		Instrument transformers
		Protective relays
		Metering and indicating instruments
		Other auxiliary equipment
		Layout of 33/11 kV substation (Diagram and
		arrangement of equipment)
		Classification based on tune of surrent tune of
		construction type of service number of wires
		scheme of connection
4b. Distribution	Distribution Systems	Design features
Systems		AU distribution (i.e. primary and secondary
		distribution systems)
		DC distribution (Elementary treatment only)

Explanation about Radial, Ring main and
Interconnected systems (Layout, Working,
Advantages, Disadvantages)
Voltage drop and power loss calculations in a
distributor for the following cases (Derivation and
numerical problems for AC and DC systems)
feeding from one end
\succ feeding from both ends (Equal and
Unequal voltages)
feeding from center
ring mains
Comparison between DC and AC distribution
systems.

Unit-5:Economics aspects of Power Generation and Tariff

Economic aspects of Power Generation: Loadcurve, load duration, integrated load duration curves and mass curve, connected load, maximum demand, demand factor, load factor, diversity factor, plant capacity factor, plant use factor, utilization factor, base and peak load plants, Numerical problems. (**06 hrs**)

Tariff: Costs of generation and its division, objectives, characteristics, classification, Numerical problems. **(06 hrs)**

Unit No	Module	Micro content
		Loadcurve,
		Load duration curve,
		Integrated load duration curves
		Mass curve
		Explanation and numerical problems on
5a.		connected load,
Economic	Economic aspects of	maximum demand,
aspects of Power	Power Generation	demand factor,
Generation		➢ load factor,
		diversity factor,
		plant capacity factor,
		plant use factor,
		utilization factor,
		base and peak load plants
		Costs of generation and its division (i.e. Fixed,
		Semi-fixed and Variable costs)
5b.	Tariff	Objectives of tariff,
Tariff	Tarin	Characteristics,
		Classification
		Simple tariff

Flat rate tariff
Block rate tariff
➤ Two part tariff
Maximum demand tariff
Power factor tariff
KVA maximum demand tariff
• Sliding scale tariff
• KW and KVAr tariff
> Three part tariff
1

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Understand the working of hydro and thermal power plants {Understand level, KL2}
CO2	Explain the working of nuclear, gas, diesel power plants and non-conventional energy
	sources.{Apply level, KL3}
CO3	Analyze transmission lines parameters {Analyze level, KL4}
CO4	Evaluate the performance of AC and DC distribution systems. {Evaluate level, KL5}
CO5	Analyze the different load curves and tariff methods. {Apply level, KL4}

Text books:

- 1. A text book on Power System Engineering by M.L. Soni, P.V.Gupta, U.S. Bhatnagar and A. Chakrabarti, Dhanpat Rai & Co Pvt. Ltd.
- 2. Generation, Distribution and Utilization of Electric Energy by C.L.Wadhawa, New Age International Private Limited.

Reference books

- 1. Electrical power systems by C.L.Wadhwa, New Age International (P) Ltd, Publishers, 1998.
- 2. Electrical Power Distribution Systems by V. Kamaraju, TMH.
- 3. Elements of Electrical Power Station Design by M.V. Deshpande, PHI.
- 4. Modern Power System Analysis by I.J.Nagarath and D.P.Kothari, Tata McGraw Hill, 2ndEdition

CO-PO Mapping :

			0											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-	PSO-
													1	2
CO1	3													
CO2	3												1	
CO3	2	1												
CO4	2	2	1											1
CO5	3	1												1

II-Year-II Semester
PC2202ELECTRICAL MACHINES-IIPDF DEOLUSITES: 1) Electrical Machines I

L	Т	Р	С
3	1	0	3

PRE-REQUISITES: 1) Electrical Machines-I

Course objectives: The student should be able to

- 1. Understand the principle of operation and performance of 3-phase induction motor.
- 2. Quantify the starting and speed control of induction motor.
- 3. Study the mechanism of torque producing and starting methods of a single-phase Induction Motor.
- 4. Understand the Principle, Voltage Regulation and Parallel operation of synchronous generator.
- 5. Understand the operation, performance and starting methods of synchronous motor.

	Syllabus	
Unit No	Contents	Mapped CO
Ι	3-phase Induction Motors (14 hrs) Constructional details of cage and wound rotor machines- production of rotating magnetic field - principle of operation -rotor EMF and rotor frequency - rotor current and pf at standstill and during running conditions - rotor power input, rotor copper loss and mechanical power developed and their interrelationship – equivalent circuit – phasor diagram- Numerical Problems.	CO1
п	 Characteristics of Induction Motors (06 hrs) Torque equation -expressions for maximum torque and starting torque - torque slip characteristics - crawling and cogging. Starting and testing methods of Induction Motors(08 hrs) No load and blocked rotor tests - circle diagram for predetermination of performance–Numerical Problems-Methods of starting (Auto-Transformer and DOL Starters)-Speed control using V/f method. 	CO2
III	Single Phase Motors (08 hrs) Single phase induction motors– Constructional features-Problem of starting– Double revolving field theory–Equivalent circuit. Starting methods of single phase Induction motor – shaded pole motors-A.C Series Motor.	CO3
IV	 Synchronous generator (10 hrs) Constructional features of non–salient and salient pole type–E.M.F equation— Voltage regulation by synchronous impedance method(EMF)– MMF method and Potier triangle method–phasor diagrams– Two reaction analysis of salient pole machines and phasor diagram. Parallel operation of synchronous Generators (07 hrs) Parallel operation with infinite bus and other alternators-Synchronizing power– 	CO4

CO5

Load sharing-Numerical problems.

Synchronous motor operation, starting and performance (10 hrs)

V Principle operation– Phasor diagram –Variation of current and power factor with excitation –Methods of starting –Hunting and its suppression methods-Synchronous condenser-Applications-Numerical problems.

Content Beyond the Syllabus:

- 1. Voltage regulation of synchronous generator by A.S.A Method (Modified MMF Method).
- 2. Brake test on Slip ring induction motor.
- 3. No load and Blocked rotor test on Single phase Induction Motor (Determination of Equivalent Circuit parameters of Single Phase Induction Motor).

	Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to						
CO1	Explain the operation and performance of three phase induction motor.						
	{Knowledge level, KL1}						
CO2	Analyse the torque-speed relation, starting and speed control of induction motor.						
	{ Analyze level, KL4}						
CO3	Describe the torque production and starting methods of single-Phase induction motor.						
	{Knowledge level, KL1}						
CO4	Empathise the Principle, Voltage Regulation and Parallel operation of synchronous						
	generator. {Understand level, KL2}						
CO5	Realize the operation, performance and starting methods of synchronous motor.						
	{ Analyze level, KL4}						

Learning Resources

Text books:

- 1. Theory & Performance of Electrical Machines by J.B.Guptha. S.K.Kataria& Sons.
- 2. Electrical Machines P.S. Bhimbra, Khanna Publishers.

Reference books:

- 1. Electrical Machines by D. P.Kothari, I.J. Nagarth, Mc Graw Hill Publications, 4th edition.
- 2. Electrical Machinery by AbijithChakrabarthi and Sudhipta Debnath, Mc Graw Hill education 2015.
- 3. Electrical Machinery Fundamentals by Stephen J Chapman McGraw Hill education 2010.
- 4. Electric Machinery by A.E. Fitzgerald, Charles kingsley, Stephen D.Umans, TMH.

e- Resources & other digital material

- 5. https://nptel.ac.in/courses/108/106/108106072/
- 6. https://nptel.ac.in/courses/108/105/108105131/
- 7. www.nptelvideos.in/2012/11/electrical-machines-ii.html
- 8. https://nptel.ac.in/courses/108/106/108106023/

Micro-Syllabus

Unit-1:3-phase Induction Motors (14 hrs)

Constructional details of cage and wound rotor machines- production of rotating magnetic field - principle of operation -rotor emf and rotor frequency - rotor current and pf at standstill and during running conditions - rotor power input, rotor copper loss and mechanical power developed and their interrelationship – equivalent circuit – phasor diagram- Numerical Problems.

Unit No	Module	Micro content			
1.a .3-phase	Construction of 3- phase induction motor	Constructional details of cage and wound rotor machines.			
construction and principle operation	Principle operation	Production of rotating magnetic field -principle of operation -rotor emf and rotor frequency- rotor current and pf at standstill and during running conditions.			
1.b.Losses and equivalent circuit of 3-phase Induction	Rotor power input and losses	Rotor power input, rotor copper loss and mechanical power developed and their interrelationship.			
Motors	Equivalent circuit	Equivalent circuit – phasor diagram- Numerical Problems.			

Unit-2: Characteristics of Induction Motors (06 hrs)

Torque equation -expressions for maximum torque and starting torque - torque slip characteristics - crawling and cogging.

Starting and Testing methods of Induction Motors (08 hrs)

No load and blocked rotor tests - circle diagram for predetermination of performance–Numerical Problems-Methods of starting (Auto-Transformer and DOL Starters)-Speed control using V/f method.

Unit No	Module	Micro content						
2.a.Characteristics	Torque equation	Torque equation -expressions for maximum torque and starting torque						
of Induction	Characteristics	Torque slip characteristics						
Motors	Crawling and Cogging	Crawling and Cogging						
2.b.Starting and	Tests	No load and blocked rotor tests						
Testing methods	Predetermination of	Circle diagram for predetermination of						
of Induction	performance	performance–Numerical Problems						
Motors:	Methods of starting	Auto-Transformer and DOL Starters- Speed						
	wiethous of starting	control using V/f method.						

Unit-3:Single Phase Motors (08 hrs)

Single phase induction motors– Constructional features-Problem of starting–Double revolving field theory–Equivalent circuit.

Starting methods of single phase Induction motor – shaded pole motors-A.C Series Motor.

Unit No	Module	Micro content

3.a.Single phase induction motors	Constructional features & Problem of starting	Constructional features- Problem of starting– Double revolving field theory–Equivalent circuit.
3.b.Starting methods of single phase Induction motor	Starting methods of single phase Induction motor	Starting methods of single phase Induction motor – shaded pole motors-A.C Series Motor.

Unit-4:Synchronous generator (10 hrs)

Constructional features of non-salient and salient pole type–E.M.F equation—Voltage regulation by synchronous impedance method– MMF method and Potier triangle method–phasor diagrams– Two reaction analysis of salient pole machines and phasor diagram.

Parallel operation of synchronous Generators(07 hrs)

Parallel operation with infinite bus and other alternators-Synchronizing power– Load sharing-Numerical problems.

Unit No	Module	Micro content					
	Constructional features	Constructional features of non-salient and salient pole type- E.M.F equation					
4.a.Synchronous generator	Voltage regulation	Voltage regulation by synchronous impedance method– MMF method and Potier triangle method-phasor diagrams					
	Two reaction analysis	Two reaction analysis of salient pole machines and phasor diagram.					
4.b.Parallel operation	Parallel operation&	Parallel operation with infinite bus and other					
of synchronous	Load sharing	alternators -Synchronizing power – Load					
Generators:	e	sharing-Numerical problems.					

Unit-5:Synchronous motor operation, starting and performance (10 hrs)

Principle operation– Phasor diagram –Variation of current and power factor with excitation – Methods of starting –Hunting and its suppression methods-Synchronous condenser-Applications-Numerical problems.

Unit No	Module	Micro content							
5.a.Synchronous	Dringinla of operation	Principle operation- Phasor diagram -Variation							
motor	Principle of operation	of current and power factor with excitation							
5.b.Methods of starting Synchronous motor	Methods of starting	Methods of starting –Hunting and its suppression methods - Synchronous condenser- Applications-Numerical problems.							

Course Outcomes: Upon successful completion of the course, the student will be able to

Course Outcomes

Upon s	Upon successful completion of the course, the student will be able to						
CO1	Explain the operation and performance of three phase induction motor.						
	{Knowledge level, KL1}						
CO2	Analyse the torque-speed relation, starting and speed control of induction motor.						
	{ Analyze level, KL4}						
CO3	Describe the torque production and starting methods of single-Phase induction motor.						
	{Knowledge level, KL1}						
CO4	Empathise the Principle, Voltage Regulation and Parallel operation of synchronous						
	generator. {Understand level, KL2}						
CO5	Realize the operation, performance and starting methods of synchronous motor.						
	{ Analyze level, KL4}						

Learning Resources

Text books:

1. Theory & Performance of Electrical Machines by J.B.Guptha. S.K.Kataria& Sons.

2. Electrical Machines – P.S. Bhimbra, Khanna Publishers.

Reference books:

- 1. Electrical Machines by D. P.Kothari, I.J. Nagarth, Mc Graw Hill Publications, 4th edition.
- 2. Electrical Machinery by AbijithChakrabarthi and Sudhipta Debnath, Mc Graw Hill education 2015.
- 3. Electrical Machinery Fundamentals by Stephen J Chapman McGraw Hill education 2010.
- 4. Electric Machinery by A.E. Fitzgerald, Charles kingsley, Stephen D.Umans, TMH.

e- Resources & other digital material

- 1. <u>https://nptel.ac.in/courses/</u>108/106/108106072/
- 2. https://nptel.ac.in/courses/108/105/108105131/
- 3. www.nptelvideos.in/2012/11/electrical-machines-ii.html
- 4. https://nptel.ac.in/courses/108/106/108106023/

CO-PO Mapping :

	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO1	PO1	PO1	PSO-1	PSO-2
	1	2	3	4	5	6	7	8	9	0	1	2		
CO1	2	2	-	-	1	-	-	-	-	-	-	1	2	2
CO2	2	3	-	-	1	-	-	-	-	-	-	-	2	-
CO3	3	1	-	-	1	-	-	-	-	-	-	1	1	2
CO4	2	3	-	-		-	-	-	-	-	-	-	2	1
CO5	2	1	-	-	1	-	-	-	-	-	-	-	1	-

II-Year-II Semester
PC2203CONTROL SYSTEMS

L	Т	P	С
3	1	0	3

PRE-REQUISITES: Laplace Transforms, Differential equations, Matrix Algebra, Basic Circuit Analysis.

Course Objectives: The student should be able to

- 1. To learn the mathematical modelling of electrical and mechanical systems
- 2. To analyze the time response of first and second order systems
- 3. To investigate the stability using Routh's stability criterion and Root locus
- 4. To investigate the stability using Bode plot and Nyquist plot
- 5. To formulate the state models and the concepts of Controllability and Observability

	Syllabus					
Uni	Contents	Mappe				
t No		d CO				
	Mathematical Modelling of Control Systems(12 hrs)					
	Introduction to control systems, Classifications - Open Loop and closed					
T	loop, transfer function, Mathematical Modelling	CO1				
_	ofelectricalnetworks, Translational and Rotational systems, analogous syste	001				
	ms, Transfer Function of DC & AC Servo motor- Synchros, Block					
	diagram algebra-Signal flow graph-Mason's gain formula					
	Time Response Analysis(12 h r s)					
	Standardtestsignals-Timeresponseoffirstandsecondordersystems-					
II	Timedomainspecifications - Steady state errors and error constants -	CO2				
	Effects of Feedback-Dominant Closed loop poles- P-PD-PI-PID					
	controllers.					
	Stability and Root locus Technique:(13 hrs)					
п	The concept of stability -					
T	Routh'sstabilitycriterionProcedureandproblems-	CO3				
-	limitationsofRouth'sstability-Rootlocusconcept-construction of root loci					
	-Effect of Adding open loop poles and Zeros on Root Loci					
	Frequency Response Analysis(16 hrs)					
T	Introduction - Frequency domain specifications- Bode diagrams- transfer					
v	function from the Bode Diagram-Polar Plots, Nyquist Stability criterion-					
•	relativestabilityanalysis-PhasemarginandGainmargin-					
	CharacteristicsofLag,LeadandLag-Leadcompensators.					
	State Space Analysis(12 hrs)					
v	Concepts of state, state variables, state equation and state model, state	C05				
•	space modeling of control systems, Solution of the state equation-State					
	Transition Matrix and its Properties-Transfer function from state model.					

Content Beyond the syllabus:

- The principle of argument which is useful for applications where we want to know the location of zeros and poles.
- Design procedure of Lead and Lag compensator
- MATLAB for control systems: Time domain analysis, stability analysis and state space analysis

	Course Outcomes
Upon	successful completion of the course, the student will be able to
CO1	Derive the transfer function using block diagram algebra and signal flow graph
	(Remember, Understand, and Apply)
CO2	Determine time response specifications of second order systems and Error constants
	(Understand, Apply and Analyze)
CO3	AnalyzestabilityusingRouth'sstabilitycriterionandtherootlocusmethod (Apply,
	Analyze)
CO4	Analyze the stability using Bode plot and Nyquist criterion (Understand, Apply,
	and Analyze)
CO5	Obtain the state models and understanding the concepts of controllability and
	observability (Understand, Apply)
	Learning Resources
Text	pooks:
1.	"Control Systems Engineering" by I.J.Nagarath and M.Gopal, 5 th Edition,
	New age International Publications.
2.	"Automatic control systems" by Benjamin C.Kuo, 2ndEdition, Prentice Hall of
	India.
Refer	ence books:
1	"Control Systems principles and design" by M.Gopal.4 th Edition
_	Tata McGraw Hill education PvtLtd.
2	. "Modern Control Engineering" by Kotsuhiko Ogata, Prentice Hall of
	India.
3	. "Control Systems" by Manik Dhanesh N, Cengage publications.
4	. "Control Systems Engineering" by S.Palani, Tata Mc Graw Hill
	Publications.
e- Res	sources & other digital material
1.	https://nptel.ac.in/noc/courses/noc20/SEM2/noc20-ee84/
2.	https://nptel.ac.in/noc/courses/noc18/SEM2/noc18-ee25/
3.	https://nptel.ac.in/noc/courses/noc19/SEM2/noc19-ee45/

Micro-Syllabus

Unit-1: Mathematical Modelling of Control Systems									
Introduction tocontrol systems, Classifications - Open Loop and closed									
loop,transferfunction,EffectsofFeed-Back, MathematicalModelling									
ofelectricalnetworks,	Translatio	nalandRotationalsyster	ns,anal	ogoussystems, Transfer					
Function of DC & AC Servo motor- Synchros, -Blockdiagramalgebra-									
Signalflowgraph-Mas	Signalflowgraph-Mason'sgainformula								
Unit No	Module		Micro o	content					
	Introduct	tion tocontrol	Concep	ot of system, control system					
	systems, Open Lo	classifications - op and closed loop	Classification as Open loop and closed loop						
			Differe system	nt examples of control					
			Effect of	of feedback on sensitivity,					
	Effectsof	Feed-Back	gain, ba	and width, noise, time					
1. Mathematica			constar	t and speed of response					
			Differential equations of simple						
l Modelling	Mathema	aticalModelling	RLC electrical networks						
of Control	withtin		Transla	tional and Rotational					
Systems			mechanical systems – analogous						
			systems - problems						
	Transfer F	Function of DC Servo	(armatu	re controlled and field					
	motor - A	C Servo motor- Synchro	controlled DC Servo motor –AC						
	transmitte	r and Receiver	Servo motor – Synchros-						
			derivations						
	Block dias	gram algebra	Block diagram reduction						
			techniq	ues and problems					
	Represent	ation by Signal flow	Repres	entation by Signal flow					
	graph - Re	eduction using Mason's	graph -	Reduction using Mason's					
	gain form	ula	gain for	rmula - problems					
Unit-2: TimeRespons	seAnalysi:	S:							
Standardtestsignals-1	imerespo	nseoffirstandsecondord	lersyste	ms-					
Timedomainspecifica	ttions -	Steady state error	rs and	i error constants –					
Unit No.	poles- F-I	Module		Mioro content					
				Impulse step romp and					
2. TimeResponse	Analysi	Standardtestsignals		narabolic signals					
S		Timeresponseoffirstar	ndseco	derivations					

	ndordersystems			
	Timedomainspecifications	Rise time, peak time, maximum over shoot, settling time -definitions and derivations - problems		
	Steady state errors and error constants	Definitions – derivations and problems		
	DominantClosedlooppoles-	Explanation on location of closed loop poles		
	P- PD -PI-PID controllers	Effects of controllers on time response		
Unit-3: StabilityandRootlocus	Technique:			
Theconceptofstability	-Routh'sstabilitycriterion	Procedureandproblems-		
limitationsofRouth'sstability-I	Rootlocusconcept-construction	of root loci –Effect of		
Adding open loop poles andZe	erosonRootLoci.			
Unit No	Module	Micro content		
	Theconceptofstability	Explanation of BIBO stability		
2 Stabilityand Pootlogus	Routh'sstabilitycriterion	Procedureandproblems limitationsofRouth'ssta bility		
Technique	Rootlocus	concept-construction of root loci – problems- Effect of Adding open loop poles andZerosonRootLoci		
Unit-4: Frequency Response A	Analysis:			
Introduction - Frequency doma	ain specifications- Bode diagram	ns- transfer function from		
theBodeDiagram-PolarPlots.N	yquistStabilitycriterion-relativ	estabilityanalysis-		
PhasemarginandGainmargin-C	haracteristicsofLag,LeadandL	ag-Leadcompensators.		
Unit No	Module	Micro content		
		Introduction to		
	Introduction	frequency verying		

	Introduction	frequency varying
		signals
4. Frequency Response	Frequency domain	Definitions and
Analysis	specifications	derivations - problems
		Procedure - problems
	Bode diagrams	transfer functionfrom
		theBodeDiagram

	PolarPlots	Procedure - problems				
	Pr					
		PhasemarginandGain				
	NyquistStabilitycriterion	margin				
		Relativestabilityanalys				
		is				
	Lag,LeadandLag-	Characteristics with				
	Leadcompensators.	derivations of transfer				
		functions only				
Unit-5: State Space Analysis:						
Concepts of	state, state	variables,				
stateequationandstatemodel,sta	tespacemodelingofcontrolsyste	ems,Solutionofthestatee				
quation-StateTransitionMatrix	andit'sProperties-Transferfunct	ionfromstatemodel				
Unit No	Module	Micro content				
	state, state variables	S, Concepts definitions				
	stateequationandstatemodel					
		Problems on finding				
	statespacemodelingofcontrols	state model from				
	stems	the given transfer				
	stems	function and electrical				
		circuits				
5. State Space Analysis	Solutionofthestateequation	Derivation - problems				
	StateTransitionMatrix	Derivation – problems				
	State HansitionWattix	-properties				
	Transferfunctionfromstatemo	d				
	el	Derivation - problems				
	ConceptsofControllabilityandC	Problems only				
	bservability	1 IOUICIIIS OIII y				

Course Upon s	POs, PSOs	K L	
CO1	Derive the transfer function using block diagram algebra and signal flo	РОЗ,	1 2
	wgraph (Remember, Understand, and Apply)	PSO2	1,5
CO2	Determine time response specifications of second order systems and E	PO1,	22
	rrorconstants (Understand, Apply and Analyze)	PSO2	2,3
CO3	$\label{eq:analyzestability} Analyze stability using Routh's stability criterion and the root locusm$	PO1,	1 2
	ethod (Apply, Analyze)	PSO2	1,2
CO4	AnalyzethestabilityusingBodeplotandNyquistcriterion (Understand,	PO2,	2,3

	Apply, and Analyze)	PSO2	
CO5	Obtain the state models and understanding the concepts of controllability	PO2,	1 2
	and observability (Understand, Apply)	PSO2	1,2

Learning Resources
Text books:
1. "Control Systems Engineering" by I.J.Nagarath and M.Gopal, 5 th Edition,
New ageInternationalPublications.
2. "Automatic control systems" by Benjamin C.Kuo, 2ndEdition, Prentice
Hall ofIndia.
Reference books:
1. "ControlSystemsprinciplesanddesign" by M.Gopal,4 th Edition ,
TataMcGrawHilleducationPvtLtd.
2. "ModernControlEngineering" byKotsuhikoOgata,PrenticeHallofIndia.
3. "ControlSystems" by ManikDhaneshN, Cengage publications.
4. "ControlSystemsEngineering" byS.Palani,TataMcGrawHillPublications.
e- Resources & other digital material
1. https://nptel.ac.in/noc/courses/noc20/SEM2/noc20-ee84/
2. <u>https://nptel.ac.in/noc/courses/noc18/SEM2/noc18-ee25/</u>
3. https://nptel.ac.in/noc/courses/noc19/SEM2/noc19-ee45/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3		-	-	-	-	-	-	-	-
CO2	3	2	2	2	-	1	-	-	-	-	-	1
CO3	3	2	3	2	-	1	-	-	-	-	-	1
CO4	2	2	2	2	1	1	-	-	-	-	-	1
CO5	3	2	1	1	I	-	-	-	-	-	-	-

II-Year-II SemesterTHERMAL AND HYDRO PRIMEES2201LMOVERS LAB

L	Т	Р	С
0	0	3	1.5

Prerequisite: -Nil-

COURSE OBJECTIVE: To impart practical knowledge on the performance evaluation methods of various internal combustion engines, flow measuring equipment and hydraulic turbines and pumps.

Note: To Conduct A Minimum Of 10 Experiments By Conducting A Minimum Of Five From Each Section.

LIST OF EXPERIMENTS:

SECTION A - THERMAL ENGINEERING LAB

- 1. I.C. Engines valve / port timing diagrams.
- 2. I.C. Engines performance test on 4 -stroke Diesel engine.
- 3. I.C. Engines performance test on 2-stroke petrol engine.
- 4. Evaluation of engine friction by conducting Morse test on 4-stroke multi cylinder petrol engine
- 5. Determination of FHP by retardation and motoring test on IC engine.
- 6. I.C. Engines heat balance on petrol / Diesel engines.
- 7. Study of boilers.

SECTION B – HYDRAULIC MACHINES LAB

- 1. Calibration of Venturimeter.
- 2. Calibration of Orifice meter.
- 3. Impact of jets on Vanes.
- 4. Performance Test on Pelton Wheel.
- 5. Performance Test on Francis Turbine.
- 6. Performance Test on Centrifugal Pump.
- 7. Performance Test on Reciprocating Pump.

COURSE OUTCOMES: After completion of the course , students are able to:

CO1:Compute the performance of the IC Engines for a given conditions and also draw the valve and port timing diagrams. (**Apply Level**)

CO2:Determine the frictional power by using the Morse test, retardation test and motoring test. **(Apply Level)**

CO3: Calibrate discharge measuring devices and **finding** discharge through the venture meter and the orifice meter. (**Apply Level**)

CO4:Analyze the performance of hydraulic machines. (Analyze Level)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1	3	3	-	2	-	2	-	-	3	-	-	-	2	1
CO2	3	3	-	2	-	2	-	-	3	-	-	-	2	1
CO3	3	3	-	2	-	2	-	-	3	-	-	-	2	1
CO4	3	3	-	2	-	2	-	-	3	-	-	-	2	1

CO-PO Mapping :

II-Year-II Semester
PC2202LELECTRICAL MACHINES-II LAB

ĺ	L	Т	P	С
	0	0	3	1.5

PRE-REQUISITES: 1) Electrical Machines-1 Theory

Preamble:Electrical Machines-II Lab provides the essential facilities to the students to augment their concepts about the fundamentals of rotating Asynchronous and Synchronous machines. The lab is equipped with three phase induction motors, synchronous generators, synchronous motorandSingle phase induction motor. The lab covers the determination of performance characteristics, speed control method of induction motor, voltage regulation of synchronous generator and v and inverted v curves of synchronous motor.

Course Objectives: The student should be able to

- 1. To control the speed of three phase induction motors.
- 2. To determine /predetermine the performance of three phase induction.
- 3. To determine /predetermine the performance of single phase induction.
- 4. To improve the power factor of single phase induction motor.
- 5. To predetermine the regulation of three–phase alternator by various methods, find Xd/ Xq ratio of alternator and asses the performance of three–phase synchronous motor.

LIST OF EXPERIMENTS: Any Ten of the following experiments are to be conducted:

- 1. Brake test on three phase Slip ring Induction Motor
- 2. No-load & Blocked rotor tests on three phase Slip ring Induction motor
- 3. Load test on single phase induction motor.
- 4. Equivalent circuit of single phase induction motor
- 5. Regulation of a three –phase alternator by synchronous impedance method
- 6. Regulation of a three –phase alternator by M.M.F method
- 7. Regulation of three-phase alternator by Potier triangle method
- 8. Determination of Xd and Xq of a salient pole synchronous machine
- 9. V and Inverted V curves of a three—phase synchronous motor.
- 10. Determination of efficiency of three phase alternator by loading with three phase induction motor.
- 11. Determination of sub transient direct axis (Xd'') and quadrature axis (Xq'') synchronous reactance of an alternator.
- 12. To perform parallel operation of two alternators.

List of Additional Experiments: Any of the two experiments are to be conducted

- 16. Brake test on three phase Squirrel cage Induction Motor.
- 17. Determination of the symmetrical impedances of a synchronous machine.
- 18. Speed control of induction motor by V/f method.

Course Outcomes: Upon successful completion of the course, the student will be able to

	Course Outcomes
CO1	Able to assess the performance of three phase induction motor. (Analyze)
CO2	Able to control the speed of three phase induction motor. (Remember and Understand)
CO3	Able to assess the performance of single phase induction motor. (Analyze)
CO4	Able to predetermine the regulation of three–phase alternator by various methods.
	(Evaluate)
CO5	Able to find the Xd / Xq ratio of alternator and asses the performance of three-phase
	synchronous motor. (Understand, Apply and Analyze).

Learning Resources

Text books:

- 1. Theory & Performance of Electrical Machines by J.B.Guptha. S.K.Kataria& Sons.
- 2. Electrical Machines P.S. Bhimbra, Khanna Publishers.

Reference books:

- 1. Electrical Machines by D. P.Kothari, I.J. Nagarth, Mc Graw Hill Publications, 4th edition.
- 2. Electrical Machinery by AbijithChakrabarthi and Sudhipta Debnath, Mc Graw Hill education 2015.
- 3. Electrical Machinery Fundamentals by Stephen J Chapman McGraw Hill education 2010.
- 4. Electric Machinery by A.E. Fitzgerald, Charles kingsley, Stephen D.Umans, TMH.

e- Resources & other digital material

1.https://nptel.ac.in/courses/108/105/108105017

2.https://nptel.ac.in/courses/103/102/108102146

3.www.nptelvideos.in/2012/11/electrical-machines-i.html

4.https://www.electrical4u.com/losses-in-dc-machine

CO-PO Mapping::

Mapping	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P01 1	P012	PS01	PSO2
C01	2	2	1	1	-	-	-	-	-	-	-	1	2	2
C02	2	2	1	1	-	-	-	-	-	-	-	-	-	-
C03	3	1	-	1	-	-	-	-	-	-	-	1	1	2
C04	2	3	-	1	-	-	-	-	-	-	-	1	2	2
C05	2	2	-	-	-	-	-	-	-	_	-	-	1	-

II-Year-II Semester
PC2204LCONTROL SYSTEMS LAB

L	Т	Ρ	С
0	0	3	1.5

Pre-Requisites: Control Systems, Electrical Machines

Preamble: Control Systems Lab consists of workstations equipped with an oscilloscope, digital multi-meter, DC,AC servomotor, synchros, DC position control and PID trainers. This lab also covers the computer tools such as MATLAB. The aim of this Control system laboratory is to provide sound knowledge in the basic concepts of design of control system, adequate knowledge in the time response and frequency responses of systems.

Course Objectives:

The main objectives are

- 1. Toimparthandsonexperiencetounderstandtheperformanceofbasiccontrolsystem componentssuchasmagneticamplifiers, D.Cservo motors and Synchros.
- 2. To understandtime responses of control system with and without controllers
- 3. Tounderstandfrequencyresponses of control system with and without compensators.

List of Experiments: Any 10 of the following experiments are to be conducted

- 1. Time response of Second order system
- 2. Characteristics of Synchros
- 3. EffectofP, PD, PI, PIDControlleronasecondordersystems
- 4. StudyofLagandleadcompensation-Magnitudeandphaseplot
- 5. Effect of feedback on DC servomotor
- 6. BodePlot, Root locus, Nyquist Plots for the transfer functions of systems up to 5th order using MATLAB
- 7. Potentiometer as error detector
- 8. TemperaturecontrollerusingPID
- 9. Characteristics of magnetic amplifiers
- 10. Characteristics of DC servomotor
- 11. State model using MATLAB
- 12. Transfer function of DC Motor

List of Additional Experiments: Any 2 of the following experiments are to be conducted

- 13. Programmable logic controller verification of truth tables of logic gates
- 14. Characteristics of AC servomotor
- 15. Determination of steady state error
- 16. Test for controllability and Observability using MATLAB

CourseOutcomes:

After the completion of the course the student should be:

No	Description	POs, PSOs	KL
CO1	Able to analyze the time response of a second order system	PO1, PSO2	1,3
CO2	Able to analyze the effect of P, PI,PD, PID controllers and Lag, Lead compensators	PO1, PSO2	2,3
CO3	Able to judge the stability in time and frequency domain	PO1, PSO2	1,2

Text books:

- 1. "Control Systems Engineering" by I.J.Nagarath and M.Gopal, 5thEdition, New ageInternationalPublications.
- 2. "Automatic control systems" by Benjamin C.Kuo, 2nd Edition, Prentice Hall ofIndia.

Reference books:

- 1. "ControlSystemsprinciplesanddesign" by M.Gopal,4thEdition TataMcGrawHilleducationPvtLtd.
- 2. "ModernControlEngineering" byKotsuhikoOgata,PrenticeHallofIndia.

e- Resources & other digital material

- 1. https://nptel.ac.in/noc/courses/noc20/SEM2/noc20-ee84/
- 2. https://nptel.ac.in/noc/courses/noc18/SEM2/noc18-ee25/
- 3. https://nptel.ac.in/noc/courses/noc19/SEM2/noc19-ee45/

CO-PO Mapping:

Mapping	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
C01	2	1	-	1	1	-	-	-	-	-	-	1	2	1
C02	2	1	1	1	1	-	_	_	_	-	1	1	1	1
C03	1	-	-	-	1	-	-	-	-	-	-	1	2	1

II-Year-II SemesterFUNDAMENTS OF MATLAB ANDSOC2201PSPICE

L	Т	Р	С
1	0	2	2

PRE-REQUISITES: Any computer programming (like C, C++ or Java) **Course Objectives:** The objective of the course is to

- 1. Create an environment to work with different software technologies.
- 2. Build confidence in writing programmes.
- 3. Make familiar about logical operations.
- 4. Provide a platform to know about modeling of components.
- 5. Become aware about the analysis of DC & AC circuits.

	Syllabus							
Unit	Contents	Mapped						
No		CO						
	Basics: (8 hrs)							
Ι	I Basic Data Types, Relational and Logical operators, conditional statements, Loop							
	Types							
	Matrices: (8 hrs)							
Π	Vectors operations, Matrix operations, Multi dimensional and Cell arrays, Colon Notation, Conversion of Numbers, combining Strings into a cell array.	CO2						
	M-file Scripts:(8 hrs)							
	Creating saving and running an M-file, creating and running of a function, Data							
III	import, Data Output, Basic plots , subplots, Bar charts and 3D plots, Algebra:-	CO3						
	Solving basic Equation-Expanding, factorization and simplification of algebraic							
	Equations.							
	PSpice for Circuit Analysis: (8 hrs)							
w	Introduction to PSpice, Description of circuit elements, nodes and sources, input							
1 V	and output variables, modeling of the above elements, DC analysis, AC analysis	04						
	and Transient Analysis.							
	PSpice for Electronic Devices and Circuits: (8 hrs)							
V	Diode model, BJT model, MOSFET model, IGBT model, SCR model,	CO5						
	Subroutines, diode rectifiers.							
List	of Experiments: practice any 5 programs (10 h)	rs)						
	1. Write a script for adding two matrixes.							
	2. Plot the following cosine function, $y = 2 \cos(x)$ in the interval 0 x 2.							
	3. Write a function file that converts temperature in degrees Fahrenheit (F) to	degrees						
	Centigrade (C).							
	4. Write a Program on 'for' loop with simple example.							
	5. Write a Program on 'While' condition with simple example.							
	6. Write a Program on 'If-else' with simple example.							
	7. Single phase half wave Rectifier with R load							
- 8. Single phase half wave Rectifier with RL load
- 9. Single phase Full wave Rectifier with R load
- 10. Single phase Full wave Rectifier with RL load

Course Outcomes

- **CO1** | Infer various logical operations.{**Apply level, KL3**}
- CO2 Recite different matrix and vector operations.{Understand level, KL5}
- CO3 Draw the graphs for analysis of data.{Analyze level, KL4}
- **CO4** Model circuit elements by distinguishing them AC and DC. {**Understand level, KL3**}
- CO5 | Simulate the given circuit and validate by conventional means. {Apply level, KL4}

Learning Resources

Text books:

- 1. D Hanselmanand B little field, "Mastering MATLAB 7", Pearson Education, 2005.
- 2. Y Kirani Singh and B BChaudhari, "MATLABProgramming", Prentice Hall of India.2007.

Reference books:

- 1. Muhammad H.Rashid,"Spice for Power Electronics and Electric Power", CRC Press 3rdEdition,2012.
- 2. AGilat, "MATLAB: An Introduction with Applications ", John Wiley and Sons, 2004.
- 3. StevenTKarris, "Introduction to Simulink with Engineering Applications", Orchard Publication, 2ndEdition, 2008.

e- Resources & other digital material

- 5. https://www.mathworks.com/matlabcentral/answers/index
- 6. www.tutorialspoint.com

Micro-Syllabus

Unit-1: Basics:	(8 hrs)
Overview, Environment, Basic Syntax, variable, Input and	Output commands, Basic Data Types,
Relational and Logical operators, conditional statements, Lo	pop Types.

Unit No	Module Name	Micro content
	Overview	Introduction
	Overview	Environment
1a.Basics		Basic Syntax
	Basic Syntax	variable
		Input and Output commands
1.b. Operators	Arithmetic operators	Basic Data Types
	Anumeue operators	Relational and Logical operators
	Decision Making	conditional statements

	statements	Loop Types					
Unit-2: Matrices: (8 hrs)							
Vectors operations	, Matrix operations, N	Iulti dimensional and Cell arrays, Colon Notation,					
Conversion of Numbers, combining Strings into a cell array.							
Unit No	Module Name	Micro content					
		Row and column vectors					
2a. Vector &	Vector operations	Addition and subtraction of vectors					
Matrix		Dot product					
operations		Deleting and adding Rows					
	Matrix operations	Addition and subtraction of matrix					
		Matrix multiplication					
		Array function					
2b.Arry& String	Array	Multi dimensional and Cell arrays					
	Colon Notation	Colon Notation					
	String	Conversion of Numbers					
		combining Strings into a cell array					
Unit–3: M–file Scr	ripts:(8 hrs)						
Creating saving an	d running an M-file, ci	reating and running of a function, Data import, Data					
Output, Basic plot	ts , subplots, Bar char	ts and 3D plots, Algebra:-Solving basic Equation-					
Expanding, factoriz	ation and simplification	of algebraic Equations.					
Unit No	Module Name	Micro content					
		Creating saving and running an M-file					
	Functions	creating and running of a function					
3a.Functions		creating of a Sub-function					
	Data import and	Data import					
	output	Data Output					
		Basic plots- subplots					
	Plotting	Bar charts					
3h Algebra		3D plots					
55.7 1150014		Solving basic algebraic Equations					
	algebra	Expanding algebraic Equations					

Unit-4: PSpice for Circuit Analysis: (8 hrs)

Introduction to PSpice, Description of circuit elements, nodes and sources, input and output variables, modeling of the above elements, DC analysis, AC analysis and Transient Analysis.

simplification of algebraic Equations

Unit No	Module Name	Micro content
4a. Description of	Description of circuit	Introduction to PSpice

circuit elements	elements	Description of circuit elements
		nodes and sources
		input and output variables
		DC analysis
4b. Analysis	Analysis	AC analysis
		Transient Analysis

Unit-5: PSpice for Electronic Devices and Circuits: (8 hrs) Diode model, BJT model, MOSFET model, IGBT model, SCR model, Subroutines, diode rectifiers.

U	nit No	Module Name	Micro content			
			Diode model			
5a.	Electronic	Electronic Desires	BJT model			
Device	es	Electronic Devices Models	MOSFET model			
		Widdens	IGBT model			
			SCR model			
5h	Flootropio	Electronic Circuits	Subroutines			
JU.	Sb. Electronic	Simulation	Half wave diode rectifiers with R and RL Loads			
Circuits		Sinulation	Full wave diode rectifiers with R and RL Loads			
Course Outcomes						
Upon s	Upon successful completion of the course, the student will be able to					
CO1	I Infer various logical operations. {Apply level, KL3}					
CO2	Recite different matrix and vector operations. {Understand level, KL5}					
CO3	Draw the graphs for analysis of data.{Analyze level, KL4}					
CO4	Model circuit elements by distinguishing them AC and DC. {Understand level, KL3}					
CO5	Simulate the given circuit and validate by conventional means. {Apply level, KL4}					

Learning Resources

Text books:

- 1. D Hanselmanand B little field, "Mastering MATLAB 7", Pearson Education, 2005.
- 2. Y Kirani Singh and B BChaudhari, "MATLABProgramming", Prentice Hall of India, 2007.

Reference books:

- 1.Muhammad H.Rashid, "Spice for Power Electronics and Electric Power", CRC Press 3rdEdition, 2012.
- 2.AGilat, "MATLAB: An Introduction with Applications ",John Wiley and Sons,2004.
- 3.StevenTKarris, "Introduction to Simulink with Engineering Applications", Orchard Publication, 2ndEdition, 2008.

e- Resources & other digital material

- 1. https://www.mathworks.com/matlabcentral/answers/index
- 2. www.tutorialspoint.com

CO						PON	Numbe	r] Nu	PSC 1mb) er
INO.	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1					1						2				
CO2					3						2			1	
CO3					3						2			1	
CO4				1							2				
CO5				1							2				

CO-PO Mapping:

II-Year-II Semester
SOC2201SOLAR PANEL INSTALLATION

L	Т	Р	С
1	0	2	2

PRE-REQUISITES: 1) Basic Circuit Analysis

Course objectives: The student should be able to

- 1. Study the Principle of solar energy conversion
- 2. Study various PV performance measure terminologies,
- 3. KNOW about manufacturing of PV cells & sizing aspects of PV systems.
- 4. Know about PV system components and apply them in installation practices,& associated trouble shootings.
- 5. study PV system applications & associated safety measures

	Syllabus				
Unit	Contents	Mapped			
No		CO			
т	SOLAR CELL FUNDAMENTALS(11 hrs)Principle of solar energy conversion, Photovoltaic effect, Semiconductor	CO1			
I	properties, energy levels, basic equations. Solar cell structure, parameters of solar cell.				
	PV MODULE PERFORMANCE(13 hrs)				
п	Solar PV modules & arrays, I-V &P-V characteristics, maximum power point	CO2			
11	,series parallel combination, cell efficiency, fill factor, role of bypass & blocking	02			
	diode, factors affecting output of a solar cell.				
	MANUFACTURING OF PV CELLS & DESIGN OF PV SYSTEMS				
	(12 hrs)				
ш	commercial solar cells - Production process of single crystalline silicon cells, CO 3				
	multi crystalline silicon cells, amorphous silicon, cadmium telluride, copper				
	indium gallium diselenide cells. Design of solar PV systems, cost estimation,	tion,			
	various aspects, system simulation tools.				
	SOLAR PV SYSTEMS INSTALLATIONS & TROUBLE SHOOTING				
	(12 hrs)				
TT 7	Classification - Central Power Station System, Distributed PV System, Stand alone	004			
1 V	PV system, grid interactive PV System, small system for consumer applications,	004			
	nybrid solar PV system, concentrator solar photovoltaic. System components - PV				
	arrays, inverters, batteries, charge controllers, net metering, PV array installation,				
	operation, costs, reliability. Troubleshooting of PV system components.				
	PV SYSTEM APPLICATIONS & SAFETY (12				
V	IIIS) Building integrated photovoltaic units grid connected control power stations	CO5			
	stand-alone devices for distributed power supply in remote and rural areas				

Outlook for the Indian PV industry& challenges, Applications: solar home system, solar cars, Solar Charger, aircraft, space solar power satellites. Socio-economic and environmental merits of photovoltaic systems safety in Installation of solar PV systems.

Course Outcomes

Upon successful completion of the course, the student will be able to

CO1	Understand t	he principle	of direct solar energy	conversion to power	using PV
------------	---------------------	--------------	------------------------	---------------------	----------

- **CO2 Contrast** the performance measures of PV
- **CO3** Infer on various solar cells & design aspects of solar PV
- **CO4 Identify** various PV components & construct few systems
- **CO5** | **Develop** ideas for working on solar PV systems & associated safety practices

	Learning Resources
Text b	books:
1.	Chetan Singh Solanki., Solar Photovoltaic: "Fundamentals, Technologies and
	Application", PHI Learning Pvt., Ltd., 2009.
2.	Jha A.R., "Solar Cell Technology and Applications", CRC Press, 2010.
3.	John R. Balfour, Michael L. Shaw, SharlaveJarosek., "Introduction to Photovoltaics",
	Jones & Bartlett Publishers, Burlington, 2011.
Refere	ence books:
1.	Chetan Singh Solanki "Solar PV technology and system", PHI learning private limited,
	2015.
2.	Luque A. L. and Andreev V.M., "Concentrator Photovoltaic", Springer, 2007.
3.	Partain L.D., Fraas L.M., "Solar Cells and Their Applications", 2nd ed., Wiley, 2010.
4.	S.P. Sukhatme, J.K.Nayak., "Solar Energy", Tata McGraw Hill Education Private
	Limited, New Delhi, 2010.
5.	R.K Pachauri "From Sun light to Electricity" TERI, 15th Reprint, 2013.
e- Res	ources & other digital material
https://	/www.nrel.gov
https://	/nise.res.in/
http://v	www.seriius.org/
https://	/nptel.ac.in/courses/117/108/117108141/#
https://	/onlinecourses.nptel.ac.in/noc20_ee57/preview

Micro-Syllabus

UNIT 1:SOLAR CELL FUNDAMENTALS

(11 hrs)

Principle of solar energy conversion, Photovoltaic effect, Semiconductor properties, energy levels, basic equations. Solar cell structure, parameters of solar cell.

Vint ivo violate violate view view view view view view view vie	Unit No	Module	Micro content
---	---------	--------	---------------

1	solar energy conversion	Principle of solar energy conversion (Working),
conversion		Photovoltaic effect
		Semiconductor properties
		energy levels
1.b. Solar cell	Solar cell structure,	basic equations of solar
		Solar cell structure
suucture,		parameters of solar cell.

Unit-2:PV MODULE PERFORMANCE

(13 hrs)

Solar PV modules & arrays, I-V &P-V characteristics, maximum power point ,series parallel combination, cell efficiency, fill factor, role of bypass & blocking diode, factors affecting output of a solar cell .

Unit No	Module	Micro content
2a. Solar PV modules		Solar PV modules & arrays (Working)
	Solar PV modules	I-V &P-V characteristics, (Diagram)
		maximum power point
		Series parallel combination
2b.solar cell efficiency		cell efficiency, fill factor, role of bypass & blocking
	solar cell efficiency	diode (Working),
		factors affecting output of a solar cell.

Unit-3:MANUFACTURING OF PV CELLS & DESIGN OF PV SYSTEMS (12 hrs) Commercial solar cells - Production process of single crystalline silicon cells, multi crystalline silicon cells, amorphous silicon, cadmium telluride, copper indium gallium diselenide cells. Design of solar PV systems, cost estimation, various aspects, system simulation tools.

Unit No	Module	Micro content		
	Manufacturing Of Pv Cells	Production process of single crystalline silicon		
20 Monufootuning		cells		
of Py Colls		multi crystalline silicon cells		
of PV Cells		amorphous silicon, cadmium telluride,		
		copper indium gallium diselenide cells		
3b.Design Of Pv Systems		Design of solar PV systems		
	Design Of Pv Systems	cost estimation		
		Various aspects, system simulation tools.		
Unit-4:SOLAR PV	SYSTEMS INSTALLA	ATIONS & TROUBLE SHOOTING (12 hrs)		
Classification - Cer	tral Power Station Syste	em, Distributed PV System, Stand alone PV system,		
grid Interactive PV System, small system for consumer applications, hybrid solar PV system,				

concentrator solar photovoltaic. System for consumer applications, hybrid solar TV system, concentrator solar photovoltaic. System components - PV arrays, inverters, batteries, charge controllers, net metering, PV array installation, operation, costs, reliability. Troubleshooting of PV system components.

Unit No Module	Micro content
----------------	---------------

		Classification
		Central Power Station System
4a. Solar PV		 Distributed PV System
Systems	Solar PV Systems	Stand alone PV system
Installations	Installations	grid Interactive PV System
		> small system for consumer applications,
		> hybrid solar PV system, concentrator solar
		photovoltaic.
		System components - PV arrays, inverters,
		batteries, charge controllers, net metering
4b.Trouble	Trouble Shooting	PV array installation, operation, costs, reliability.
Shooting		Troubleshooting of PV system components

Unit-5:PV SYSTEM APPLICATIONS & SAFETY

(12 hrs)

Building-integrated photovoltaic units, grid connected central power stations, stand-alone devices for distributed power supply in remote and rural areas, Outlook for the Indian PV industry& challenges,

Applications: solar home system, solar cars, Solar Charger, aircraft, space solar power satellites. Socio-economic and environmental merits of photovoltaic systems safety in Installation of solar PV systems.

Unit No	Module	Micro content				
		Building-integrated photovoltaic units				
		grid connected central power stations				
5a.PV System	Pv System	stand-alone devices for distributed power supply in				
Applications	Applications	remote and rural areas,				
		➢ Outlook for the Indian PV industry&				
		challenges,				
		Socio-economic and environmental merits of				
5b.Safety	Safety	photovoltaic systems				
		safety in Installation of solar PV systems				

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Understand the principle of direct solar energy conversion to power using PV
CO2	Contrast the performance measures of PV
CO3	Infer on various solar cells & design aspects of solar PV
CO4	Identify various PV components & construct few systems
CO5	Develop ideas for working on solar PV systems & associated safety practices

Text books:

1. Chetan Singh Solanki., Solar Photovoltaic: "Fundamentals, Technologies and Application", PHI Learning Pvt., Ltd., 2009.

- 2. Jha A.R., "Solar Cell Technology and Applications", CRC Press, 2010.
- 3. John R. Balfour, Michael L. Shaw, SharlaveJarosek., "Introduction to Photovoltaics", Jones & Bartlett Publishers, Burlington, 2011.

Reference books:

- 1. Chetan Singh Solanki "Solar PV technology and system", PHI learning private limited, 2015.
- 2. Luque A. L. and Andreev V.M., "Concentrator Photovoltaic", Springer, 2007.
- 3. Partain L.D., Fraas L.M., "Solar Cells and Their Applications", 2nd ed., Wiley, 2010.
- 4. S.P. Sukhatme, J.K.Nayak., "Solar Energy", Tata McGraw Hill Education Private Limited, New Delhi, 2010.
- 5. R.K Pachauri "From Sun light to Electricity" TERI, 15th Reprint, 2013.

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1	3													
CO2	3												1	
CO3	2	1												
CO4	2	2	1											1
CO5	3	1												1

II-Year-II Semester
SOC2201SENSORS AND ACTUATORS FOR
IOTPRE-REQUISITES: 1) IOT

L	Т	Р	С
1	0	2	2

Course objectives: The student should be able to

- 1. Study the concept on IOT and phenomena on which operation of Sensor transformation of energy is based
- 2. Know the depth knowledge in physical principles applied in sensing
- 3. Know the Characteristics, analysis and how measurement systems are designed, calibrated
- 4. Impart a competence in the design, construction, and execution of mechanical measurements in application point of view

	Syllabus	
Unit No	Contents	Mapped CO
Ι	Sensors:(3 hrs)Introduction of IOT, Transducers and definition of sensors.	CO1
Π	Classification of Sensors(3 hrs)Active, Analog, Digital, Scalar, Vector, - Inductive Sensors: Sensitivity and Linearity of the Sensor, Types-Capacitive Sensors:- Electrostatic Transducer- Force/Stress Sensors Using Quartz Resonators - Ultrasonic Sensors,-PIR Motion Sensor - Rain Drop Sensor - Moisture SensorTemperature Sensor - Touch Sensor - Infrared Sensor - Servo Motor- RFID Sensor Bluetooth Module, Wi-Fi Module.	CO2
III	Characteristics of Sensors(2hrs)Static -Accuracy, Range, Resolution, Error ;Dynamic	CO3
IV	Actuators (1hr) Classification – Electric, Fluid, Linear, Manual	CO4
V	Applications(6hrs)Sensors and actuators,Processors,Transceivers (Mobile Phone Based Sensors., Neural Sensors ,Environmental and Chemical Sensors, Medical Sensors., Radio Frequency Identification (RFID)-Applications on IOT- Arduino, Raspberry Pi Smart home, health, logistics, transport, agriculture, social, environment.	CO5
	 of Experiments Interfacing DHT11 Temperature and Humidity Sensor with Raspberry Pi LDR controlled blub by Arduino Sun tracker using 4-LDR by Arduino Moisture content of soil by Arduino Rain water alarm by Arduino 	

- 6. Raspberry Pi Motion Sensor Alarm using PIR Sensor
- 7. Smart Phone Controlled Home Automation by Raspberry Pi
- 8. Interfacing Hall Sensor with Raspberry Pi
- 9. Stepper Motor Control with Raspberry Pi
- 10. Servomotor control with Arduino
- 11. Fire alarm using Arduino
- 12. Real time intrusion detection for Smart home
- 13. LED Blinking by light sensor with Raspberry Pi and Python Program
- 14. Smart Blind-stick by Arduino
- 15. Remote controlled AC fan regulator by IR Sensor

	Course Outcomes				
Upon s	Upon successful completion of the course, the student will be able to				
CO1	Understand the concept of IOT				
CO2	Explain thephysical parameter into an electrical quantity				
CO3	Analyze the Characteristics and develop sensors using different methods with desired				
	properties				
CO4	Evaluate the sensor and actuators as an application on industry and /or device type				

Learning Resources

Text books:

1. Internet of Things : Architecture, Design principles and applications, Rajkamal, McGraw Hill Higher Education.

2. Jon. S. Wilson, "Sensor Technology Hand Book", 2011, 1st edition, Elsevier, Netherland.

Reference books:

1. Dr. Guillaume Girardin , Antoine Bonnabel, Dr. Eric Mounier, 'Technologies & Sensors for the Internet of Things Businesses & Market Trends 2014 - 2024', Yole Dévelopment Copyrights ,2014

2. Peter Waher, 'Learning Internet of Things', Packt Publishing, 2015

3. N. Ida, Sensors, Actuators and Their Interfaces, Scitech Publishers, 2014.

Micro-Syllabus

Unit – 1: Sensors: (3hrs)						
Introduction of IOT, Transducers and Definition of sensors.						
Unit No Module Micro content						
		IOT Architecture				
1a. IOT	Introduction of IOT	Physical, Network, Application				
		Technoigical developments				
		Advantages and Disadvantages.				

	Definition of Sensors	Introduction of Transducers
1b. Sensors		Definition of Sensors
		Working of Sensors

Unit-2: Classification of Sensors (3hrs)

Active, Analog, Digital, Scalar, Vector, **Types** : Inductive Sensors: Sensitivity and Linearity of the Sensor, Types-Capacitive Sensors:- Electrostatic Transducer- Force/Stress Sensors Using Quartz Resonators – Ultrasonic Sensors,-PIR Motion Sensor - Rain Drop Sensor - Moisture Sensor. -Temperature Sensor - Touch Sensor - Infrared Sensor - Servo Motor- RFID Sensor -- Bluetooth Module, Wi-Fi Module.

Unit No	Module	Module Micro content				
		Active, Analog, Digital, Scalar, Vector				
		Inductive Sensors - Sensitivity and Linearity of				
	Types of Sensors	the Sensor				
2. Classification of Sensors		Capacitive Sensors:- Electrostatic Transducer-				
		Force/Stress Sensors Using Quartz Resonators				
		Ultrasonic Sensors				
		PIR Motion Sensor - Rain Drop Sensor -				
		Moisture SensorTemperature Sensor - Touch				
		Sensor - Infrared Sensor - Servo Motor				
		RFID Sensor, Bluetooth Module, Wi-Fi				
		Module.				

Unit-3: Characteristics of Sensors (2hrs) Static - Accuracy, Range, Resolution, Error : Dynamic

Unit No	Module	Micro content
		Accuracy
3a.Characteristics	54	Range
of Sensors	Static	Resolution
		Error
3b.Characteristics	Dynamia	Dynamic
of Sensors	Dynamic	
Unit-4 : Actuators	(1hr)	
Classification – Electric, Fluid, Linear, Manua		
Unit No	Module	Micro content
		Classification based on Performance ,type
	Classification of Actuators	Electric
4. Actuators		> Fluid
		Linear
		Manual

Unit-5: Applications (6hrs)

Sensors and actuators, Processors, Transceivers (Mobile Phone Based Sensors., Neural Sensors , Environmental and Chemical Sensors, Medical Sensors., Radio Frequency Identification (RFID)-Applications on IOT- Arduino, Raspberry Pi.- Smart home, health, logistics, transport, agriculture, social, environment

Unit No	Module	Micro content
		Mobile Phone Based Sensors
		Neural Sensors
		Environmental and Chemical Sensors
		Medical Sensors
		Radio Frequency Identification (RFID)
	Applications of Sensors	
5. Applications	and actuators for IOT	Based on requirement :
	by Arduino ,	Smart home
	Raspberry Pi	➤ Health
		Logistics
		Transport
		 Agriculture
		➢ Social
		Environment.

Course Outcomes : Upon successful completion of the course, the student will be able to

CO1	Understand the concept of IOT {Understand level, KL2}					
CO2	Explain thephysical parameter into an electrical quantity {Apply level, KL3}					
CO3	Analyze the Characteristics and develop sensors using different methods with desired properties {Analyze level, KL4}					
CO4	Evaluate the sensor and actuators as an application on industry and /or device					
	type{Evaluate level, KL5}					

Learning Resources

Text books:

1. Internet of Things : Architecture, Design principles and applications, Rajkamal, McGraw Hill Higher Education.

2. Jon. S. Wilson, "Sensor Technology Hand Book", 2011, 1st edition, Elsevier, Netherland.

Reference books:

1. Dr. Guillaume Girardin , Antoine Bonnabel, Dr. Eric Mounier, 'Technologies & Sensors for the Internet of Things Businesses & Market Trends 2014 - 2024', Yole Dévelopment Copyrights ,2014

2. Peter Waher, 'Learning Internet of Things', Packt Publishing, 2015

3. N. Ida, Sensors, Actuators and Their Interfaces, Scitech Publishers, 2014.

e- Resources & other digital material

1.https://nptel.ac.in/courses/108/108/108108147/

2.https://www.coursera.org/lecture/iot/lecture-2-3-sensors-and-actuators-in-the-lab-852CL

3.https://www.avsystem.com/blog/iot-sensors-iot-actuators/

4.https://www.youtube.com/watch?v=hIISiYs7lDo

5.https://www.mdpi.com/1424-8220/19/20/4567/pdf

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1	1				2								1	
CO2											1	2		
CO3					2				1					
CO4			2				3							2

II-Year-II Semester SOC2201

AC DRIVES

L	Т	Р	С
1	0	2	2

PRE-REQUISITES: 1) AC Drives

Course objectives: The student should be able to

- 1. Study the fundamentals of AC Drives .
- 2. Study the Types of AC motors construction & working principle.
- 3. Study the Concept of AC Drive and construction & working principle.
- 4. Study the Applications of AC Drives.
- 5. Study the Design and protection for AC and MV Drives.

	Syllabus	
Unit No	Contents	Mapped CO
Ι	Basic principles of AC Drive (6 hrs) Basic principles of AC Drive and its Application (02 hrs) Benefits of AC Drives (02 hrs) Basic concept, Wiring (02 hrs)	CO1
II	Types of AC MOTOR (08 hrs) Basic on AC motors-Types of AC motors (02 hrs) construction and working, principle, (02 hrs) Parameterization (04 hrs)	CO2
ш	Concept of AC DRIVE (10 hrs) Concept of AC Drive in details.(02hrs) construction & working principle (04 hrs) Selection of AC Drive (02 hrs) Important features .(02 hrs)	CO3
IV	Applications of AC Drives (06 hrs)Applications of AC Drives (02 hrs)AC Drive Harmonics (02 hrs)Effects of Harmonics (02 hrs)	CO4
v	Features of SINAMIC G-120 AC Drive , MEDIUM VOLTAG (MV) DRIVE (10 hrs) Introduction, parameterization, Wiring, Application (06 hrs) Introduction, features and application (02hrs) Design and protection for AC and MV Drives (02hrs)	CO5
Cor Ind Ind Pap	itent Beyond the syllabus: uction motor drives: Volts/Hertz Control, Vector or Field oriented control. ustrial application: Drive consideration for Textile mills, Steel rolling mills, Cem er mills, Machine tools. Cranes & hoist drives.	ent mills,

LIST OF EXPERIMENTS

1. To obtain speed control of Switched Reluctance Motor using DSP controller TMS320F2812.

2. To obtain speed control of Permanent magnet synchronous Motor using SPARTAN 6 FPGA controller.

3. To obtain speed control of three phase induction motor using dsPIC controller MICRO-4011.

4. To visualize the speed and position control of servo motor by various inputs of DSP CONTROLLER kit.

5. To study the operation of speed control of dc motor fed from four quadrant chopper using FPGA controller

- 6. To simulate the three phase voltage source inverter with resistive load using SPWM.
- 7. To simulate the chopper fed dc motor (matlab)
- 8. To study the simulation of Z source inverter using matlab simulink.

	Course Outcomes				
Upon s	Upon successful completion of the course, the student will be able to				
CO1	Understand the fundamentals of AC Drives {Understand level, KL2}				
CO2	Explain the principle and working of AC motors.{Apply level, KL3}				
CO3	Analyze the Concept of AC Drive {Analyze level, KL4}				
CO4	Evaluate the Applications of AC Drives.{Evaluate level, KL5}				
CO5	Analyze the Design and protection for AC and MV Drives.{Apply level, KL4}				

	Learning Resources				
Text b	ooks:				
1.	"Electric Drive: Control of DC and AC Drives" by Srinivas Vemula and Ramaiah				
	Veerlapati.				
2.	VEDAM SUBRAMANIAM "Electric drives (concepts and applications)", Tata McGraw-				
	Hill.2001.				
3.	"Electric motor drives", R. Krishnan, PHI.				
4.	"Electric Motor & Drives". Austin Hughes, Newnes.				
5.	"Modern Power Electronics & Ac drives", B.K. Bose, Pearson Education.				
Refer	ence books:				
1.	PILLAI.S.K, "A first course on Electric drives", Wiley Eastern Limited, 1998				
2.	M.D. SINGH, K.B.KHANCHANDANI, "Power electronics", Tata McGraw-Hill.1998				
e- Res	ources & other digital material				
1.	http://www.hccl.ie/uploads/1/4/7/3/1473854/ha472742_iss4a_ac-dc_catalog.pdf				
2.	https://www.industrial-electronics.com/MDPTG_4.html				
-					

3. http://freetutorials.name/Reference1/Electrical_Engineering.html

Micro-Syllabus

Unit – 1 Basic principles of AC Drive (6 hrs) Basic principles of AC Drive and its Application (02 hrs), Benefits of AC Drives (02 hrs) Basic concept, Wiring (02 hrs)					
Unit No	Module	Micro content			
1		Basic principles of AC Drive			
la.	Basic principles of	Importance of AC Drive			
of AC Drive	AC Drive	Applications			
of the blive	_	Advantages and Disadvantages.			
1h Devefite of	Dependence of AC	Benefits of AC Drives			
10. Benefits of	Drives	Classifications of Drives			
AC Drives	Drives	Advantages and Disadvantages.			
Unit-2: Types of A	C MOTOR (08 hrs)				
Basics on AC mote	ors-Types of AC motors	(02 hrs), construction and working, principle, (02			
hrs)					
Parameterization (0	4 hrs)				
Unit No	Module	Micro content			
20 Pasias on AC		Basic on AC motors			
Za Basics of AC	Basics on AC motors,	principle			
AC motors	Types of AC motors	types of DC motors			
AC motors		Advantages and Disadvantages.			
2b. construction	construction and	construction and working, principle			
and working,	working principle	Parameterization			
principle	working, principle	Advantages and Disadvantages.			
Unit-3: Concept of	AC DRIVE (10 hrs)				
Concept of AC Driv	ve in details.(02hrs), cons	struction & working principle (04 hrs)			
Selection of AC Dri	ive (02 hrs), Important fe	atures .(02 hrs)			
Unit No	Module	Micro content			
		Concept of AC Drive			
3a. Concept of	Concept of AC Drive	construction & working principle			
AC Drive	concept of the bille	Applications			
		Advantages and Disadvantages.			
3b. Selection of	Selection of AC Drive	Selection of AC Drive			
AC Drive		Advantages			
Unit-4: Application	ns of AC Drives (06 hrs)				
Applications of AC	Drives (02 hrs), AC Driv	e Harmonics (02 hrs), Effects of Harmonics (02 hrs)			
Unit No	Module	Micro content			
4a. Applications	Applications of AC	Applications of AC Drives			

of AC Drives	Drives	construction & working principle
		Advantages and Disadvantages
		AC Drive Harmonics
th AC Drive	AC Drive Harmonics	Working principle
Harmonics		Effects of Harmonics
		Applications
		Advantages and Disadvantages

Unit-5: Features of SINAMIC G-120 AC Drive, MEDIUM VOLTAG (MV) DRIVE (10 hrs)

Introduction, parameterization, Wiring, Application (06 hrs) Introduction, features and application (02hrs)

Design and protection for AC and MV Drives (02hrs)

Unit	Module	Micro content
		Introduction of of SINAMIC G-120 AC Drive
5a. Features of	Footures of SINAMIC	parameterization
SINAMIC G-120	G-120 AC Drive	Wiring
AC Drive		Application
		Advantages and Disadvantages
5b.		Design of AC and MV Drives
Design and	Design and protection	Protection of AC and MV Drives
protection for AC for AC and MV Drives		Applications
and MV Drives		Advantages and Disadvantages

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Understand the fundamentals of AC Drives. {Understand level, KL2}
CO2	Explain the principle and working of AC motors. {Apply level, KL3}
CO3	Analyze the Concept of AC Drive {Analyze level, KL4}
CO4	Evaluate the Applications of AC Drives. {Evaluate level, KL5}
CO5	Analyze Design and protection for AC and MV Drives.{Apply level, KL4}

Learning Resources			
Text b	ooks:		
6.	"Electric Drive: Control of DC and AC Drives" by Srinivas Vemula and Ramaiah		
	Veerlapati.		
7.	VEDAM SUBRAMANIAM "Electric drives (concepts and applications)", Tata McGraw-		
	Hill.2001.		
8.	"Electric motor drives", R. Krishnan, PHI.		

- 9. "Electric Motor & Drives". Austin Hughes, Newnes.
- 10. "Modern Power Electronics & Ac drives", B.K. Bose, Pearson Education.

Reference books:

- 3. PILLAI.S.K, "A first course on Electric drives", Wiley Eastern Limited, 1998
- 4. M.D. SINGH, K.B.KHANCHANDANI, "Power electronics", Tata McGraw-Hill.1998

e- Resources & other digital material

- 4. http://www.hccl.ie/uploads/1/4/7/3/1473854/ha472742_iss4a_ac-dc_catalog.pdf
- 5. https://www.industrial-electronics.com/MDPTG_4.html
- 6. http://freetutorials.name/Reference1/Electrical_Engineering.html

CO-PO Mapping

-														
	Р	PO	PO1	PO1	PO1	PSO	PSO							
	Ο	2	3	4	5	6	7	8	9	0	1	2	-1	-2
	1													
CO1	3													
CO2	2	3	2											
CO3	3													
CO4	3													
CO5	2													

II-Year-II Semester MC2201

ENVIRONMENTAL STUDIES

L	Т	P	С
2	0	0	0

Pre-Requisites:

- 1. Basics of General Science
- 2. Basics of Social Studies

Course Objectives: The objectives of the course are to impart:

- 1. Overall understanding of the natural resources
- 2. Basic understanding of the ecosystem and its diversity.
- 3. Acquaintance on various environmental challenges induced due to unplanned anthropogenic activities.
- 4. An understanding of the environmental impact of developmental activities.
- 5. Awareness on the social issues, environmental legislation and global treaties.

Syllabus			
Unit No	Contents	Mapped CO	
Ι	 UNIT – I: MULTIDISCIPLINARY NATURE OF ENVIRONMENTAL STUDIES (12 Hrs) Definition, Scope and Importance – Need for Public Awareness. NATURAL RESOURCES : Renewable and non-renewable resources – Natural resources and associated problems – Forest resources – Use and over – exploitation, deforestation, case studies – Timber extraction – Mining, dams and other effects on forest and tribal people – Water resources – Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. – Energy resources: 	CO1	
п	 UNIT – II: Ecosystems, Biodiversity, and its Conservation (12 hrs) ECOSYSTEMS: Concept of an ecosystem. – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the following ecosystem: a. Forest ecosystem. b. Grassland ecosystem c. Desert ecosystem d. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) BIODIVERSITY AND ITS CONSERVATION : Definition: genetic, species 	CO2	

	and ecosystem diversity - Bio-geographical classification of India - Value of	
	biodiversity: consumptive use, Productive use, social, ethical, aesthetic and option	
	values - Biodiversity at global, National and local levels - India as a mega-	
	diversity nation – Hot-sports of biodiversity – Threats to biodiversity: habitat loss,	
	poaching of wildlife, man-wildlife conflicts – Endangered and endemic species of	
	India – Conservation of biodiversity: In-situ and Ex-situ conservation of	
	biodiversity.	
	UNIT-III: Environmental Pollution and Solid Waste Management (10 hrs)	
	ENVIRONMENTAL POLLUTION: Definition. Cause. effects and control	
	measures of :	
	a. Air Pollution.	
	b. Water pollution	
	c. Soil pollution	
III	d. Marine pollution	
	e. Noise pollution	CO3
	f. Thermal pollution	
	g. Nuclear hazards	
	SOLID WASTE MANAGEMENT : Causes, effects and control measures of	
	urban and industrial wastes – Role of an individual in prevention of pollution –	
	Pollution case studies – Disaster management: floods, earthquake, cyclone and	
	landslides.	
	UNIT – IV: Social Issues and the Environment (12	
	UNIT – IV: Social Issues and the Environment (12 hrs)	
	UNIT – IV: Social Issues and the Environment(12hrs)SOCIAL ISSUES AND THE ENVIRONMENT: From Unsustainable to	
	UNIT – IV: Social Issues and the Environment(12hrs)SOCIAL ISSUES AND THE ENVIRONMENT:From Unsustainable toSustainable development – Urban problems related to energy – Water	
	UNIT – IV: Social Issues and the Environment(12hrs)SOCIAL ISSUES AND THE ENVIRONMENT:Sustainable development – Urban problems related to energy – Waterconservation, rain water harvesting, watershed management – Resettlement and	
IV	UNIT – IV: Social Issues and the Environment(12hrs)SOCIAL ISSUES AND THE ENVIRONMENT:From Unsustainable toSustainable development – Urban problems related to energy – Waterconservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns. Case studies – Environmental	604
IV	UNIT – IV: Social Issues and the Environment(12hrs)SOCIAL ISSUES AND THE ENVIRONMENT:From Unsustainable toSustainable development – Urban problems related to energy – Waterconservation, rain water harvesting, watershed management – Resettlement andrehabilitation of people; its problems and concerns.Case studies – Environmentalethics:Issues and possible solutions – Climate change, global warming, acid rain,	CO4
IV	UNIT – IV: Social Issues and the Environment(12hrs)SOCIAL ISSUES AND THE ENVIRONMENT:From Unsustainable toSustainable development – Urban problems related to energy – Waterconservation, rain water harvesting, watershed management – Resettlement andrehabilitation of people; its problems and concerns.Case studies – Environmentalethics:Issues and possible solutions – Climate change, global warming, acid rain,ozone layer depletion, nuclear accidents and holocaust.Case Studies – Wasteland	CO4
IV	UNIT – IV: Social Issues and the Environment(12hrs)SOCIAL ISSUES AND THE ENVIRONMENT:From Unsustainable toSustainable development – Urban problems related to energy – Waterconservation, rain water harvesting, watershed management – Resettlement andrehabilitation of people; its problems and concerns.Case studies – Environmentalethics:Issues and possible solutions – Climate change, global warming, acid rain,ozone layer depletion, nuclear accidents and holocaust.Case Studies – Wastelandreclamation. – Consumerism and waste products. – Environment Protection Act. –	CO4
IV	UNIT – IV: Social Issues and the Environment(12hrs)SOCIAL ISSUES AND THE ENVIRONMENT:From Unsustainable toSustainable development – Urban problems related to energy – Waterconservation, rain water harvesting, watershed management – Resettlement andrehabilitation of people; its problems and concerns.Case studies – Environmentalethics:Issues and possible solutions – Climate change, global warming, acid rain,ozone layer depletion, nuclear accidents and holocaust.Case Studies – Wastelandreclamation. – Consumerism and waste products. – Environment Protection Act. –Air (Prevention and Control of Pollution)Act. – Water (Prevention and control of	CO4
IV	UNIT – IV: Social Issues and the Environment(12hrs)SOCIAL ISSUES AND THE ENVIRONMENT:From Unsustainable toSustainable development – Urban problems related to energy – Waterconservation, rain water harvesting, watershed management – Resettlement andrehabilitation of people; its problems and concerns.Case studies – Environmentalethics:Issues and possible solutions – Climate change, global warming, acid rain,ozone layer depletion, nuclear accidents and holocaust.Case Studies – Wastelandreclamation. – Consumerism and waste products. – Environment Protection Act. –Air (Prevention and Control of Pollution)Act. – Wildlife Protection Act. – Forest Conservation Act. – Issues	CO4
IV	UNIT – IV: Social Issues and the Environment(12hrs)SOCIAL ISSUES AND THE ENVIRONMENT:From Unsustainable toSustainable development – Urban problems related to energy – Waterconservation, rain water harvesting, watershed management – Resettlement andrehabilitation of people; its problems and concerns.Case studies – Environmentalethics:Issues and possible solutions – Climate change, global warming, acid rain,ozone layer depletion, nuclear accidents and holocaust.Case Studies – Wastelandreclamation.– Consumerism and waste products.– Environment Protection Act.Air (Prevention and Control of Pollution)Act.– Water (Prevention and control ofPollution)Act – Wildlife Protection Act – Forest Conservation Act – Issuesinvolved in enforcement of environmental legislation – Public awareness.	CO4
IV	UNIT – IV: Social Issues and the Environment(12hrs)SOCIAL ISSUES AND THE ENVIRONMENT:From Unsustainable toSustainable development – Urban problems related to energy – Waterconservation, rain water harvesting, watershed management – Resettlement andrehabilitation of people; its problems and concerns.Case studies – Environmentalethics:Issues and possible solutions – Climate change, global warming, acid rain,ozone layer depletion, nuclear accidents and holocaust.Case Studies – Wastelandreclamation. – Consumerism and waste products. – Environment Protection Act. –Air (Prevention and Control of Pollution)Act. – Water (Prevention and control ofPollution)Act – Wildlife Protection Act – Forest Conservation Act – Issuesinvolved in enforcement of environmental legislation – Public awareness.UNIT – V: Human Population and the Environment (14 hrs)	CO4
IV	UNIT – IV: Social Issues and the Environment(12hrs)SOCIAL ISSUES AND THE ENVIRONMENT:From Unsustainable toSustainable development – Urban problems related to energy – Waterconservation, rain water harvesting, watershed management – Resettlement andrehabilitation of people; its problems and concerns.Case studies – Environmentalethics:Issues and possible solutions – Climate change, global warming, acid rain,ozone layer depletion, nuclear accidents and holocaust.Case Studies – Wastelandreclamation. – Consumerism and waste products. – Environment Protection Act. –Air (Prevention and Control of Pollution)Act. – Water (Prevention and control ofPollution)Act – Wildlife Protection Act – Forest Conservation Act – Issuesinvolved in enforcement of environmental legislation – Public awareness.UNIT – V: Human Population and the Environment (14 hrs)HUMAN POPULATION AND THE ENVIRONMENT:	CO4
IV	UNIT – IV: Social Issues and the Environment(12hrs)SOCIAL ISSUES AND THE ENVIRONMENT:From Unsustainable toSustainable development – Urban problems related to energy – Waterconservation, rain water harvesting, watershed management – Resettlement andrehabilitation of people; its problems and concerns.Case studies – Environmentalethics:Issues and possible solutions – Climate change, global warming, acid rain,ozone layer depletion, nuclear accidents and holocaust.Case Studies – Wastelandreclamation. – Consumerism and waste products. – Environment Protection Act. –Air (Prevention and Control of Pollution)Act. – Water (Prevention and control ofPollution)Act – Wildlife Protection Act – Forest Conservation Act – Issuesinvolved in enforcement of environmental legislation – Public awareness.UNIT – V: Human Population and the Environment (14 hrs)HUMAN POPULATION AND THE ENVIRONMENT:Population growth,variation among nations.Population explosion – Family Welfare Programmed. –	CO4
IV	UNIT – IV: Social Issues and the Environment(12hrs)SOCIAL ISSUES AND THE ENVIRONMENT:From Unsustainable toSustainable development – Urban problems related to energy – Waterconservation, rain water harvesting, watershed management – Resettlement andrehabilitation of people; its problems and concerns.Case studies – Environmentalethics:Issues and possible solutions – Climate change, global warming, acid rain,ozone layer depletion, nuclear accidents and holocaust.Case Studies – Wastelandreclamation.– Consumerism and waste products. – Environment Protection Act. –Air (Prevention and Control of Pollution)Act. – Water (Prevention and control ofPollution)Act – Wildlife Protection Act – Forest Conservation Act – Issuesinvolved in enforcement of environmental legislation – Public awareness.UNIT – V: Human Population and the Environment (14 hrs)HUMAN POPULATION AND THE ENVIRONMENT:Population growth,variation among nations.Population explosion – Family Welfare Programmed. –Environment and human health – Human Rights – Value Education – HIV/AIDS –	CO4
IV	UNIT – IV: Social Issues and the Environment(12hrs)SOCIAL ISSUES AND THE ENVIRONMENT:From Unsustainable toSustainable development – Urban problems related to energy – Waterconservation, rain water harvesting, watershed management – Resettlement andrehabilitation of people; its problems and concerns.Case studies – Environmentalethics:Issues and possible solutions – Climate change, global warming, acid rain,ozone layer depletion, nuclear accidents and holocaust.Case Studies – Wastelandreclamation. – Consumerism and waste products. – Environment Protection Act. –Air (Prevention and Control of Pollution) Act. – Water (Prevention and control ofPollution) Act – Wildlife Protection Act – Forest Conservation Act – Issuesinvolved in enforcement of environmental legislation – Public awareness.UNIT – V: Human Population and the Environment (14 hrs)HUMAN POPULATION AND THE ENVIRONMENT: Population growth, variation among nations. Population explosion – Family Welfare Programmed. –Environment and human health – Human Rights – Value Education – HIV/AIDS – Women and Child Welfare – Role of information Technology in Environment and	CO4
IV V	UNIT – IV: Social Issues and the Environment(12hrs)SOCIAL ISSUES AND THE ENVIRONMENT:From Unsustainable toSustainable development – Urban problems related to energy – Waterconservation, rain water harvesting, watershed management – Resettlement andrehabilitation of people; its problems and concerns.Case studies – Environmentalethics:Issues and possible solutions – Climate change, global warming, acid rain,ozone layer depletion, nuclear accidents and holocaust.Case Studies – Wastelandreclamation.– Consumerism and waste products. – Environment Protection Act. –Air (Prevention and Control of Pollution)Act. – Water (Prevention and control ofPollution)Act – Wildlife Protection Act – Forest Conservation Act – Issuesinvolved in enforcement of environmental legislation – Public awareness.UNIT – V: Human Population and the Environment (14 hrs)HUMAN POPULATION AND THE ENVIRONMENT:Population growth,variation among nations.Population explosion – Family Welfare Programmed. –Environment and human health – Human Rights – Value Education – HIV/AIDS –Women and Child Welfare – Role of information Technology in Environment andhuman health – Case studies.	CO4
IV V	UNIT – IV: Social Issues and the Environment(12hrs)SOCIAL ISSUES AND THE ENVIRONMENT:From Unsustainable toSustainable development – Urban problems related to energy – Waterconservation, rain water harvesting, watershed management – Resettlement andrehabilitation of people; its problems and concerns.Case studies – Environmentalethics:Issues and possible solutions – Climate change, global warming, acid rain,ozone layer depletion, nuclear accidents and holocaust.Case Studies – Wastelandreclamation.– Consumerism and waste products.– Environment Protection Act. –Air (Prevention and Control of Pollution)Act.– Water (Prevention and control ofPollution)Act – Wildlife Protection Act – Forest Conservation Act – Issuesinvolved in enforcement of environmental legislation – Public awareness.UNIT – V: Human Population and the Environment (14 hrs)HUMAN POPULATION AND THE ENVIRONMENT:HUMAN POPULATION AND THE ENVIRONMENT:Nomen and Child Welfare – Role of information Technology in Environment andhuman health – Human Rights – Value Education – HIV/AIDS –Women and Child Welfare – Role of information Technology in Environment andhuman health – Case studies.FIELD WORK :Visit to a local area to document environmental assets	CO4

Urban/Rural/Industrial/Agricultural Study of common plants, insects, and birds – river, hill slopes, etc..

Content Beyond the Syllabus:

Unit-I: International Environmental Summit, Kyoto Protocol

Unit-III: Solid waste Disposal: Bio Medical Waste Management

Unit-V: Epidemiology

	Course Outcomes
Upon succ	essful completion of the course, the student will be able to
CO1 At	ele to Understand Natural resources and their importance
CO2 At	ble to UnderstandTheThe concepts of the ecosystem, learn biodiversity of India and
the	e threats to biodiversity and Apply conservation practices
CO3 At	ble to learn Various attributes of the pollution and their impacts.
CO4 At	ble to Understand Social issues both rural and urban environment and Environmental
Le	gislation.
CO5 At	ble to Understand Popultion Explosion and Apply Structure and Functions of
Ec	osystem.
Text book	S:
1.	Text book of Environmental Studies for Undergraduate Courses by ErachBharucha
	for University Grants Commission, Universities Press.
2.	Environmental Studies by Palaniswamy – Pearson education
3.	Environmental Studies by Dr.S.AzeemUnnisa, Academic Publishing Company.
Reference	books
1. Tex	atbook of Environmental Science by Deeksha Dave and E.Sai Baba Reddy, Cengage
Put	blications.
2. Tex	at book of Environmental Sciences and Technology by M.Anji Reddy, BS Publication.
3. Co	mprehensive Environmental studies by J.P.Sharma, Laxmi publications.
4. Env	vironmental sciences and engineering – J. Glynn Henry and Gary W. Heinke – Prentice
hal	of India Private limited.
5. A T	Text Book of Environmental Studies by G.R.Chatwal, Himalaya Publishing House
6. Inti	roduction to Environmental engineering and science by Gilbert M. Masters and
We	ndell P. Ela - Prentice hall of India Private limited.
e- Resourc	ces & other digital material
<u>1.http://mc</u>	ef.gov.in/en/resource/e-books/
2.https://cp	ocb.nic.in/
3.https://w	ww.unep.org/

Micro-Syllabus

Unit-1: MULTIDISCIPLINARY NATURE OF ENVIRONMENTAL STUDIES (12 Hrs) Definition, Scope and Importance – Need for Public Awareness.

NATURAL RESOURCES : Renewable and non-renewable resources – Natural resources and associated problems – Forest resources – Use and over – exploitation, deforestation, case studies – Timber extraction – Mining, dams and other effects on forest and tribal people – Water resources – Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. – Energy resources:

Unit No	Module	Micro content	
1a.		Scope of Environmental Studies	
Multidisciplinary		Importance of Environmental Studies	
Nature Of	Scope and Multidisciplinary nature	Need for Public Awareness	
Environmental		Multidisciplinary nature of	
Studies		Environmental Studies	
	Energy Descurees	Renewable and Non–Renewable	
1b Natural	Energy Resources	resources	
Posourcos	Forest, Mining	Deforestation causes and Effects,	
Resources		Dams Impacts, Effects of Modern	
		Agriculture	

UNIT – II: Ecosystems, Biodiversity, and its Conservation (12 hrs)

ECOSYSTEMS: Concept of an ecosystem. – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the following ecosystem:

- a. Forest ecosystem.
- b. Grassland ecosystem
- c. Desert ecosystem
- d. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

BIODIVERSITY AND ITS CONSERVATION : Definition: genetic, species and ecosystem diversity – Bio-geographical classification of India – Value of biodiversity: consumptive use, Productive use, social, ethical, aesthetic and option values – Biodiversity at global, National and local levels – India as a mega-diversity nation – Hot-sports of biodiversity – Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – Endangered and endemic species of India – Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

Unit No	Module	Micro content
2a. Ecosystems	Structure and function of an	Producers, consumers and
	ecosystem	decomposers – Energy flow in the

		ecosystem	
		Food chains, food webs and	
		ecological pyramids	
		Ecological succession	
		.Forest ecosystem.	
	types, characteristic features of	Grassland ecosystem	
	Ecosystems	Desert ecosystem	
		I.Aquatic ecosytems	
		Values of biodiversity, Biodiversity at	
		global, National and local levels, Hot-	
Oh Die dimension		spots of biodiversity, – Threats to	
20. Bio diversity	Bio Diversity Levels, Values,	biodiversity	
and its	Threats, and Conservation	Endangered and endemic species of	
conservation.		India – Conservation of biodiversity:	
		In-situ and Ex-situ conservation of	
		biodiversity.	
UNIT-III: Environ	mental Pollution and Solid Waste N	Anagement (10 hrs)	
ENVIRONMENT	AL POLLUTION: Definition, Cause	, effects and control measures of :	
a. Air F	Pollution.		
b. Wate	er pollution		
c. Soil	pollution		
d. Mari	ne pollution		
e. Nois	e pollution		
f. Ther	mal pollution		
g. Nucl	ear hazards		
SOLID WASTE	MANAGEMENT: Causes, effects	and control measures of urban and	
industrial wastes -	Role of an individual in prevention	of pollution – Pollution case studies –	
Disaster manageme	nt: floods, earthquake, cyclone and lar	ndslides.	
Unit No	Module	Micro content	
		Air Pollution.	
3.a.		Water pollution	
Environmental	Environmental Pollution	Soil pollution, Marine Pollution	
Pollution		Noise Pollution, Thermal Pollution	
		Nuclear Hazards	
		urban and industrial wastes	
3. b. Solid Waste	Solid Waste Management	Pollution case studies	
Management.	Sond waste management	Disaster management: floods,	
		earthquake, cyclone and landslides.	

UNIT – IV: Social Issues and the Environment(12 hrs)SOCIAL ISSUES AND THE ENVIRONMENT:From Unsustainable to Sustainabledevelopment – Urban problems related to energy – Water conservation, rain water harvesting,watershed management – Resettlement and rehabilitation of people; its problems and concerns.Case studies – Environmental ethics:Issues and possible solutions – Climate change, globalwarming, acid rain, ozone layer depletion, nuclear accidents and holocaust.Case Studies –Wasteland reclamation. – Consumerism and waste products. – Environment Protection Act. – Air(Prevention and Control of Pollution)Act. – Water (Prevention and control of Pollution)Act. – Forest Conservation Act – Issues involved in enforcement ofenvironmental legislation – Public awareness

Unit No	Module	Micro content
		Sustainable development – Urban
		problems related to energy – Water
		conservation, rain water harvesting,
		watershed management
4a. Social Issues		Resettlement and rehabilitation of
and the	Sustainable development	people; its problems and concerns.
Environment		Case studies
		Environmental ethics, Climate
		change, global warming, acid rain,
		ozone layer depletion, nuclear
		accidents and holocaust.
		Air Act, Water Act, Environment
		Protection Act
4b.Environmnetal Legislation	Environmental Acts	Wildlife Protection Act – Forest
	Environmental Acts	Conservation Act
		- Issues involved in enforcement of
		environmental legislation

UNIT – V: Human Population and the Environment (14 hrs)

HUMAN POPULATION AND THE ENVIRONMENT: Population growth, variation among nations. Population explosion – Family Welfare Programmes. – Environment and human health – Human Rights – Value Education – HIV/AIDS – Women and Child Welfare – Role of information Technology in Environment and human health –

FIELD WORK: Visit to a local area to document environmental assets River/forest grassland/hill/mountain – Visit to a local polluted site-Urban/Rural/Industrial/Agricultural Study of common plants, insects, and birds – river, hill slopes, etc..

Unit No	Module	Micro content
5 a. Human		Population explosion – Family
Population and	Population Characteristics	Welfare Programmes.
Environment		HIV/AIDS

	Role of IT in Environment and Human Health	Role of information Technology in Environment and human health
		Value Education
	Value Education	Environment and human health
	value Education	Women and Child Welfare
		Case studies.
		Visit to a local area to document
	River/forest grassland/hill/mountain	environmental assets River
		Forest
		Grassland
		Hill/Mountain
5.b. Field work		Visit to a local polluted site
	local polluted site- Urban/Rural/Industrial/Agricultural	Urban/Industrial
		Rural Field Visit
		Agricultural Study of common plants,
	Study	insects, and birds – river, hill slopes,
		etc

	Course Outcomes			
Upon successful completion of the course, the student will be able to				
CO1	Able to Understand Natural resources and their importance			
CO2	Able to UnderstandTheThe concepts of the ecosystem, learn biodiversity of India and			
	the threats to biodiversity and Apply conservation practices			
CO3	Able to learn Various attributes of the pollution and their impacts.			
CO4	Able to Understand Social issues both rural and urban environment and Environmental			
	Legislation.			
CO5	Able to Understand Popultion Explosion and Apply Structure and Functions of			
	Ecosystem.			
Text b	ooks:			
	1. Text book of Environmental Studies for Undergraduate Courses by ErachBharucha			
	for University Grants Commission, Universities Press.			
	2. Environmental Studies by Palaniswamy – Pearson education			
	3. Environmental Studies by Dr.S.AzeemUnnisa, Academic Publishing Company.			
Refere	ence books			
	1. Textbook of Environmental Science by Deeksha Dave and E.Sai Baba Reddy,			
	Cengage Publications.			
	2. Text book of Environmental Sciences and Technology by M.Anji Reddy, BS			
	Publication.			
	3. Comprehensive Environmental studies byJ.P.Sharma, Laxmi publications.			
	4. Environmental sciences and engineering – J. Glynn Henry and Gary W. Heinke –			

- Prentice hall of India Private limited.
- 5. A Text Book of Environmental Studies by G.R.Chatwal, Himalaya Publishing House
- 6. Introduction to Environmental engineering and science by Gilbert M. Masters and Wendell P. Ela Prentice hall of India Private limited.

e- Resources & other digital material

1.http://moef.gov.in/en/resource/e-books/

2.https://cpcb.nic.in/

3.https://www.unep.org/

CO-PO Mapping:

r														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1					2	-	3		3	-				
CO2					2	-	3		2	-				
CO3					2	-	3		2	-				
CO4					2	3	3	3	2	-				
CO5					3	-	3		3	-				

II-Year-II Semester
HO2201ANALYSIS OF LINEAR SYSTEMS

L	Т	Р	С
3	0	2	4

PRE-REQUISITES: 1) Basic Circuit Analysis

- 2) Electrical Circuit Analysis
- 3) Engineering Mathematics

Course objectives: The student should be able to

- 1. Formulate state equations for Electrical networks.
- 2. Study Fourier series and Fourier transform of a periodic function.
- 3. Compute an Effective value and an average values of non-sinusoidal periodic waves
- 4. Analyze Response of RL, RC, and RLC Networks to Step, Ramp, and impulse functions.
- 5. Study the Hurwitz polynomials and Positive Real Functions.

	Syllabus						
Unit	Contents	Mapped					
No		СО					
	STATE VARIABLE ANALYSIS (10 hrs)						
	Choice of state variables in Electrical networks-Formulation of state equations for						
Ι	Electrical networks-Equivalent source method. Network topological method -	CO1					
	Solution of state equations-Analysis of simple networks with state variable						
	approach.						
	FOURIER SERIES &FOURIER TRANSFORM REPRESENTATION						
	(15hrs)						
	Introduction, Trigonometric form of Fourier series, Exponential form of Fourier						
II	series, Wave symmetry, Fourier integrals and transforms, Fourier transform of a	CO2					
	periodic function, Properties of Fourier Transform, Parseval's theorem, Fourier						
	transform of some common signals, Fourier transform relationship with Laplace						
	Transform.						
	APPLICATIONS OF FOURIER SERIES AND FOURIER TRANSFORM						
	REPRESENTATION (15hrs)						
III	Introduction, Effective value and average values of non-sinusoidal periodic	CO3					
	waves, currents, Power Factor, Effects of harmonics, Application in Circuit						
	Analysis, Circuit Analysis using Fourier Series.						
	LAPLACE TRANSFORM APPLICATIONS (15hrs)						
IV	Application of Laplace transform Methods of Ananlysis – Response of RL, RC,	CO4					
ĨV	RLC Networks to Step,Ramp, and impulse functions, Shifting Theorem -	004					
	Convolution Integral – Applications						
	TESTING OF POLYNOMIALS (10hrs)						
V	Elements of reliability-Hurwitz polynomials, Properties of Hurwitz polynomials -	CO5					
	positive real functions-Properties-Testing-Sturm's Test, examples.						
Con	tent Beyond the syllabus:						

Response of RL network to sinusoidal signals

Response of RC network to sinusoidal signal

Response of RLC network to sinusoidal signal

Properties of LC Immittence

Transfer function of an electrical network

List of Experiments: practice any 5 programs(**10 hrs**)

- 1. Compute the response of RL Circuit with step input.
- 2. Compute the response of RC Circuit with step input.
- 3. Compute the response of RLC Circuit with step input.
- 4. Compute the response of RL Circuit with impulse input.
- 5. Compute the response of RL Circuit with impulse input.
- 6. Compute the response of RC Circuit with impulse input.
- 7. Compute the response of RL Circuit with impulse input.
- 8. Study the Effects of harmonics in a RLC Circuit.
- 9. Obtain the Response of RC network to Non-sinusoidal signal.
- **10.** Obtain the solution of a network using state space analysis.

	Course Outcomes				
	Course Outcomes				
Upon	successful completion of the course, the student will be able to				
CO1	Understand the Formulation of state equations for Electrical networks{Understand				
	level, KL2}				
CO2	Analyze Fourier series and Fourier transform of a periodic function.{ Understand				
	Analyze level, KL2&KL4}				
CO3	Analyze Effective value and average values of non-sinusoidal periodic waves{Analyze				
	level, KL4}				
CO4	Analyze Response of RL, RC, RLC Networks to Step, Ramp, and impulse functions{				
	Analyze level, KL4}				
CO5	Analyze Hurwitz polynomials and Positive Real Functions. {Apply level, KL4}				

Learning Resources

Text books:

- 1. Network Analysis and Synthesis UmeshSinha- SatyaPrakashan Publications
- 2. Linear System Analysis A N Tripathi, New Age International.

Reference books:

- 1. Network and Systems D Roy Chowdhary, New Age International.
- 2. Engineering Network Analysis and Filter Desgin- Gopal G Bhisk&Umesh.
- 3. Linear system anlysis by A.Cheng, Oxford publishers.
- 4. Signals, Systems and Communications by B.P. Lathi, BS Publications 2003.

e- Resources & other digital material

1. https://nptel.ac.in/courses/108/106/108106150/

 https://onlinecourses.nptel.ac.in/noc20_ee15/preview
 https://nptel.ac.in/courses/108/104/108104100/
 https://ocw.mit.edu/courses/mechanical-engineering/2-017j-design-ofelectromechanical-robotic-systems-fall-2009/course-text/MIT2_017JF09_ch02.pdf
 https://www.researchgate.net/publication/301078132_Linear_Systems_Analysis_in_the_ Time_Domain

Micro-Syllabus

Unit – 1: State Variable Analysis (10 hrs)

Choice of state variables in Electrical networks-Formulation of state equations for Electrical networks-Equivalent source method. Network topological method - Solution of state equations-Analysis of simple networks with state variable approach.

Unit No	Module	Micro content
		Choice of state variables in Electrical networks,
1a.State Variable	Formulation of state	Formulation of state equations for Electrical
Analysis	equations	networks,
		Equivalent source method,
	Solution of state equations-for simple networks	Network topological method,
1b. State Variable		Solution of state equations,
Analysis		Analysis of simple networks with state variable
		approach,

Unit – 2: Fourier Series & Fourier Transform Representation (15hrs)

Introduction, Trigonometric form of Fourier series, Exponential form of Fourier series, Wave symmetry, Fourier integrals and transforms, Fourier transform of a periodic function, Properties of Fourier Transform, Parseval's theorem, Fourier transform of some common signals, Fourier transform relationship with Laplace Transform.

Unit No	Module	Micro content
2a. Fourier Series		Introduction Fourier series,
& Fourier	Fourier series	Trigonometric form of Fourier series,
Transform	Found series	Exponential form of Fourier series,
Representation		Wave symmetry,
	Fourier integrals and Transforms	Fourier transform of a periodic function,
2b. Fourier Series		Properties of Fourier Transform,
& Fourier Transform		Parseval's theorem
Representation		Fourier transform of some common signals,
1		Fourier transforms relationship with Laplace
		Transform.

Unit – 3: Applications of Fourier Series And Fourier Transform Representation (15hrs) Introduction, Effective value and average values of non-sinusoidal periodic waves, currents, Power Factor, Effects of harmonics, Application in Circuit Analysis, Circuit Analysis using Fourier Series.

Unit No	Module	Micro content	
		Introduction applications of Fourier series,	
		Computation of Effective value of non-sinusoidal	
		periodic waves,	
		Computation of Average value of non-sinusoidal	
3a. Applications		periodic waves,	
of Fourier Series	Applications of Fourier	Computation of Effective current value of non-	
And Fourier Transform Representation	Series	sinusoidal periodic waves,	
		Computation of Effective voltage value of non-	
		sinusoidal periodic waves,	
		Computation of Effective current value of non-	
		sinusoidal periodic waves,	
		Computation of Power Factor value of non-	
		sinusoidal periodic waves,	
3b.Applications		Effects of harmonics,	
of Fourier Series	Applications of Fourier	Application in Circuit Applysis	
And Fourier		Application in Circuit Analysis,	
Transform	1101131011115	Circuit Analysis using Fourier Series.	
Representation		Chourt marysis using round benes.	

Unit-4:Laplace Transform Applications(15hrs)

Applications of Laplace transform Methods of Analysis – Response of RL, RC, RLC Networks to Step, Ramp, and impulse functions, Shifting Theorem – Convolution Integral – Applications.

Unit No	Module	Micro content
4a. Laplace Transform Applications	Application of Laplace transform	Application of Laplace transform Methods of Analysis, Response of RL Networks to Step, Ramp, and impulse functions, Response of RC Networks to Step, Ramp, and impulse functions,
		Response of RLC Networks to Step, Ramp, and impulse functions.
4b.Distribution Systems	Application of Laplace transform	Shifting Theorem,Convolution Integral,
		Applications of Convolution Integral.

Unit-5:Testing of Polynomials (10hrs)

Elements of reliability-Hurwitz polynomials, Properties of Hurwitz polynomials -positive real functions-Properties-Testing-Sturm's Test, examples.

Unit No	Module	Micro content
		Elements of reliability,
5a.Testing of	Hurwitz polynomials	Introduction to Hurwitz polynomials,
Polynomials		Properties of Hurwitz polynomials
		problems to check Hurwitz polynomials
		Introduction to Positive Real Functions,
5h Testing of	Desition Desit Franciscus	Properties of Positive Real Functions,
Dolynomials	Positive Real Functions	Testing-Sturm's Test,
1 Orynomiais		Simple Problems on Positive real Functions

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Understand the Formulation of state equations for Electrical networks {Understand
	level, KL2}
CO2	Analyze Fourier series and Fourier transform of a periodic function.{ Understand
	&Analyze level, KL2&KL4}
CO3	Analyze Effective value and average values of non-sinusoidal periodic waves {Analyze
	level, KL4}
CO4	Analyze Response of RL, RC, RLC Networks to Step, Ramp, and impulse functions{
	Analyze level, KL4}
CO5	Analyze Hurwitz polynomials and Positive Real Functions. {Apply level, KL4}

Text books:

- 1. Network Analysis and Synthesis Umesh Sinha- Satya Prakashan Publications.
- 2. Linear System Analysis A N Tripathi, New Age International.

Reference books:

- 1. Network and Systems D Roy Chowdhary, New Age International.
- 2. Engineering Network Analysis and Filter Desgin- Gopal G Bhisk&Umesh.
- 3. Linear system anlysis by A.Cheng, Oxford publishers.
- 4. Signals, Systems and Communications by B.P. Lathi, BS Publications 2003.

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-	PSO-
													1	2
CO1	3	2				1							1	
CO2	2	2											1	
CO3	2	1				1							1	
CO4	3	2											1	

CO5	2	1						1	

II-Year-II Semester

HO2201

ENERGY STORAGE SYSTEMS

L	Т	Ρ	С		
3	0	2	4		

PRE-REQUISITES: 1) Chemistry

Course objectives: The student should be able to

- 1. Study the types of various energy storage systems.
- 2. Study the principle of electro chemical energy storage system and accumulators.
- 3. Understand flywheel mechanism and energy storage system.
- 4. Know the production of hydrogen gas, its storage and generation of electricity from hydrogen
- 5. study the use of super capacitors, its charging and discharging phenomenon and energy storage.

	Syllabus				
Unit	Contents	Mapped			
No		СО			
Ι	Generalities On Energy Storage: (10hrs) Energy, Power, Capacity, Depth Of Discharge, State Of Discharge, Round Trip Efficiency, Charge And Discharge Losses, Types Of Energy Storage Systems: Physical And Electrical Storage(Types Only)	CO1			
II	Electro Chemical Energy Storage:(10hrs) Introduction, System Structure, Elementary Principle, Different Types Of Accumulators-Accumulators With Aqueous Electrolyte: Lead–Acid Accumulator, Alkaline Accumulators, The Nickel-Iron , Nickel–Cadmium Accumulator, Ni-MH Accumulator, Accumulators With Non-aqueous Electrolyte: Lithium-Metal Accumulator, Lithium-Ion Accumulator.	CO2			
III	Flywheel storage System:(8hrs) Introduction, Rotor Dynamics, Moment Of Inertia, Specific Energy, Aerodynamic Drag Of A Flywheel, Efficiency, Design Of Flywheel.	CO3			
IV	Energy Storage Based On Hydrogen:(12hrs) Introduction, Structure Of Energy storage system, Electrolysis Of Water, Alkaline Electrolysis, High-Temperature Steam Electrolysis. Storage Of Hydrogen: Liquid Hydrogen Storage, Storage Of Hydrogen By Compression, Formic Acid For Hydrogen Storage, Conversion From Hydrogen To Electricity, Efficiency.	CO4			
v	Super Capacitors:(8hrs) Introduction, types of super capacitors, Electrodes used for super capacitors, Electrical parameters, Life time, Applications of super capacitors, General Characteristics, Modelling, behaviour of super capacitors, charging and discharging of super capacitors.	CO5			
List	of Experiments :				
	1. Performance characteristics of battery storage system				

- 2. Determination of moment of inertia of wheel
- **3.** Performance characteristics of hydrogen fuel cell
- 4. Determination of capacitance of a super capacitor
- 5. Determination of Equivalent series resistance of a super capacitor
- 6. Determination of leakage current of a super capacitor

r							
	Course Outcomes						
Upon s	successful completion of the course, the student will be able to						
CO1	Understand the various forms of energy and types of energy storage system						
	{Understand level, KL2}						
000							
CO2	Analyze the working of electro chemical energy storage system and various						
	accumulators{Analyze level, KL3}						
CO3	Explain the performance of flywheel storage mechanism { Explain level, KL4 }						
CO4	Understand the Generation phenomenon of electricity from hydrogen gas and storage						
	r i i i i i i i i i i i i i i i i i i i						
	system{Understand level, KL2}						
	······································						
CO5	Analyze the working of super capacitors and its performance { Annly level , KL4 }						
000	rinal, 20 the Working of super superiors and its performance (rippi) is tell if						

Learning Resources						
Text b	ooks:					
1.	Energy storage systems and components by Alfred Rufer, CRC press.					
2.	Electro Chemical Energy Storage for Renewable sources and Grid balancing, by Patrick					
	T. Mosely, Jurgen Garche, Elsevier.					
Refere	ence books:					
1.	Energy storage: Fundamentals, materials and applications by RobbertA Huggins,					
	Springer, Second Edition.					
2.	Supercapacitors: Materials, Systems, and Applications by Max Lu, Francois					
	Beguin, ElzbietaFrackowiak, Wiley VCH.					
3.	Super capacitors Alternative Energy Storage System by Tripati SK, Jain Amrita, Lambert					
	Academic publishing.					
4.	Engineering Energy storage by OdnestokkeBurhiem, Elsevier Academic press.					
e- Res	ources & other digital material					
1.	https://nptel.ac.in/content/storage2/courses/108103009/download/M9.pdf					
2.	https://www.youtube.com/watch?v=EakRe6ICM-Q&t=54s					
3.	https://energystorage.org/why-energy-storage/technologies/flywheel-energy-storage-					
	systems-fess/					

- 4. https://en.wikipedia.org/wiki/Supercapacitor
- 5. https://en.wikipedia.org/wiki/Flywheel_energy_storage

Micro-Syllabus

Unit – 1: Generalities On Energy Storage: (10hrs)

Need of energy and energy storage, Energy, Power, Capacity, Depth Of Discharge, State Of Discharge, Round Trip Efficiency, Charge And Discharge Losses, Types Of Energy Storage Systems: Physical And Electrical Storage(Types Only)

Unit	Module	Micro content
		Need of energy and energy storage
1a. Basic	Basic definitions of	Energy, Power, Capacity
definitions of	energy storage	Depth Of Discharge
energy storage		State Of Discharge,
1b. Performance	Performance	Round Trip Efficiency
parameters &	parameters & types	Charge And Discharge Losses
types of Energy	of Energy storage	Physical energy storage systems
storage systems	systems	Electrical energy storage systems

Unit-2: Electro Chemical Energy Storage:(10hrs)

Introduction, System Structure, Elementary Principle, Different Types Of Accumulators-Accumulators With Aqueous Electrolyte: Lead–Acid Accumulator, Alkaline Accumulators, Nickel-Iron, Nickel–Cadmium Accumulator, Ni-MH Accumulator, Accumulators With Nonaqueous Electrolyte: Lithium-Metal Accumulator, Lithium-Ion Accumulator.

Unit	Module	Micro content					
		Electro Chemical Energy Storage introduction					
2a. Electro		Principle of electro chemical energy storage					
chemical energy		Accumulators with aqueous electrolyte: Lead-					
storage&	Electro chemical energy	Acid Accumulator					
Accumulators	storage& Accumulators	Alkaline Accumulators					
with aqueous	with aqueous electrolyte	Nickel-Iron Accumulators					
electrolyte		Ni-MH Accumulator					
		Ni-MH Accumulator					
		Non-aqueous Electrolyte: Lithium-Metal					
2b. Non-aqueous	Non-aqueous Electrolyte	Accumulator					
Electrolyte		Lithium-Ion Accumulator.					
Unit-3: Flywheel storage System:(8hrs)

Introduction, working of flywheel, Rotor Dynamics, Moment Of Inertia, Specific Energy, Aerodynamic Drag Of A Flywheel, Efficiency, Design Of Flywheel.

Unit	Module	Micro content
		Introduction
30 Pasia tarma of	Flywheel basic terms analysis	working of flywheel
flywheel		Rotor Dynamics
		Moment Of Inertia
		Specific Energy
3b. performance	Danformanaa analysis of	Aerodynamic Drag Of A Flywheel
analysis of	flywbaal	Efficiency
flywheel	nywneer	Design Of Flywheel

Unit-4: Energy Storage Based On Hydrogen:(12hrs)

Introduction, Structure Of Energy storage system, Electrolysis Of Water, Alkaline Electrolysis, High-Temperature Steam Electrolysis.

Storage Of Hydrogen: Liquid Hydrogen Storage, Storage Of Hydrogen By Compression, Formic Acid For Hydrogen Storage, Conversion From Hydrogen To Electricity, Efficiency.

Unit	Module	Micro content
		Introduction
4a. Production of Hydrogen gas	Des dustion of Hudes son	Structure Of Energy storage system
through	gas through Electrolysis	Phenomenon of Electrolysis Of Water
Electrolysis	gas unough Electorysis	Alkaline Electrolysis
Liectionysis	-	High-Temperature Steam Electrolysis
4b. Storage of Hydrogen and electricity generation		Liquid Hydrogen Storage
	Storage of Hydrogen and electricity generation	Storage Of Hydrogen By Compression
		Formic Acid For Hydrogen Storage
		Conversion From Hydrogen To Electricity
		Efficiency.

Unit-5: Super Capacitors:(8hrs)

Introduction, types of super capacitors, Electrodes used for super capacitors, Electrical parameters, Life time, Applications of super capacitors, General Characteristics, Modelling, behaviour of super capacitors, charging and discharging of super capacitors.

Unit	Module	Micro content
5a. Physical properties of super capacitors, Applications	Physical properties of super capacitors, Applications	Introduction
		types of super capacitors
		Electrodes used for super capacitors
		Electrical parameters, Life time
		Applications of super capacitors

		General Characteristics
5b. Analysis of	Analysis of super	Modelling of super capacitor
super capacitor	capacitor	behaviour of super capacitors
		charging and discharging of super capacitors

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Understand the various forms of energy and types of energy storage system
	{Understand level, KL2}
CO2	Analyze the working of electro chemical energy storage system and various
	accumulators{Analyze level, KL3}
CO3	Explain the performance of flywheel storage mechanism {Explain level, KL4}
CO4	Understand the Generation phenomenon of electricity from hydrogen gas and storage
	system{Understand level, KL2}
CO5	Analyze the working of super capacitors and its performance {Apply level, KL4}

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Understand the working of hydro and thermal power plants {Understand level, KL2}
CO2	Explain the working of nuclear, gas, diesel power plants and non-conventional energy
	sources.{Apply level, KL3}
CO3	Analyze transmission lines parameters {Analyze level, KL4}
CO4	Evaluate the performance of AC and DC distribution systems. {Evaluate level, KL5}
CO5	Analyze the different load curves and tariff methods. {Apply level, KL4}

Text books:

1. Energy storage systems and components by Alfred Rufer, CRC press.

2. Electro Chemical Energy Storage for Renewable sources and Grid balancing, by Patrick T.

Mosely, Jurgen Garche, Elsevier.

Reference books:

- 1. Energy storage: Fundamentals, materials and applications by RobbertA Huggins, Springer, Second Edition.
- 2. Supercapacitors: Materials, Systems, and Applications by Max Lu, Francois Beguin, ElzbietaFrackowiak, Wiley VCH.
- 3. Super capacitors Alternative Energy Storage System by Tripati SK, Jain Amrita, Lambert Academic publishing.
- 4. Engineering Energy storage by OdnestokkeBurhiem, Elsevier Academic press.

CO-PO Mapping::

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1	2											1		1
CO2	1													
CO3	2			2										
CO4	1			2									2	
CO5	2			2									2	

II-Year-II Semester HO2201

SEMICONDUCTOR DEVICES MODELLING

L	Т	Р	С	
3	0	2	4	

Pre-Requisites: knowledge of basic Devices

Course objectives: This subject gives knowledge of semiconductor devices

- 1. The main objectives are Study the principle of operation of basic devices and physics
- 2. Study the principle of operation of MOSFET and classification of MOSFET
- 3. Compute the performance factors of CMOS
- 4. Know the different types of Bipolar devices and its working
- 5. Design the different modes of Bipolar devices

	Syllabus	
Unit No	Content	Mapped CO
	Unit-1: Basic Devices And Physics(15hrs)	
Ι	:Operation, &Its Working,-MOS –Capacitor: Structure And Principle Of Operation-High Field Effects	CO1
	Unit-2: MOSFET DEVICES(15hrs)	
Π	Long-channel MOSFETs-Short-channel MOSFETs- CMOS Device Design :	CO2
	MOSFET Scaling-Threshold voltage-MOSFET channel length	
	Unit-3: CMOS PERFORMANCE FACTORS(15hrs)	
III	Basic CMOS circuit elements- Parasitic elements-Sensitivity of CMOS delay	CO3
	to device parameters-Performance factors of advanced CMOS devices	
	Unit-4: BIPOLAR DEVICES(15hrs)	
IV	n-p-n Transistors-Ideal current-voltage characteristics-Characteristics of a	CO4
11	typical n-p-n transistor-Bipolar device models for circuit and time-dependent	004
	analyses- Breakdown voltages	
	Unit-5: BIPOLAR DEVICE DESIGN (15hrs)	
V	Design of the emitter design- Design of the base region-Design of the collector	CO5
	design- Modern bipolar transistor structures.	
List o	f experiments:	
1.	V-I Characteristics Of P-N Junction Diode in both forward & reverse bias condit	ion
2.	Study Of Characteristics Of MOSFET	
3.	To Study Triggering Of MOSFET	
4.	To Study Operation Of MOSFET Chopper Circuit	
5.	To Study MOSFET Based Single-Phase Series-Resonant Inverter.	
6.	To Study MOSFET Based Single-Phase Bridge Inverter.	
7.	NPN BJT Common Emitter Characteristics	

- 8. NPN BJT Common Base Characteristics
- 9. NPN BJT Common Collector Characteristics

Course Outcomes:

Upon successful completion of the course, the student will be able to

No	Description	POs, PSOs	KL			
CO1	Understand the working of basic devices and physics{Understand	PO1 PSO2	13			
	level, KL2}	101,1302	1,5			
CO2	Knowthe principle of operation of MOSFET and classification of	DO1 DSO2	23			
	MOSFET{Apply level, KL3}	F01, F302	2,3			
CO3	Compute the performance factors of CMOS{Analyze level, KL4}	PO1, PSO2	1,2			
CO4	Knowthe different types of Bipolar devices and its	DO1 DSO2	23			
	working{Understand Level,KL2}					
CO5	Design the different modes of bipoardevices.{ Apply level, KL4 }	PO1, PSO2	1,2			

Text books:

- 1. "Solid State Electronic Devices ", B. G. Streetman and S. Banerjee, PHI.
- 2. "Physics of Semiconductor Devices" S. M. Sze, , John Wiley & Sons..
- 3. "Semiconductor Devices: Physics and Technology "S. M. Sze, , John Wiley & Sons.
- 4. "Physics of Semiconductor Devices" Michael Shur, PHI.

Reference books:

- 1. "Semiconductor Devices "NanditaDasGupta and AmitavaDasGupta, , PHI.
- 2. "Fundamentals of Solid State Electronics" C. T. Sah, World Scientific.
- 3. "Advanced Theory of Semiconductor Devices", Karl Hess, , IEEE Press.
- 4. **"Fundamentals of Semiconductor Devices ".**J.Lindmayer and C. Y. Wringley, , Affiliated East-West Press Pvt. Ltd

e-resource:

- 1. https://nptel.ac.in/courses/117/106/117106033/
- 2. https://www.researchgate.net/publication/267261216_Semiconductor_Device_Modeling
- 3. https://en.wikipedia.org/wiki/Semiconductor_device_modeling
- 4. https://iitk.ac.in/new/ee616a

Micro-Syllabus

Unit-1:Basic Devices And Physics (15hrs)						
Electrons And	Holes In Silicon And	Germanium -P-N Junction Diode :Operation, &Its				
Working,-MOS – Capacitor: Structure And Principle Of Operation-High Field Effects						
Unit No	Module Name	Micro content				
1a.	Electrons and holes	Semiconductors/Types OfSemi Conductors				
	concept in Ge& Si.	Semiconductors/EM Field And Transport Equations				

	P-N junction diode	Semi Conductors/Drift, Diffusion, Transport Model		
		Semiconductors/Energy Band Diagram		
		p-n junction diode/construction working, Nine step		
		device modelling		
		MOS capacitor/types of devices		
16	MOS Conscitor	MOS capacitor/structure		
10.	MOS-Capacitor	MOS Capacitor/Modes of operation		
		MOS Capacitor/C-V characteristics		
Unit-2: MOSF	ET DEVICES(15hrs)			
Long-channel M	IOSFETs-Short-channel M	OSFETs- CMOS Device Design : MOSFET Scaling-		
Threshold volta	ge-MOSFET channel lengt	h		
Unit No	Module Name	Micro content		
		MOSFET/device structure, characteristics		
20	MOSEET	MOSFET /Types Of MOSFET,		
<i>2a</i> .	MOSPET	Long Channel MOSFET/DC model		
		DC Model of bulk MOSFET		
		MOSFET scaling		
	CMOS DEVICE	Threshold voltage		
2b.		MOSFET channel length		
	DESIGN	Static dissipation		
		Dynamic dissipation		
Unit-3: CMOS	PERFORMANCE FACT	TORS(15hrs)		
Basic CMOS	circuit elements- Parasiti	c elements-Sensitivity of CMOS delay to device		
parameters-Perf	formance factors of advance	ed CMOS devices		
Unit No	Module Name	Micro content		
		Basic circuit elements		
3a.	CMOS	Parasitic elements		
		Types of CMOS		
3h	CMOS Dovidos	Sensitivity of CMOS delay to device parameters		
50.	CIVIOS Devices	Performance factors of advanced CMOS devices		
Unit-4: BIPOL	AR DEVICES(15hrs)			
n-p-n Transist	ors-Ideal current-voltage	characteristics-Characteristics of a typical n-p-n		
transistor-Bipolar device models for circuit and time-dependent analyses- Breakdown voltages				
Unit No	Module Name	Micro content		
		Bipolar devices/types		
4a.	Bipolar Devices	n-p-n transistor/ideal c-v characteristics		
		n-p-n transistor/typical c-v characteristics		
4b.	Bipolar device models	Bipolar device model /time dependent analysis		

		Bipolar device model/breakdown voltages						
Unit-5: BIPOI	Unit-5: BIPOLAR DEVICE DESIGN (15hrs)							
Design of the e	Design of the emitter design- Design of the base region-Design of the collector design- Modern							
bipolar transisto	or structures							
Unit No	Module Name Micro content							
	Bipolar device design	Basic bipolar devices						
		Different modes of operation of transistor						
5a.		Common emitter transistor circuit design						
		Common base transistor circuit design						
		Common collector transistor circuit design						
5b	Bipolar device designing	Modern bipolar devices& its structures						
	applications	Advantages of modern bipolar devices						

Course Outcomes:

Upon successful completion of the course, the student will be able to

No	Description	POs, PSOs	KL		
CO1	Understand the working of basic devices and physics{Understand	PO1 PSO2	12		
	level, KL2}	F01, F302	1,5		
CO2	Know the principle of operation of MOSFET and classification of				
	MOSFET{Apply level, KL3}				
CO3	Compute the performance factors of CMOS{Analyze level, KL4}	PO1, PSO2	1,2		
CO4	Knowthe different types of Bipolar devices and its	PO1 PSO2	\mathbf{r}		
	working{Understand Level,KL2}	F01, F302	2,5		
CO5	Design the different modes of bipolar devices.{ Apply level, KL4 }	PO1, PSO2	1,2		

Text books:

- 1. "Solid State Electronic Devices ", B. G. Streetman and S. Banerjee, PHI.
- 2. "Physics of Semiconductor Devices" S. M. Sze, , John Wiley & Sons..
- **3. "Semiconductor Devices: Physics and Technology "**S. M. Sze, , John Wiley & Sons.
- 4. "Physics of Semiconductor Devices" Michael Shur, PHI.

Reference books:

- 1. "Semiconductor Devices "NanditaDasGupta and AmitavaDasGupta, , PHI.
- 2. "Fundamentals of Solid State Electronics" C. T. Sah, World Scientific.
- 3. "Advanced Theory of Semiconductor Devices", Karl Hess, , IEEE Press.
- 4. **"Fundamentals of Semiconductor Devices ".**J.Lindmayer and C. Y. Wringley, , Affiliated East-West Press Pvt. Ltd

e-resource:

- 1. https://nptel.ac.in/courses/117/106/117106033/
- 2. https://www.researchgate.net/publication/267261216_Semiconductor_Device_Modeli

ng

- 3. https://en.wikipedia.org/wiki/Semiconductor_device_modeling
- 4. https://iitk.ac.in/new/ee616a

<u>CO-POs& PSOs Mapping:</u>

CO No	PO Number								PSO Number))er				
INO.	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3		3									3	3	
CO2	3	3											3	2	
CO3	3			3									2		1
CO4				3									3		
CO5	3		3		3	2									

II-Year-II Semester
HO2201RENEWABLE ENERGY SOURCES

L	Т	P	C	
3	0	2	4	

PRE-REQUISITES: 1) Basics of Solar Energy

Preamble: This course gives a flavor of renewable sources and systems to the students. It introduces solar energy its radiation, collection, storage and its applications. This covers generation, design, efficiency and characteristics of various renewable energy sources including solar, wind, hydro, and biomass. Fuel cells and geothermal systems.

Course objectives: The main objectives are

- 1. To study the solar radiation data, extraterrestrial radiation. Radiation on earth's surface.
- 2. To study solar thermal collections.
- 3. To study solar photo voltaic systems.
- 4. To study maximum power point techniques in solar pv and wind energy
- 5. To study wind energy conversion systems Betz coefficient systems tip speed ratio.
- 6. To study basic principle and working of hydro, tidal, biomass, fuel cell and geothermal systems

	Syllabus						
Unit No	Contents						
I	Fundamentals of Energy Systems And Solar Energy(11hrs)Fundamentals of Energy Systems: Energy conversion principle, EnergyScenario, various forms of renewable energy, solar radiation, outside earth'satmosphere, earth surface, analysis of solar radiation data. (05 hrs)Solar Energy: Geometry – radiation of tilted surface, numerical problems. Liquidplate plate collectors, performance analysis – Transmissivity – Absorptivityproduct collector efficiency factor, collector heat remove factor. (06 hrs)	C01					
п	Solar Thermal Systems (13 hrs) Introduction to solar Air heaters, concentrating collectors, solar pond and solar till, Solar thermal plant, numerical problems, solar photovoltaic systems, photovoltaic cell, module, array – construction – efficiency of solar cells, developing technologies cells – I- V characteristics, equivalent circuit of solar cells, series resistance, shunt resistance, applications and systems, balance of system components, maximum power point techniques, pertube and observe technique, hill climbing technique.	CO2					
III	Wind Energy(12hrs)Sources of wind energy – wind patterns, types of turbines, horizontal axis	CO3					

	and vertical axis machines, kinetic energy of wind, Betz coefficient, tip speed	
	ratio, Efficiency, power output of wind turbine, selection of generators	
	(synchronous, induction), maximum power point tracking, wind forms, power	
	generators for utility grids.	
	Hydro And Tidal Power Systems(12)	
	hrs) HydroPower Systems: Basic working principle, Classification of hydro	
	systems, large, small, micro measurement of head and flow - energy equation -	
IV	types of turbines, numerical problems. (06 hrs)	CO4
	Tidal Power Systems: Tidal power, basics, kinetic energy equation- turbines for	
	tidal power, numerical problems, wave power basics, kinetic energy equation,	
	wave power devices, linear generators. (06 hrs)	
	Biomass, Fuel Cells And Geothermal Systems (10	
V	hrs) Energy, Fuel classification – Pyrolysis- direct combustion of heat, different	CO5
	digesters and sizing	
Co	ntent Beyond the syllabus:	
Ap	plication of non-conventional and renewable energy sources, Estimation of solar radia	tion.
Lis	t of Experiments	
1.	To conduct the solar retardation test.	
2.	To conduct its performance and analysis of solar thermal systems.	
3.	To draw the I-V characteristics of solar photovoltaic system.	
4.	To draw the equivalent circuit of solar cell.	
5.	To find the tip – speed – ratio of wind energy and its efficiency.	
6.	To write the Kinetic Energy Equation for tidal power systems.	
7.	To write the Kinetic Energy Equation for Hydro power systems.	
8.	To draw the V-I characteristics of Fuel cell.	

	Course Outcomos					
	Course Outcomes					
Upon s	successful completion of the course, the student will be able to					
CO1	Analyze solar radiation data, extraterrestrial radiation. radiation on earth's					
	surface.{Apply level, KL4}					
CO2	Design solar thermal collectors, solar thermal plants. {Evaluate level, KL5}					
CO3	Design solar photo voltaic systems. {Evaluate level, KL5}					
CO4	Develop maximum power point techniques in solar PV and wind energy					
	systems. {Understand level, KL2}					
CO5	Explain wind energy conversion systems, wind generators, power generations. {Explain					
	level, KL3}					

Learning Resources

Text books:

- 3. "Solar Energy" Principles of thermal collections and storage, S. P. Sukhatme, and J.K. Nayak, TMH ,New Delhi, 3nd edition.
- 4. "Renewable Energy Resources" Johan Twidell and Tony Weir, Taylor and Fancies 2rd edition, 2013.

Reference books:

- 3. "Renewable Energy" Edited by Godfrey, Boyle-Oxford University press 3rd edition, 2013.
- 4. "Renewable Energy Technologies/Ramesh and Kumar Narosa
- 5. "Renewable Energy Technologies" A Practical Guide For Beginners

e- Resources & other digital material

- 7. https://nptel.ac.in/courses/112105051
- 8. https://www.tatapower.com/bussiness/renewable-energy.aspx
- 9. https://www.cleanlineenergy.com/technology/wind-and-solar
- 10. https://www.youtube.com/watch?=xokHLFE96h8
- 11. https://www.youtube.com/watch?v=GZKKWz_tX1c

Micro-Syllabus

Unit – 1:Fundamentals of Energy Systems And Solar Energy(13hrs)Fundamentals of Energy Systems And Solar Energy: Energy conversion principle, EnergyScenario, various forms of renewable energy ,solar radiation, outside earth's atmosphere, earthsurface, analysis of solar radiation data, Geometry – radiation of tilted surface, numericalproblems. Liquid plate plate collectors, performance analysis – transmissivity – absorptiveproduct collector efficiency factor, collector heat remove factor.

Unit No	Module	Micro content
		Energy conversion principle
		Energy Scenario
		Various forms of renewable energy
1 Fundamentals	Fundamentals of Energy Systems And Solar Energy	Solar radiation, outside earth's atmosphere
of Energy		Earth surface, analysis of solar radiation data
Systems And Solar Energy		Geometry – radiation of tilted surface
		Liquid plate plate collectors, performance analysis
		Transmissivity – Absorptive product collector
		Efficiency factor
		Collector heat remove factor
		Numerical problems.

Unit-2:Solar Thermal Systems

(13 hrs)

Solar Thermal Systems: Introduction to solar Air heaters, concentrating collectors, solar pond and solar till, Solar thermal plant, numerical problems, solar photovoltaic systems, photovoltaic cell, module, array – construction – efficiency of solar cells, developing technologies cells - I- V characteristics, equivalent circuit of solar cells, series resistance, shunt resistance, applications and systems, balance of system components, maximum power point, techniques, pertube and

observe technique, hill climbing technique.						
Unit No	Module	Micro content				
		Introduction to solar Air heaters				
		Concentrating collectors, solar pond and solar till				
		Solar thermal plant (Working)				
	Solar Thermal Systems	Solar photovoltaic systems, photovoltaic cell, module				
2. Solar Thermal		Array – construction – efficiency of solar cells				
Systems		Series resistance, shunt resistance, applications				
		Balance of system components				
		Maximum power point, techniques				
		Pertube and observe technique, hill climbing				
		technique.				
		Numerical problems.				

Unit-3:Wind Energy (15hrs)

Wind Energy: Sources of wind energy – wind patterns, types of turbines, horizontal axis and vertical axis machines, kinetic energy of wind, Betz coefficient, tip speed ratio, Efficiency, power output of wind turbine, selection of generators (synchronous, induction), maximum power point tracking, wind forms, power generators for utility grids.

Unit No	Module	Micro content
		Sources of wind energy
		Wind patterns - wind patterns
	Wind Energy	Types of turbines
		Horizontal axis and vertical axis machines
2 Wind Enorgy		Kinetic energy of wind
5. which Energy		Betz coefficient, tip speed ratio
		Efficiency, power output of wind turbine
		Selection of generators (synchronous, induction)
		Maximum power point tracking, wind forms
		Power generators for utility grids.

Unit-4: Hydro And Tidal Power Systems

(13hrs)

Hydro And Tidal Power Systems: Basic working principle, Classification of hydro systems, large, small, micro measurement of head and flow - energy equation - types of turbines , numerical problems, tidal power, basics, kinetic energy equation- turbines for tidal power, wave power basics, kinetic energy equation, wave power devices, linear generators.

Unit No	Module	Micro content
4. Hydro And	Hydro And Tidal	Basic working principle
Tidal Power	Power Systems	basic working principle

Systems Substations	Substations	Classification of hydro systems, large, small, micro measurement of head and flow			
	-	Energy equation, - types of turbines			
	-	Tidal power, basics			
		Basics, kinetic energy equation			
	-	Turbines for tidal power			
		Kinetic energy equation			
	-	Turbines for tidal power, wave power basics			
	-	Kinetic energy equation, wave power devices, linear			
		generators			
	-	Numerical problems.			
Unit 5:Biomass, Fu	Unit 5:Biomass, Fuel Cells And Geothermal Systems (12 hrs)				
Biomass, Fuel Cells And Geothermal Systems: Biomass Energy, Fuel classification -					
Pyrolysis - direct combustion of heat, different digesters and sizing.					
Unit No	Module	Micro content			
Biomass, Fuel		Biomass Energy			

Biomass, Fuel		Biomass Energy
Cells And	Biomass, Fuel Cells	Fuel classification
Geothermal	And Geothermal	Pyrolysis
Systems	Systems	Direct combustion of heat
		Different digesters and sizing.

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Understand Wind energy conversion systems, wind generators, power generation.
	{Understand level, KL2}
CO2	Explain. Basic principle and working of hydro, tidal, biomass, fuel cell and geothermal
	systems. {Apply level, KL3}
CO3	Analyze Solar photovoltaic systems {Analyze level, KL4}
CO4	Evaluate Maximum power point technique in solar PV and wind energy systems.
	{Evaluate level, KL5}
CO5	Analyze solar radiation data extraterrestrial radiation and radiation on earth's surface.
	{Apply level, KL4}

Text books:

- 1. "Solar Energy" Principles of thermal collections and storage, S. P. Sukhatme, and J.K. Nayak, TMH New Delhi, 3nd edition.
- 2. "Renewable Energy Resources" Johan Twidell and Tony Weir, Taylor and Francis 2rd edition, 2013.

Reference books:

- 1. "Renewable Energy" Edited by Godfrey, Boyle-Oxford University press 3rd edition, 2013.
- 2. "Renewable Energy Technologies/Ramesh and Kumar Narosa
- 3. "Renewable Energy Technologies" A Practical Guide For Beginners.

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1	3													
CO2	3												1	
CO3	3	2												
CO4	3	3												1
CO5	3	1												1

III-Year-I Semester

Engineering Economics and Management

L	Т	P	С
3	0	0	3

PRE-REQUISITES: 1) Basic Sciences and Humanities

Course objectives: The student should be able to

CO 1: To understand the concept and nature of Economics and Demand and to familiarize about the Production function, Input Output relationship, Cost-Output relationship and Break Even Analysis.

CO 2: To understand the nature of markets and the concepts of Money and RBI functions.

CO 3: To familiarize with the process of management, principles, and to provide conceptual knowledge on functional management that is on Human resource management and Marketing management.

CO 4: To learn different Accounting Systems, preparation of Financial Statement and to familiarize with the tools of project Management.

CO 5: To understand the concept of Capital, Capital Budgeting and the techniques used to evaluate Capital Budgeting proposals.

Syllabus			
Unit	Contents	Mapped	
No		СО	
I	Introduction to Economics and Theory of Production13 HrsIntroduction to Economics; Definitions, Nature, Scope, Difference betweenMicroeconomics & Macroeconomics –Concept of Demand, Types of Demand,Determinants of Demand-Law of Demand -Elasticity of Demand, Types of Elasticity ofDemand.Theory of production; production function, Law of variable proportions & law ofreturns to scale, Cost; meaning, short run & long run cost, fixed cost, variable cost, totalcost, average cost, marginal cost, opportunity cost. Break even analysis; meaning,explanation, simple problems.	CO1	
п	Introduction to Markets and Money12 HrsMarkets: meaning, types of markets & their characteristics (Perfect Competition, Monopoly, Monopolistic Completion, Oligopoly). National Income, GNP, GDP, NNP,INDP, Personal income and GST (Goods & Service Tax). Money: meaning, functions, types, Monetary policy- meaning, objectives, tools, fiscal policy-meaning, objectives, tools, Banking; meaning, types, functions, Central Bank- RBI: its functions, concepts: CRR, bank rate, repo rate, reverse repo rate, SLR.		
ш	Introduction to Management12 HrsConcept –nature and importance of Management Functions of Management, Principles of Management.Functions of Management, PrinciplesHuman Resource Management:Meaning and difference between Personnel Management and Human Resource Management, Functions of Human Resource	CO3	

	Management			
	Marketing Management: Functions of Marketing - Marketing strategies based on			
	product Life Cycle, Channels of distributions.			
	Introduction to Accounting & Project Management 15 Hrs			
	Introduction to Double Entry System, Journal, Ledger, Trail Balance and Preparation of			
TX 7	Final Accounts with adjustments – Preparation of Financial Statements.	004		
IV		CO4		
	Project Management: (PERT/CPM): Development of Network – Difference between			
	PERT and CPM Identifying Critical Path (Simple Problems).			
	Capital and Capital Budgeting: 12 Hrs			
	Capital Budgeting: Meaning of Capital-Capitalization-Meaning of Capital Budgeting-			
T 7	Time value of money- Methods of appraising Project profitability: Traditional Methods			
V	(payback period, accounting rate of return) and modern methods (Discounted cash flow	05		
	method, Net Present Value method, Internal Rate of Return Method and Profitability			
	Index).			
Cont	ent Beyond the syllabus:			
Intro	oduction to Managerial Economics and demand Analysis: Managerial Economics. N	Vature &		
Scon	e Demand forecasting for new products Concept of supply.			
The	ry of Production and Cost Analysis: Production Process Types of production ISO-	Quants		
ISO	Costs	Quants,		
150 Costs.				
Introduction to Markets and Money: Price Output determination, Pricing Methods and Stock Market				
and inflation influence on industry.				
Introduction to Management: Evolution of Management thought, theories of Motivation, Leadership				
style	S.			
Proj	ect Management: Brief about Project crashing.			

Course Outcomes			
Upon s	uccessful completion of the course, the student will be able to		
CO1	The Learner is equipped with the knowledge of estimating the Demand and demand		
	elasticity's for a product and Input-Output-Cost relationships.		
CO2	The Learner is also ready to understand the nature of different markets and also to have the		
	knowledge of Money & Banking.		
CO3	The Learner will acquire the knowledge on management, HRM and Marketing.		
CO4	The Learner will acquire the knowledge to prepare Financial Statements and the techniques of		
	project management.		
CO5	The Learner can able to evaluate various investment project proposals with the help of capital		
	budgeting techniques for decision making.		

Learning Resources			
Text books:			

13 Hrs

- 1. Dr. A. R. Aryasri Managerial Economics and Financial Analysis, TMH 2018, 2e.
- 2. Dr. N. Appa Rao, Dr. P. Vijay Kumar: 'Managerial Economics and Financial Analysis', Cengage Publications, New Delhi 2012.
- 3. Management Science, Aryasri, Tata McGraw Hill, 2014.
- 4. Dr. P. Vijaya Kumar & Dr. N. Appa Rao, 'Introduction to *Management Science*' Cengage, Delhi, 2012.
- 5. Engineering Economy and Management 1 Edition Pravin Kumar Wiley Publication.
- 6. Engineering Economics & Management- Dr. Vilas Kulkarni & HardikBavishi Vikas Publishing.

Reference books:

- 1. R. L Varshney, K.L. Maheshwari : Managerial Economics, Sultan Chand&Sons 2014,22e.
- 2. Suma Damodaran : Managerial Economics, Oxford 2010,2e.
- 3. Ambrish Gupta: 'Financial Accounting for Management', Pearson 2015,5e.
- 4. Dr. S.N. Maheswari: Financial Accounting, Vikas Publications 2018.
- 5. S. A. Siddiqui & A. S. Siddiqui: Managerial Economics and Financial Analysis, New Age International Publishers, 2017.
- 6. Principles of Marketing: A South Asian Perspective, Kotler Philip, Gary Armstrong, Prafulla Y. Agnihotri, and Eshan ul Haque, 17th Edition, Pearson Education/ Prentice Hall of India, 2018.
- 7. Human Resource Management: Gary Dessler, 14th Edition, pearson 2015.
- 8. Project Planning and Control with PERT and CPM: Dr. B. C. Punmia, K. K Khandelwal, Laxmi Publication, 2017, 4th Edition.

e- Resources & other digital material

- 1. <u>www.managementstudyguide.com</u>
- 2. <u>www.tutorialspoint.com</u>
- 3. <u>www.lecturenotes.in</u>

Micro-Syllabus: Engineering Economics and Management

UNIT – I Introduction to Economics and Theory of Production

Introduction to Economics; Definitions, Nature, Scope, Difference between Microeconomics & Macroeconomics –Concept of Demand, Types of Demand, Determinants of Demand-Law of Demand -Elasticity of Demand, Types of Elasticity of Demand.

Theory of production; production function, Law of variable proportions & law of returns to scale, Cost; meaning, short run & long run cost, fixed cost, variable cost, total cost, average cost, marginal cost, opportunity cost. Break even analysis; meaning, explanation, simple problems.

Unit	Module	Micro Content		
Unit I	Concept of Economics	Economics, Definitions of Economics		
		Micro economics, Macro economics		
		Scope of Micro & Macro Economics		
		Difference Between Micro & Macro Economics		
		Meaning & Definitions of Managerial		
		Economics		
	Basic Economic tools of Managerial	Opportunity cost Principle		

	economics	
	Concept of Demand	What is Demand, Demand Analysis & Objectives
	Types of Demand	Demand distinctions, Demand function
	51	Factors determining demand
	Demand Schedule	Individual demand schedule, Market demand schedule
	Demand Curve	Individual demand curve, Market demand curve
		Assumption of law of demand, Change in
	Law of Demand	demand, Exceptions of law of demand, why
		does demand curve slope downwards.
		Meaning of elasticity of demand, types of Price
	Elasticity of Demand, Types of Elasticity of Demand & Measurement	and income elasticity of demand, factors
		effecting elasticity of demand, measurements of
		elasticity of demand, significance of elasticity
		of demand
	Theory of Production	Production function, Production process,
	Theory of Production	importance of production, assumptions
	Laws of Returns to scale	Schedule and graph
	Cost Analysis	Types of costs, cost & output relationship in
	Cost Analysis	short run and long run
		Uses, limitations of Break even analysis, Key
	Break even Analysis	terminology in Break analysis, Simple problems
	Dicar even Anarysis	on BEP, graphical representation of Break even
		analysis.

UNIT - II Introduction to Markets and Money:

12 Hrs

Markets: meaning, types of markets & their characteristics (Perfect Competition, Monopoly, Monopolistic Completion, Oligopoly).National Income, GNP, GDP, NNP, NDP, Personal income and GST (Goods & Service Tax).

Money: meaning, functions, types, Monetary policy- meaning, objectives, tools, fiscal policymeaning, objectives, tools, Banking; meaning, types, functions, Central Bank- RBI; its functions, concepts; CRR, bank rate, repo rate, reverse repo rate, SLR.

_	Market Structures	Meaning, definitions, types of market
	Perfect Competition	Features
	Monopoly	Features
Unit II	Monopolistic competition	Features
	Oligopoly	features
	Maara Economias	National income, ,GNP, GDP, NNP, NDP,
	Macro Economics	Personal Income and GST
	Monoy	Functions, types
	woney	Monetary Policy

		Fiscal Policy
	Banking	Types, Functions
	RBI	Concept and functions
	Bank Patas	CRR, bank rate, repo rate, reverse repo rate,
	Dank Kates	SLR

UNIT – III Introduction to Management:

12 Hrs

Concept -nature and importance of Management Functions of Management, Principles of Management.

Human Resource Management: Meaning and difference between Personnel Management and Human Resource Management, Functions of Human Resource Management.

Marketing Management: Functions of Marketing - Marketing strategies based on product Life Cycle, Channels of distributions.

	Management	Concepts, functions, Principles			
		Concepts of HRM, Personnel Management			
	HRM	Diff B/w HRM & PM			
		Concepts, functions, Principles Concepts of HRM, Personnel Management Diff B/w HRM & PM Function of HRM Concepts of Marketing Functions of Marketing Product Life Cycle Marketing strategies based on product Life Cycle Channels of distributions.			
Unit III		Concepts of Marketing			
		Concepts, functions, Principles Concepts of HRM, Personnel Management Diff B/w HRM & PM Function of HRM Concepts of Marketing Functions of Marketing Product Life Cycle Marketing strategies based on product Life Cycle Channels of distributions.			
	Marketing Management	Product Life Cycle			
	Marketing Management	Concepts of HRM, Personnel Management Diff B/w HRM & PM Function of HRM Concepts of Marketing Functions of Marketing Product Life Cycle Marketing strategies based on product Life Cycle Channels of distributions.			
		Cycle			
		Channels of distributions.			

UNIT – IV Introduction to Accounting & Project Management 15 Hrs

Introduction to Double Entry System, Journal, Ledger, Trail Balance and Preparation of Final Accounts with adjustments – Preparation of Financial Statements.

Project Management: (PERT/CPM): Development of Network – Difference between PERT and CPM Identifying Critical Path (Simple Problems).

Unit IV	Financial Accounting	Meaning, definitions, objectives & significance, users of accounting, accounting cycle, GAAP.
	Book Keeping	Single and double entry book keeping, types of
	Journal	Features, Pro-forma, Advantages & Limitations, preparation of journal entries, simple problems
	ledger	Features,Pro-forma,Advantages&Limitations,preparationofledger,simpleproblems.
	Trial Balance	Features, Pro-forma, Advantages & Limitations, preparation of Trial balance, simple problems.
	Final accounts	Trading account- Pro-forma, Simple problems

	Profit & Loss account- Pro-forma, Simple
	problems
	Preparation of balance sheet with simple
	adjustments
	Net work Analysis –Simple Problems
Drainet Management	PERT – Simple Problems
Froject Management	CPM – Simple Problems
	Diff B/w PERT & CPM

UNIT - V Capital and Capital Budgeting

12 Hrs

Capital Budgeting: Meaning of Capital-Capitalization-Meaning of Capital Budgeting-Time value of money- Methods of appraising Project profitability: Traditional Methods (payback period, accounting rate of return) and modern methods (Discounted cash flow method, Net Present Value method, Internal Rate of Return Method and Profitability Index).

	Canital	What is capital, need of capital types of capital		
	Capitai	Types of fixed capital, types of working capital		
		Meaning, Nature & scope of capital budgeting		
	Capital Budgeting	Capital budgeting procedure, capital budgeting		
		 What is capital, field of capital types of capital Types of fixed capital, types of working capital Meaning, Nature & scope of capital budgeting Capital budgeting procedure, capital budgeting decisions, method of capital budgeting. Meaning, formula, advantages & disadvantages, simple problems 		
	Payhaak pariod	Meaning, formula, advantages & disadvantages,		
	r ayback period	Types of fixed capital, types of working capital Meaning, Nature & scope of capital budgeting Capital budgeting procedure, capital budgeting decisions, method of capital budgeting. Meaning, formula, advantages & disadvantages, simple problems Meaning, formula, advantages & disadvantages, simple problems		
Unit V	A accurating note of noture (ADD)	Meaning, formula, advantages & disadvantages,		
	Accounting face of feturin(AKK)	simple problems		
	Not present value (NDV)	Meaning, formula, advantages & disadvantages,		
	Thet present value (The V)	simple problems		
	Drafitability in day (DI)	Meaning, formula, advantages & disadvantages,		
	Fioritability index (FI)	simple problems		
	Internal rate of return (IPP)	Meaning, formula, advantages & disadvantages,		
	internal rate of fetulii (IKK)	simple problems		

CO-PO mapping Table

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	1	1	-	-	-	-	1	-	1	1	2	_
CO 2	1	2	-	-	-	1	1	-	1	-	2	-
CO 3	-	-	-	-	-	1	1	1	1	1	2	-
CO 4	1	2	-	3	-	-	1	-	1	2	2	-

III-Year-I Semester

Power Systems-II

L	Т	Р	С
3	0	0	3

PRE-Requisites. Electrical circuit Analysis ii. Power Systems-I

Course objectives: The students should be able to

- 1 To study the short, medium and long length transmission lines, their models and performance.
- 2 To study the effect of travelling waves on transmission lines.
- 3 To study the factors affecting the performance of transmission lines and power factor improvement methods.
- 4 To discuss sag and tension computation of transmission lines as well as to study the performance of overhead insulators.
- 5 To discuss computation of Z_{bus} and Y_{bus} of power system

Syllabus			
Unit	Contents	Mapped	
No		CO	
I	 Performance of Transmission Lines Classification of Transmission Lines – Short, medium, long line and their model representations –Nominal-T–Nominal-Pie and A, B, C, D Constants for symmetrical and Asymmetrical Networks– Numerical Problems– Mathematical Solutions to estimate regulation and efficiency of all types of lines – Numerical Problems. Performance of Long Transmission Lines–Rigorous Solution – Evaluation of A,B,C,D Constants– Interpretation of the Long Line Equations, regulation and efficiency– Representation of Long Lines – Equivalent-T and Equivalent Pie network models (Numerical Problems). (10 hrs) 	CO1	
п	Travelling waves Incident, Reflected and Refracted Waves –Surge Impedance and SIL of Long Lines– Wavelength and Velocity of Propagation of Waves Power system Transients Types of System Transients – Travelling or Propagation of Surges – Attenuation– Distortion– Reflection and Refraction Coefficients – Termination of lines with different types of conditions – Open Circuited Line–Short Circuited Line – T-Junction– Lumped Reactive Junctions. (10 hrs)	CO2	
III	Various Factors governing the Performance of Transmission line Skin and Proximity effects – Description and effect on Resistance of Solid Conductors – Ferranti effect – Charging Current –Shunt Compensation –Corona – Description of the phenomenon–Factors affecting corona–Critical voltages and power loss – Radio Interference. (12 hrs)	CO3	

	Sag and Tension Calculations and Overhead Line Insulators	
IV	Sag and Tension calculations with equal and unequal heights of towers-Effect of Wind	
	and Ice on weight of Conductor-Numerical Problems - Stringing chart and sag template	CO4
	and its applications-Types of Insulators - String efficiency and Methods for	CO4
	improvement- Numerical Problems - Voltage distribution-Calculation of string	
	efficiency–Capacitance grading and Static Shielding. (10 hrs)	
	Bus Admittance Matrix & Bus Impedance Matrix	
	Bus Admittance Matrix (Ybus):	
	Per Unit systems, Single line diagram, Impedance diagram of a power system, Primitive	
T 7	network representation, Formation of Ybus matrix by direct inspection	005
V	method. Numerical Problems.	05
	Bus Impedance Matrix (Zbus):	
	Formation of Zbus matrix by building algorithm, Modification of Zbus for the changes in	
	network, Numerical Problems (3 bus system only). (12 hrs)	
Cont	tent Beyond the syllabus:	
	Importance of Slack bus, PQ bus and PV bus.	
1	The second state in the second state of the se	

Transients in transmission lines

	Course Outcomes			
Upon s	Upon successful completion of the course, the student will be able to			
CO1	Understand about the performance of various transmission systems {Understand level, KL2}			
CO2	Understand about Travelling waves and transients in power transmission systems {Understand			
	level, KL2}			
CO3	Analyze various factors related to charged transmission lines {Analyze level, KL4}			
CO4	Understandsag/tension of transmission lines and performance of line insulators{Understand			
	level, KL2}			
CO5	Analyze about calculation of Y _{bus} and Z _{bus} matrices {Apply level, KL4}			

Learning Resources

Textbooks:

- 1. Electrical power systems by C.L.Wadhwa, New Age International (P) Limited, Publishers, 1998.
- 2. Modern Power System Analysis by I.J.Nagarath and D.P.Kothari, Tata McGraw Hill, 2nd Edition.

Reference books:

- 1. Power system Analysis-by John J Grainger William D Stevenson, TMC Companies, 4thedition
- 2. Power System Analysis and Design by B.R.Gupta, Wheeler Publishing.
- 3. A Text Book on Power System Engineering by M.L.Soni, P.V.Gupta, U.S.BhatnagarA.Chakrabarthy, DhanpatRai& Co Pvt. Ltd.
- 4. Electrical Power Systems by P.S.R. Murthy, B.S.Publications.

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/108105104
- 2. https://www.vssut.ac.in/lecture_notes/lecture1424265031.pdf

- 3. https://www.academia.edu/6923342/LECTURE_NOTES_COURSE_POWER_SYSTEMS_II
- 4. https://www.powertransmission.com/articles/1702
- 5. https://www.powertransmissionworld.com/

Micro-Syllabus- Power Systems-II

Unit – 1: Performance of Transmission Lines

Classification of Transmission Lines – Short, medium, long line and their model representations – Nominal-T–Nominal-Pie and A, B, C, D Constants for symmetrical and Asymmetrical Networks– Numerical Problems– Rigorous Solution (for long transmission lines) –Interpretation of the Long Line Equations- Mathematical Solutions to estimate regulation and efficiency of all types of lines – Numerical Problems. (12 Hrs)

Unit	Module	Micro content
		Classification of transmission lines
	Represe	Representation of transmission lines
Parformance of	Short Medium and	Nominal-T, Nominal pie representations of medium
Transmission	I ong transmission	and long transmission lines
lines	lines	Regulation, efficiency and ABCD constants of short,
mies	medium and long transmission Rigorous solution for long trans	medium and long transmission line
		Rigorous solution for long transmission line
		Numerical problems

Unit-2:

Travelling waves

Incident, Reflected and Refracted Waves –Surge Impedance and SIL of Long Lines–Wave Length and Velocity of Propagation of Waves (5 Hrs)

Power system Transients

Types of System Transients – Travelling or Propagation of Surges – Attenuation–Distortion– Reflection and Refraction Coefficients – Termination of lines with different types of conditions – Open Circuited Line–Short Circuited Line – T-Junction– Lumped Reactive Junctions. (5 Hrs)

Unit	Module	Micro content				
		Incident, Reflected and Refracted voltage and				
? (a) Travelling	Travelling wayo	current waves coefficients				
2 (a) I ravening	Travening waves	Micro content Incident, Reflected and Refracted voltage and current waves coefficients Surge Impedance Loading Wavelength and velocity of propagation of waves Numerical problems Types of system transients Travelling or Propagation of surges Attenuation–Distortion Reflection and Refraction Coefficients (elementary treatment only) Termination of lines with different types of conditions				
waves		Wavelength and velocity of propagation of waves				
		Numerical problems				
		Types of system transients				
		Travelling or Propagation of surges				
2(h) Dowon		Attenuation–Distortion Reflection and Refraction				
2(0) Fower System transients	Power System transients	current waves coefficients Surge Impedance Loading Wavelength and velocity of propagation of waves Numerical problems Types of system transients Travelling or Propagation of surges Attenuation–Distortion Reflection and Refraction Coefficients (elementary treatment only) Termination of lines with different types of conditions ➤ Open circuit				
System transferits		Termination of lines with different types of				
		current waves coefficients Surge Impedance Loading Wavelength and velocity of propagation of waves Numerical problems Types of system transients Travelling or Propagation of surges Attenuation–Distortion Reflection and Refraction Coefficients (elementary treatment only) Termination of lines with different types of conditions ➤ Open circuit				
		Open circuit				

Short circuit
➢ T junction
Lumped reactive junctions
Mathematical calculation
Numerical problems

Unit-3: **Various Factors governing the Performance of Transmission line** Skin and Proximity effects – Description and effect on Resistance of Solid Conductors – Ferranti effect – Charging Current –Shunt Compensation –Corona – Description of the phenomenon–Factors affecting corona–Critical voltages and power loss – Radio Interference. (12 hrs)

Unit	Module	Micro content
Various Factors governing the Performance of Transmission line	Various Factors governing the Performance of Transmission line	 Skin and Proximity effect Description and effect on Resistance of Solid Conductors Ferranti effect Charging current shunt compensation Numerical problems Corona Description of the phenomenon Factors affecting corona Critical voltages and power loss Radio Interference Numerical problems

Unit-4:Sag and Tension Calculations and Overhead Line Insulators

Sag and Tension calculations with equal and unequal heights of towers–Effect of Wind and Ice on weight of Conductor–Numerical Problems – Stringing chart and sag template and its applications– Types of Insulators – String efficiency and Methods for improvement– Numerical Problems – Voltage distribution–Calculation of string efficiency–Capacitance grading and Static Shielding. (12 Hrs)

Unit	Module	Micro content
4 (a) Sag and Tension calculations	Sag and Tension calculations	 Sag and tension calculations Definition of Sag and Tension of transmission line Sag and Tension calculations with equal and unequal heights of towers Effect of Wind and Ice on weight of Conductor Numerical Problems Stringing chart and sag template and its applications (Basic idea)

		Insulators
		Definition and various types
		String efficiency
4 (b) Insulators	Insulators	Voltage distributions
		Methods for improving string efficiency
		Numerical problems
		Capacitance grading and static shielding

Unit-5: Bus Admittance Matrix & Bus Impedance Matrix Bus Admittance Matrix (Ybus):

Per Unit quantities, Single line diagram, Impedance diagram of a power system, Primitive network representation, Formation of Ybus matrix by direct inspection method. Numerical Problems.

Bus Impedance Matrix (Zbus):

Formation of Zbus matrix by building algorithm, Modification of Zbus for the changes in network, Numerical Problems (3 bus system)

Unit	Module	Micro content			
5(a) Bus Admittance matrix	Bus Admittance Matrix (Ybus)	 Bus admittance matrix Per unit quantities Single line diagram Impedance diagram of power system Primitive network representation Formation of Ybus matrix by direct inspection method. Numerical Problems. 			
5(b) Bus Impedance Matri x (Zbus)	Bus Impedance Matrix (Zbus)	 Bus Impedance Matrix (Zbus) ➢ Formation of Zbus matrix by building algorithm ➢ Modification of Zbus for the changes in network ➢ Numerical Problems (upto 3 bus system) 			

CO-PO mapping Table

Co	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations													
	(High: 3, Medium: 2, Low: 1)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1	2													
CO2	2												1	
CO3	2	1												
CO4	2	2	1											1
CO5	2	1												1

III-Year-I Semester

ELECTRICAL MEASUREMENTS & INSTRUMENTATION

L	Т	Р	С
3	0	0	3

PRE-REQUISITES: 1) Basic Circuit Analysis

Course objectives: The student should be able to

- 1. Study the principle of operation and working of different types of instruments for measurement of electrical quantities.
- 2. Study the working principle of operation of different types of instruments for measurement of power and power factor, energy and frequency.
- 3. Understand the principle of operation and working of various types of bridges for measurement of parameters –resistance, inductance, capacitance and frequency.
- 4. Know the principle of operation and working of transducers.
- 5. Study the principle of operation and working of DVMs, DMM and other digital instruments

	Syllabus	
Unit	Contents	Mapped
No		СО
	Measuring Instruments & Instrument Transformers: (12 hrs)Error analysis;	
	Classification – Deflecting, Controlling and Damping torques – PMMC, MI,	
Ι	Electrodynamometer type instruments – Expression for torque. Extension of ranges	CO1
	using Shunts and Multipliers-numerical problems. Instrument transformers: C.T & P.T:	
	Principle of operation and working.	
	Measurement of Power, Power factor & frequency: (15 hrs)	
	Single phase and three phase dynamometer wattmeter: LPF and UPF; Expression for	
	deflecting and control torques; Measurement of active and reactive powers in balanced and	
п	unbalanced systems-Numerical problems. (09 hrs)	CO2
11	Type of P.F. Meters – Single phase and three phase dynamometer and moving iron type	02
	(Elementary treatment only) (02 hrs)	
	Electrical resonance type frequency meter and Weston typesynchroscope, Phase sequence	
	indicator (Elementary treatment only) (04 hrs)	
	Potentiometers & Bridges (12 hrs)	
	Potentiometers: Principle and operation of D.C. Crompton's potentiometer –	
	Standardization – Measurement of unknown resistance – Current – Voltage. AC	
	Potentiometers: polar and coordinate types – Standardization (Elementary treatment	
III	only). (06 hrs)	CO3
	Bridges: Kelvin's double bridge, Wheat stone's bridge, Measurement of high resistance	
	by loss of charge methods - Megger; Measurement of Inductance & Capacitance:	
	Maxwell' bridge, Anderson's bridge, Hays bridge, Wien's bridge, Schering's bridge,	
	Wagner's earth device. (06 hrs)	
IV	Transducers (12 hrs)	CO4

	Transducers: Q-meters, Definition and Classification of Resistive, Inductive and				
	Capacitive Transducer, LVDT, Strain Gauge, Thermistors, Thermocouples, Piezo electric				
	and Photo Diode Transducers, measurement of non-electrical quantities - Pressure-				
	Angular velocity- liquid level.				
	Digital Meters: (10 hrs)				
Advantages of Digital meters, Principle of operation of Ramp, dual–Slope integration $\mathbf{x}_{\mathbf{x}}$					
v	continuous balance type DVM's - Successive approximation DVM's, digital multi-				
	meters, digital phase & frequency meters and digital tachometer.				
Content Beyond the syllabus: NIL					

	Course Outcomes				
Upon s	uccessful completion of the course, the student will be able to				
CO1	Choose suitable instrument for measurement of ac and dc Electrical quantities. {Understand level,				
	KL2}				
CO2	Understand the concepts used in measurement of power, power factor, and frequency & know the				
	application of synchroscope and sequence indicators. {Understand level, KL2}				
CO3	Select suitable bridge for measurement of electrical parameters. {Apply level, KL3}				
CO4	Acquire proper knowledge to use various types of Transducers and able to measure various non-				
	electric quantities. {Apply level, KL3}				
CO5	Acquire proper knowledge and working principle of various types of digital instruments.				
	{Understand level, KL2}				

Learning Resources			
Text books:			
1. Electrical & Electronic Measurement & Instruments by A.K.Sawhney, Dhanpat Rai & Co 17th			
edition 2000.			
2. Electronic Instrumentation by H S Kalsi, 2 nd Edition, McGraw-Hill Publishing, 2004.			
3. Electrical Measurements and measuring Instruments - by E.W. Golding and F.C. Widdis, 5th			
Edition, Wheeler Publishing, 1999.			
Reference books:			
1. Electrical and Electronic Measurements and instrumentation by R.K.Rajput, S.Chand			
2. Electrical Measurements by Harris John Wiley.			
3. Electrical Measurements: Fundamentals, Concepts, Applications – by Reissland, M.U, New Age			
International (P) Limited, Publishers.			

e- Resources & other digital material

- 1. https://nptel.ac.in/noc/courses/noc19/SEM2/noc19-ee44
- 2. http://www.facstaff.bucknell.edu/mastascu/elessonshtml/Measurements/MeasIntro.htm
- 3. http://www.electrical4u.com/electrical-measuring-instruments-types-accuracy-precision-resolutionspeed/

Micro-Syllabus- ELECTRICAL MEASUREMENTS & INSTRUMENTATION

Measuring Instruments & Instrument Transformers: (12 hrs)

Error analysis; Classification – Deflecting, Controlling and Damping torques – PMMC, MI, Electrodynamometer type instruments – Expression for torque. Extension of ranges using Shunts and Multipliers-numerical problems. Instrument transformers: C.T & P.T: Principle of operation and working.

Unit	Module	Micro content
(A)	Error analysis	Error analysis: Definitions of true value, static error, accuracy, precision, sensitivity, linearity, hysteresis, threshold, dead time, dead zone, limiting errors, relative limiting errors, simple problems on limiting errors only
Measuring	Classification, Torques	Classification of instruments
Instruments	PMMC, MI, ED, ES type	PMMC instruments: Torque equation, merits &
	for torque	MI instruments: Torque equation, merits & demerits
	-	ED instruments: torque equation, merits & demerits
	Extension of ranges using	Extension of range of PMMC and MI instruments
	Shunts and Multipliers- numerical problems	Simple Numerical problems on extension of range of instruments
(B) Pango		Use of Instrument transformers, ratios of instrument transformers, burden
extension &	Instrument transformers: C.T & P.T	CT: Principle of operation and working, effect of CT secondary open circuit
transformer		PT: Principle of operation and working

Measurement of Power, Power factor & Frequency: (15 hrs)

Single phase and three phase dynamometer wattmeter: LPF and UPF; Expression fordeflecting and control torques; Measurement of active and reactive powers in balanced and unbalancedsystems-Numerical problems. (09 hrs)

Type of P.F. Meters – Single phase and three phase dynamometer and moving irontype (Elementary treatment only) (02 hrs)

Electrical resonance type frequency meter and Weston typesynchroscope, Phase sequence indicator (Elementary treatment only) (04 hrs)

Unit	Module	Micro content
(A) Measurement of Power, Power factor	Measurement of Power and Power factor	Power in DC & AC circuits
		Electrodynamometer type wattmeter construction,
		theory, shape of scale
		Errors in ED type wattmeter's and compensation
		LPF wattmeter

	Power in Polyphase circuits	Power measurement in polyphase circuits
		Measurement of Reactive power and simple
		numerical problems on power measurement
	Power factor maters	Principle of operation of ED & MI power factor
	Tower factor meters	meter (Elementary treatment only)
(B)	Frequency meters,	
Measurement	synchroscope, phase	Electrical resonance type frequency meter
of Frequency	sequence indicators	Weston type synchroscope
& phase	Applications	Phase sequence indicators: static and rotating
sequence	(elementary treatment only)	

Potentiometers & Bridges (12 hrs)

Potentiometers: Principle and operation of D.C. Crompton's potentiometer – Standardization – Measurement of unknown resistance – Current – Voltage. AC Potentiometers: polar and coordinate types – Standardization (Elementary treatment only). **(06 hrs)**

Bridges: Kelvin's double bridge, Wheat stone's bridge, Measurement of high resistance by loss of charge methods – Megger; Measurement of Inductance & Capacitance: Maxwell' bridge, Anderson's bridge, Hays bridge, Wien's bridge, Schering's bridge, Wagner's earth device. (06 hrs)

Unit	Module	Micro content
(A)	DC Potentiometer	Basic potentiometer circuit, Laboratory type Crompton's potentiometer, multi range potentiometer, standardization procedure
Potentiometers	Applications of potentiometer	Measurement of resistance, Current, voltage, power using potentiometer, Volt ratio box
		Polar type potentiometer (elementary treatment only)
	AC potentiometers	Coordinate type potentiometer (elementary treatment
		only)
		Low resistance: Kelvin's double bridge
	Measurement of	Medium resistance: whetstones bridge
	resistance	High resistance: Loss of charge method, Megger and
(D)		simple problems on measurement of high resistance
(D) Bridges		General form & equation for bridge balance, detectors
Druges	Measurement of	for AC bridges
	Inductance	Maxwell's bridge, Hays bridge, Andersons bridge and
		simple problems
	Measurement of	De Sauty's bridge, Schering bridge, Wien's bridge,
	capacitance	Wagner's earth device and simple problems

Transducers (12 hrs) Transducers: Q-meters, Definition and Classification of Resistive, Inductive and Capacitive Transducer, LVDT, Strain Gauge, Thermistors, Thermocouples, Piezo electric and Photo Diode Transducers, measurement of non-electrical quantities – Pressure- Angular velocity- liquid level.

Unit	Module	Micro content	
	Q-meters	Principle and operation of LCR Q-meters	
	Definitions,	Transducers, electrical transducers, advantages	
	Classification of	Classification based principle of transduction, primary	
	Transducers	and secondary; Active & Passive	
	Thermistors	Construction, Resistance-Temperature characteristics	
(A)	Thermistors	& application to measurement of temperature	
Transducers	Thermocouples	Construction, application to measurement of	
		temperature, advantages and disadvantages	
		Construction, principle of operation, application to	
	LVDT	measurement of displacement, advantages and	
		disadvantages	
	Strain gauge	Theory, gauge factor, gauge sensitivity, strain	
		measurement on cantilever beam	
	Piezo electric	Theory, working, applications of Piezo electric	
	transducer & Photo	materials	
(B)	diode transducer	Semi-conductor photo diode theory and applications	
Transducers	Measurement of non-electrical quantities	Pressure ((inductive, Capacitive methods),	
		angular velocity (AC and DC Tachometer),	
		Liquid level (Capacitive, Float type and ultrasonic	
		method)	

Digital Meters: (10 hrs)

Advantages of Digital meters, Principle of operation of Ramp, dual–Slope integration continuous balance type DVM's - Successive approximation DVM's, digital multi-meters, digital phase & frequency meters and digital tachometer.

Unit	Module	Micro content
(A)	Digital meters	Block diagram, Merits & demerits
Voltmeters		Principle and operation of Ramp type DVM
	Digital voltmeters	Principle and operation of Dual slope type DVM
		Principle and operation of integrating type DVM
		Principle and operation of successive approximation
		type DVM
(B)	Digital Multimeters	Principle and operation of DMM
DMM, DFM	Digital phase &	Principle and operation of digital phase meter

fr	requency meter,	Principle and operation of frequency meter
ta	achometer	Principle and operation of tachometer

CO-PO mapping Table

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (High: 3, Medium: 2, Low: 1) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 3 3 1 CO2 3 3 1 CO3 3 2 CO4 2 1 CO5 2

III-Year-I Semester

Power Electronics

L	Т	P	С
3	0	0	3

PRE-REQUISITES: 1. Basic Circuit Analysis

2. Basics of Electronics

3. Concepts of Integrations

Preamble: It is very common to use power converters in all the systems of engineering. So it is compulsory for the students to imbibe the concepts of power electronics. This course covers characteristics of semiconductor devices, AC-DC, DC-DC, AC-AC and DC-AC converters.

Course objectives: The main objectives are

- 11. To study the characteristics of various power semiconductor devices and to design firing circuits for SCR.
- 12. To understand the operation of single phase full–wave converters and analyse harmonics in the input current.
- 13. To study the operation of three phase full-wave converters.
- 14. To understand the operation of choppers and AC-AC converters.
- 15. To understand the operation of inverters and application of PWM techniques for voltage control and harmonic mitigation.

	Syllabus	
Unit	Contents	Mapped
No		CO
I	Power Semi-Conductor Devices(12 hrs)Static Characteristics of power MOSFET and power IGBT, Silicon controlled rectifier (SCR): Basic theory of operation of SCR–Static characteristics–Dynamic characteristics of SCR - Turn on and turn off methods– Firing circuits of SCR- Snubber circuit design, Single phase diode bridge rectifier.	CO1
II	Single-Phase AC-DC Converters(12 hrs)Half wave controlled converter, Full wave controlled converters: Half controlled bridge converter with R and RL loads-continuous and discontinuous conduction, Fully controlled bridge converter with R and RL loads-continuous and discontinuous conduction, Effect of source inductance in fully controlled bridge rectifier with continuous conduction.	CO2
III	Three-Phase AC-DC Converters(12 hrs)Three-phaseHalf controlled bridge converter with R and RL loads: continuous and discontinuous conduction, Three-phaseFully controlled bridge converter with R and RL loads: continuous and discontinuous conduction, 3-phase semi controlled rectifier with R and RL load, Three-phase Dual converter.	CO3

IV	DC-DC Converters(12 hrs)Introduction to Choppers, Classifications of Choppers, Analysis of Buck, Boost and Buck-Boost converters in Continuous Conduction Mode only. (05 hrs)AC - AC Regulators.Integral cycle control, Single phase-controlled AC voltage controller with R and RL loads , Single phase bridge Cycloconverters with R-load only. (07 hrs)	CO4
V	DC-AC Converters (12 hrs) Single- phase full bridge inverters with R and RL loads, Unipolar and Bipolarswitching, 3-phase inverters: 120^0 and 180^0 conduction modes, PWM Inverters,Sinusoidal pulse width modulation method, Current Source Inverter (CSI).Real time applications: UPS operation.	CO5
Con	tent Beyond the syllabus: ar diade. Series and parallel operation of SCP's. Three phase uncontrolled Pactifiers. S	arias

Power diode, Series and parallel operation of SCR's, Three phase uncontrolled Rectifiers, Series inverter.

	Course Outcomes	
Upon s	successful completion of the course, the student will be able to	
CO1	D1 Design firing circuits for SCR. {Apply level, KL4}	
CO2	Evaluate the performance of converters and can suggest the converter required for DC	
	drives. {Evaluate level, KL5}	
CO3	Analyze the source current harmonics. {Analyze level, KL4}	
CO4	Understand the operation of different types of DC-DC converters{Understand level,	
	KL2}	
CO5	Explain the operation of inverters and application of PWM techniques for voltage control	
	and harmonic mitigation. {Explain level, KL3}	
	Learning Resources	
Text b	ooks:	
5. "P	ower Electronics" M.D.Singh, K B Khanchandani, 2 nd edition, Tata Mc-Graw Hill	
pu	plishers,2007.	
6. "P	"Power Electronics" P.S.Bhimbra, 3 rd edition, Khanna Publishers, 2002.	
7. "Power Electronics" Daniel W.Hart, 1 st edition, Tata Mc-Graw Hill publishers,2011.		
Refere	ence books:	
6. "P	ower Electronics: Circuits, Devices and Applications" M. Harnur Rashid, 3 rd edition,	
Pea	arson, 2009.	
7. "P	". "Power Electronics: converters, applications & design" Ned Mohan, Tore M. Undeland, W.P.	
Rie	bbbins 3 rd edition, Wiley India Pvt. Ltd, 2009.	
8. "T	hyristorised Power Controllers" G. K. Dubey, S.R.Doradla, A.Joshi, R. M. K.Sinha, 1st	
edi	tion, New Age International (P) Limited Publishers, 1996	
e- Res	ources & other digital material	
1.	https://nptel.ac.in/noc/courses/noc21/SEM1/noc21-ee01/	

- 2. https://www.coursera.org/learn/power-electronics
- 3. https://www.classcentral.com/course/powerelectronics-716
- 4. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-334-power-electronics-spring-2007/lecture-notes/

Micro-Syllabus: Power Electronics

Unit-1:Power Semi-Conductor Devices

(12 hrs)

Static Characteristics of power MOSFET and power IGBT, Silicon controlled rectifier (SCR): Basic theory of operation of SCR–Static characteristics–Dynamic characteristics of SCR - Turn on and turn off methods– Firing circuits of SCR-Snubber circuit design, Single phase diode bridge rectifier.

Unit	Module	Micro content
4	Operation modes of	Basics of converter topologies
1.a		Device symbols and I-V characteristics (Ideal)
Characteristics of	Devices, Static V-I	Power MOSFET operation
MOSFET, IGBT & SCR	Characteristics, SCR	Power IGBT operation
	Operation	Operation of SCR-Static characteristics, Dynamic
		characteristics of SCR, Two transistor analogy
1.b		Turn on mechanisms of SCR
SCR SwitchingICharacteristicsCand ProtectionF	OFF methods, Protection of SCR	R,RC& UJT firing circuits
		Class A,B,C.D,E & F commutation methods
		Snubber circuit design

Unit-2: Single-Phase AC-DC Converters

(12 hrs)

Half wave-controlled converter, Full wave controlled converters: Half controlled bridge converter with R and RL loads–continuous and discontinuous conduction, Fully controlled bridge converter with R and RL loads–continuous and discontinuous conduction, Effect of source inductance in fully controlled bridge rectifier with continuous conduction.

Unit	Module	Micro content
		Half wave controlled converter with R,RL loads
	nt Half wave controlled converter	Freewheeling diode concept
3.a One quadrant		Centre tapped configuration
converters		Bridge configuration
		Discontinuous conduction mode and continuous conduction modes
3.b Two quadrant	Full wave controlled converters,Effect of source inductance	Half controlled converter with R and RL loads
		Difference between semi and full converters
converters		Concept overlap angle and it's impact on rectifier output voltage

(12 hrs)

Unit-3: Three-Phase AC-DC Converters

Three-phaseHalf controlled bridge converter with R and RL loads: continuous and discontinuous conduction, Three-phaseFully controlled bridge converter with R and RL loads: continuous and discontinuous conduction, 3-phase semi controlled rectifier with R and RL load, Three-phase Dual converter.

Unit	Module	Micro content
5.0		Half wave uncontrolled converter
J.a Three phase	Three pulse converter, six pulse converter	Half wave-controlled converter
I nree pnase		Full bridge converter
i cumers		Half bridge converters
5.b.		Circulating current mode
Four quadrant1-phase Dual converterconverter		Non-Circulating current mode

Unit-4: DC–DC Converters

(12 hrs)

Introduction to Choppers, Classifications of Choppers, Analysis of Buck, Boost and Buck-Boost converters in Continuous Conduction Mode only. (05 hrs)

AC – AC Regulators.

Integral cycle control, Single phase-controlled AC voltage controller with R and RL loads , Single phase bridge Cycloconverters with R-load only. (07 hrs)

Unit	Module	Micro content				
		Control strategies of chopper				
7.a DC–DC Converters		Choppers introduction & classifications				
	Choppers Operation	Basic step down chopper Operation				
		Buck converter analysis in CCM				
		Boost converter analysis in CCM				
		Buck-Boost converter analysis in CCM				
7.b AC – AC	Onerations of AC	Integral cycle control Strategy				
	Voltage controller,	Phase angle control Strategy				
Converters	Cyclo Converter	Single-Phase Cyclo converter operation with R-				
		Load				

Unit-5: DC–AC Converters

(12 hrs)

Single- Phase full bridge inverters with R and RL loads, Unipolar and Bipolar switching, 3-phase inverters: 120^{0} and 180^{0} conduction modes, Sinusoidal pulse width modulation method, Current Source Inverter (CSI).Real time applications: UPS operation.

Unit	Module	Micro content					
9.a	Single phase VSI, Three phase VSI	Introduction and classification of inverters					
Operation of VSI		full bridge inverter with R and RL loads					
		180 [°] conduction mode of operation					

		120° conduction mode of operation				
9.b Operation of PWM & CSI		Introduction to PWM				
	Pulse width modulation methods, CSI operation	Single Pulse PWM and Fourier series of Output				
		voltage				
		Single- Phase Sinusoidal PWM Inverter operation				
		Operation of CSI				

CO-PO mapping Table

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations														
(High: 3, Medium: 2, Low: 1)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1	3	2	1											
CO2	3	2											1	
CO3	3		2											
CO4	3	2												1
CO5	3											1		
III-Year-I Semester Object Oriented Programming through JAVA (Open Elective)

L	Т	Р	С
2	0	2	3

PRE-Requisites C language and object oriented concepts knowledge

Course objectives: The students should be able to

- 1. To understand object-oriented programming concepts, and apply them in solving problems.
- 2. To make the students to learn the principles of inheritance and polymorphism; and to demonstrate how they relate to the design of abstract classes; to introduce the implementation of packages and interfaces.
- 3. To make the students to learn the concepts of exception handling.
- 4. To make the students to learn the concepts of multithreading.
- 5. To make the students to develop GUI applications.

	Syllabus	
Unit	Contents	Mapped
No		CO
	Introduction to OOPS Concepts, Classes and Strings	
	Introduction to Object Oriented Programming, Java buzzwords, Java Programming	
	Basics, Sample programs, Data types and operators, Control statements.	
Ι	Classes: Classes, Objects, Methods, Constructors, this and static keywords, Method	CO1
	and Constructor Overloading, Access modifiers, arrays-One Dimensional and multi-	
	dimensional arrays, Searching, Sorting.	
	Strings-Exploring the String class, String buffer class, Command-line arguments.	
	Inheritance, Interfaces, Packages	
II	Inheritance : Need of inheritance, types, super keyword, abstract classes, interfaces,	CO2
	compile time and runtime polymorphism, Packages.	
	Exception Handling and I/O Streams10 Hrs	
	Exception Handling: Concepts of Exception handling, Built-in exceptions, creating	
	own exception sub classes, Assertions.	
III	Stream based I/O (java.io) - The Stream Classes-Byte streams and Character	CO3
	streams, reading console Input and Writing Console Output, File class, Reading and	
	writing Files, Random access file operations, Object Serialization, exploring	
	java.nio	
	Multithreading	
IV	Concepts of Multithreading, differences between process and thread, thread life	CO4
1 4	cycle, Thread class, Runnable interface, creating multiple threads, Synchronization,	0.04
	threadpriorities, inter thread communication, daemon threads, thread groups.	
	GUI Programming with Swing: Introduction, limitations of AWT, Various swing	
V	components & hierarchy.	CO5
	Event Handling- event delegation model, sources of event, Event Listeners,	

adapter classes, inner classes. Content Beyond the syllabus: java.util package and GUI using Applets. **List of Programs** 1) Write a JAVA program to display default value of all primitive data types of JAVA 2) Write a JAVA program to display the Fibonacci sequence 3) Write a JAVA program give example for command line arguments. 4) Write a JAVA program to sort given list of numbers. 5) Write a JAVA program to search for an element in a given list of elements (linear search). 6) Write a JAVA program to search for an element in a given list of elements using binary search mechanism. 7) Write a JAVA program to determine the addition of two matrices. 8) Write a JAVA program to determine multiplication of two matrices. 9) Write a JAVA program to sort an array of strings 10) Write a JAVA program to check whether given string is palindrome or not. 11) Write a JAVA program for the following a. 1. Example for call by value. 2. Example for call by reference. 12) Write a JAVA program to give the example for 'this' operator. And also use the 'this' keyword as return statement. 13) Write a JAVA program to demonstrate static variables, methods, and blocks. 14) Write a JAVA program to give the example for 'super' keyword. 15) Write a JAVA program that illustrates simple inheritance. 16) Write a JAVA program that illustrates multi-level inheritance 17) Write a JAVA program demonstrating the difference between method overloading and method overriding. 18) Write a JAVA program demonstrating the difference between method overloading and constructor overloading. 19) Write a JAVA program that describes exception handling mechanism. 20) Write a JAVA program for creation of user defined exception. 21) Write a JAVA program to illustrate creation of threads using runnable class.(start method start each of the newly created thread. Inside the run method there is sleep() for suspend the thread for 500 milliseconds). 22) Write a JAVA program to create a class MyThread in this class a constructor, call the base class constructor, using super and starts the thread. The run method of the class starts after this. It can be observed that both main thread and created child thread are executed concurrently 23) Write a JAVA program illustrating multiple inheritance using interfaces. 24) Write a JAVA program to create a package named pl, and implement this package in ex1 class. 25) Write a JAVA program to create a package named mypack and import it in circle class. 26) Write a JAVA program to give a simple example for abstract class. 27) Write a JAVA program to create a simple calculator.

- 28) Write a JAVA program that displays the x and y position of the cursor movement using Mouse.
- 29) Write a JAVA program that displays number of characters, lines and words in a text file.

	Course Outcomes											
Upon s	successful completion of the course, the student will be able to											
CO1	Comprehend object-oriented programming concepts for problem solving.											
CO2	Build class hierarchy and packages for real world problems.											
CO3	Develop thread safe Java programs with appropriate Exception handling.											
CO4	Demonstrate multithreaded application programs through a language											
CO5	Design GUI applications using swings and multithreading.											

Learning Resources

Textbooks:

1. Java - The Complete Reference, Herbert Schildt, MC GRAW HILL Education, 9th Edition, 2016.

Reference books:

- 1. Java How to Program", Paul Deitel, Harvey Deitel, PHI.
- 2. "Core Java", Nageswar Rao, Wiley Publishers.
- 3. "Thinking in Java", Bruce Eckel, Pearson Education
- 4. "A Programmers Guide to Java SCJP", Third Edition, Mughal, Rasmussen, Pearson.

Micro-Syllabus- object oriented programming through JAVA

Unit – I: Introduction to OOPS Concepts, Classes and Strings 12 Hrs

Introduction to Object Oriented Programming, Java buzzwords, Java Programming Basics, Sample programs, Data types and operators, Control statements.

Classes: Classes, Objects, Methods, Constructors, this and static keywords, Method and Constructor Overloading, Access modifiers, arrays-One Dimensional and multi-dimensional arrays, Searching, Sorting.

Strings-Exploring the String class, String buffer class, Command-line arguments.

Unit	Module	Micro content					
		Need of Java, JVM, JDK					
		Introduction to Object Oriented Programming					
	OOPs	OOPS Vs structured programming					
		Java buzzwords, Sample programs					
		Data types & operators					
Introduction to		Control statements					
OOPS Concepts,		Classes, Objects, Methods					
Classes and	Classes	Constructors, this and static keywords					
Strings		Method and Constructor Overloading,					

[
		Arrays, searching & sorting							
		String class & methods, problems related							
	Strings	String buffer & String tokenizer							
		Command line arguments							
Unit – II: Inheritance, Interfaces, Packages12 Hrs									
Inheritance: Need of inheritance, types, super keyword, abstract classes, interfaces, compile									
time and runtime polymorphism, Packages.									
Need for inheritance									
		Types of inheritance							
	Inheritance	Super keyword							
		Abstract classes							
Inheritance,		Calling super class with sub class							
Interface &		Introduction							
Packages	Interface	Dynamic method dispatch							
		Compile time & runtime polymorphism							
		Introduction, class path							
	Packages	Built-in packages							
		User defined package,							
Unit – III: Excepti	on Handling and	I I/O Streams 12 Hrs Exception							
Handling: Concept	s of Exception h	andling, Built-in exceptions, creating ownexception sub							
classes, Assertions.	_								
Stream based I/O	(java.io) – The	Stream Classes-Byte streams and Character streams,							
reading console Input and Writing Console Output, File class, Reading and writing Files,									
Random access file	operations, Object	ct Serialization, exploring java.nio							

Exceptions & I/o	Exception Handling	Introduction, Concepts of Exceptions - try, catch,throw & throws, finally
		Built-in exceptions

CO-PO mapping Table

Mappi	P01	P0	P01	P01	P01	PSO	PSO							
ng		2	3	4	5	6	7	8	9	0	1	2	1	2
C01	-	2	1	1	-	-	-	-	-	-	-	-		
C02	-	2	2	2	1	-	-	-	-	-	-	-		
C03	-	2	2	2	1	-	-	-	-	-	-	-		
C04	-	2	2	2	1	-	-	-	-	-	-	-		
C05	_	2	2	2	2	-	-	-	-	-	-	-		

III-Year-I Semester Electrical Measurements and Instrumentation Lab

L	Т	Р	С
0	0	3	1.5

PRE-REQUISITES: 1) Basic Circuit Analysis

Preamble:

This course introduces principle of operation of basic analog and digital measuring instruments for measurement of current, voltage, power, energy etc. Measurement of resistance, inductance and capacitance by using bridge circuits will be discussed in detail. It is expected that student will be thorough with various measuring techniques that are required for an electrical engineer.

Course Objectives: The student should be able

1. To study the principle of operation and working of different types of instruments.

Measurement of voltage and current.

2. To study the working principle of operation of different types of instruments for measurement of power and energy

3.To understand the principle of operation and working of dc and ac potentiometers.

4.To understand the principle of operation and working of various types of bridges for

measurement of parameters -resistance, inductance, capacitance and frequency.

LIST OF EXPERIMENTS

Any Ten of the following experiments are to be conducted:

- 1. Calibration and testing of single-phase energy meter.
- 2. Calibration of dynamo meter type power factor meter.
- 3. Calibration of PMMC voltmeter and ammeter by dc Crompton's Potentiometer.
- 4. Measurement of resistance using Kelvin's double bridge.
- 5. Transformer turns ratio measurement using A.C. bridge.
- 6. Measurement of capacitance by using Schering bridge.
- 7. Measurement of inductance by using Anderson's bridge.
- 8. Measurement of 3 phase reactive power by using single wattmeter.
- 9. Measurement of parameters of choke coil using three voltmeter and three ammeter methods.
- 10. Calibration of LPF wattmeter by phantom testing.
- 11. Measurement of 3 phase power by using 1 phase wattmeter and two current transformers.
- 12. C.T. testing using mutual inductor measurement of % ratio error and phase angle of given C.T. by null method.
- 13. LVDT and capacitance pickup-characteristics and calibration.

List of Additional Experiments: Any of the two experiments are to be conducted

- 1. Resistance strain gauge- strain measurements and calibration.
- 2. Dielectric oil testing using h.t. testing kit.

3. Measurement of % ratio error and phase angle of given C.T by comparison.

Course Outcomes: Upon successful completion of the course, the student will be able to

	Course Outcomes											
CO1	Able to choose right type of instrument for measurement of voltage and current for ac and											
	dc. (Analyze)											
CO2	Able to choose right type of instrument for measurement of power and energy – able to											
	calibrate energy meter by suitable method (Remember and Understand)											
CO3	Able to calibrate ammeter, voltmeter and potentiometer. (Analyze)											
CO4	Able to select suitable bridge for measurement of electrical parameters. (Evaluate)											

Learning Resources										
Text books:										
1. Electrical Measurements and measuring Instruments – by E.W. Golding and F.C.Widdis, fifth										
Edition, Wheeler Publishing.										
2. Modern Electronic Instrumentation and Measurement Techniques – A.D. Helfrick and W.D.										
Cooper, PHI, 5th Edition, 2002.										
Reference books:										
11. Electrical & Electronic Measurement & Instruments by A.K.SawhneyDhanpatRai&										
Co.Publications.										
2. Electrical and Electronic Measurements and instrumentation by R.K.Rajput, S.Chand.										
3. Electrical Measurements – by Buckingham and Price, Prentice – Hall										
4. Electrical Measurements: Fundamentals, Concepts, Applications - by Reissland, M.U, New										
Age International (P) Limited, Publishers.										

5. Electrical and Electronic Measurements by G.K.Banerjee, PHI Learning Private Ltd, New Delhi–2012

e- Resources & other digital material

1.https://nptel.ac.in/courses/108/105/108105017

2.https://nptel.ac.in/courses/103/102/108102146

3.www.nptelvideos.in/2012/11/electrical measurements and instrumentation.html

4.https://www.electrical4u.com/losses-in-dc-machine

CO-PO mapping Table

Con	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of													
correlations (High: 3, Medium: 2, Low: 1)														
Mapping	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
C01	3													
C02	2													

C03	2							
C04	2							

III-Year-I Semester

POWER ELECTRONICS LABORATORY

L	Т	P	С		
0	0	3	1.5		

PRE-REQUISITES: 1) Power Electronics Theory

Preamble: Introduction to power electronics, Various power electronics devices, Pulse width modulation, AC to DC Converters, AC Voltage Regulator, Buck converter, Boost converter and inverters

Course Objectives: The student should be able to

1.Study the characteristics of various power electronic devices and analyze firing circuits and commutation circuits of SCR.

2. Analyze the performance of single–phase and three–phase full–wave bridge converters with both resistive and inductive loads.

3. Understand the operation of AC voltage regulator with resistive and inductive loads.

4. Understand the working of Buck converter, Boost converter and inverters.

LIST OF EXPERIMENTS

Any Ten of the following experiments are to be conducted:

- 1. Study of Characteristics of Thyristor, MOSFET & IGBT, SCR.
- 2. Experimentally study of a firing circuit for Thyristor.
- 3. Experimentally study of gate drive circuits for IGBT.
- 4. Single -Phase Half controlled converter with R and RL load
- 5. Single -Phase fully controlled bridge converter with R and RL loads.
- 6. Single -Phase AC Voltage Regulator with R and RL Loads
- 7. Single -Phase square wave bridge inverter with R and RL Loads
- 8. Three- Phase fully controlled converter with RL-load.
- 9. Design and verification of voltages gain of Boost converter.
- 10. Design and verification of voltages gain of Buck-Boost converter.
- 11. Single -phase PWM inverter with sine PWM technique.
- 12. 3-phase AC-AC voltage regulator with R-load.

List of Additional Experiments: Any of the two experiments are to be conducted

- 1. Study of Characteristics of NPN Transistor.
- 2. Design and verification of voltages gain of Buck converter.
- 3. Three -phase PWM inverter with sine PWM technique.

Course Outcomes: Upon successful completion of the course, the student will be able to

	Course Outcomes					
CO1	O1 Study the characteristics of various power electronic devices and					
	analyze gate drive circuits of IGBT. (Analyze)					
CO2	Analyze the performance of single phase and three phase full wave bridge converters with					
	both resistive and inductive loads. (Remember and Understand)					
CO3	Understand the operation of single phase AC voltage regulator with					
	resistive and inductive loads. (Analyze)					
CO4	Understand the working of Buck converter, Boost converter, single					
	phase square wave inverter and PWM inverter. (Evaluate)					

Learning	Resources
----------	-----------

Text books:

1. Elements of Power Electronics–Philip T.Krein.oxford.

2. Power Electronics – by P.S.Bhimbra, Khanna Publishers.

Reference books:

1. Power Electronics by M. D. Singh and K. B. Khanchandani – USA

2. Power Electronics: Converters, Applications And Design, Media Enhanced (With CD) by Ned Mohan, Tore M. Undeland, and William P. Robbins.

3. Principles Of Power Electronics by John G. Kassakian, Martin F. Schlecht, and George C.

e- Resources & other digital material

1. http://vlabs.iitb.ac.in/vlabs-dev/labs/mit_bootcamp/power_electronics/labs/index.php

2. https://www.vlab.co.in/broad-area-electrical-engineering

3. https://www.vlab.co.in/broad-area-electronics-and-communications

CO-PO mapping Table with Justification:

Cont	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of														
	correlations (High: 3, Medium: 2, Low: 1)														
Monning	P 0	P0	P010	P01	P012	PS01	PSO	PS							
Mapping	1	2	3	4	5	6	7	8	9		1			2	03
C01	3	-	-	-	-	-	-	-	2	-	-	-	1	-	-
C02	2	-	-	-	-	-	-	-	2	-	-	-	1	-	-
C03	3	-	-	-	-	-	-	-	2	-	-	-	1	-	-
C04	2	-	-	-	-	-	-	-	2	-	-	-	1	-	-

VASIREDDY VENKATADRI INSTITUTE OF TECHNOLOGY :: NAMBUR

Course : Soft Skills (Employability Skills –II)

Facilitators: Dr. Madhav U Sri. Eashwar Nath Rathod B Smt. K. Kiranmayi Dr. K Suresh Babu

SAC3101	SOFT SKILLS	CATEGORY	L	т	Р	CREDIT	YEAR OF
	(Employability Skills -II)	UG	1	0	2	2	2022

Soft Skills amount to talents for adaptive and optimistic behavior that alter humans to deal effectively with the stress and challenges of life. This notion is additionally termed as psychosocial proficiency. The subject varies greatly reckoning on social norms and community expectations however skills that operate for well-being and aid people to change into active and productive members of their communities' square measure thought-about as Soft Skills.

They exemplify innovativeness, significant thinking, problem-solving, decision-making, the supremacy to speak-up and team-up, in aggregation with personal and social responsibility that contribute to sensible citizenship – all essential skills for achievement within the twenty first century, each for healthy societies and for employable people.

The course of soft skills is introduced to boost the standard of learning and living by complementing scholastic records with skill-based coaching. Realizing that the dual purpose of education i.e. is to foster educational excellence among students and additionally guide them to transform themselves into responsible people and professionals.

Soft Skills are a unit, a crucial facet of having the ability to fulfill the strain of daily & professional lives in a very unendingly dynamical world. The big changes in international economies over the last 5 years have coincided with technological transformations, all of that area unit leaving an impression on education, the geographic point, and our personal lives. Students need dynamically guided soft skills and hands on exposure, like the power to face / tackle stress and frustration, to address the growing pace and alter recent life. Over the course of their careers, today's engineering aspirants can have various new professions, each one with its own set of constraints and necessities, with flexibility & adaptability in demand of learn ability.

Objectives:

By the end of the program students will be able to:

- > communicate clearly, confidently, concisely, and persuasively both written as well as orally.
- rediscover and boost self-confidence, to the zenith, and solve issues with ease.
- recognize the results (change) of their behavior / conduct and teach them to take ownership of their acts rather than blaming others.
- build confidence in their speaking / presentation skills and become industry-ready.
- develop a stronger sense of consciousness and appreciation for others by analyzing prospects, and creating choices.
- manage self-competence and self-confidence.

Preamble: Soft skills are character traits and interpersonal skills that portray a person's relationships with other people. In the workplace, soft skills are considered to be a balance to hard skills, which refer to a person's knowledge and professional skills.

Prerequisite: None

Course Outcomes: After completion of the course the students will be able to:

CO 1	master advanced nuances of both written and oral communication skills that are imperative for any professional to succeed coupled with being emphatic.
CO 2	confidently ace different competitive exams and develop writing skills.
CO 3	gain awareness of the industry expectations and craft CV / Résumé in lieu with desired job profiles.
CO 4	crack behavioral (HR) interview confidently and exhibit professional persona.
CO 5	make presentations effective and develop interview strategies while get rid of interview phobia.

VASIREDDY VENKATADRI INSTITUTE OF TECHNOLOGY :: NAMBUR

Course : Soft Skills (Employability Skills – II)

Facilitators: Dr. Madhav U Sri. Eashwar Nath Rathod B Smt. K. Kiranmayi Dr. K Suresh Babu

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1										
CO 2										
CO 3										
CO 4										
CO 5										

Award of marks

Total Marks	CIE	ESA	ESA Duration
50	25	25	2 Hours

Continuous Internal Evaluation (CIE) Total Marks: 25

scriptive Questions	- 10	marks	Time: 30 Min.
l Semester Assessment /Examination (ESA)	Tota	al Marks: 25	
Brain storming and group activities / case studies Presenting experiential learning insights Tech & Pep talks Simulations on Project(s) Presentation / Idea Garage (A range of 4-5 discussions each being 20-25 min.)	: : :	05 marks 05 marks 05 marks 05 marks	
gular assessment (Lecture room demonstrations)			
endance & conduct of attire	:	05 marks	
e	endance & conduct of attire	endance & conduct of attire :	endance & conduct of attire : 05 marks

The students will be given a set of descriptive questions where they can answer any 2 questions carrying 5 marks each.

II. VIVA -Voce by external examiner (Demonstration oriented) - 15 Marks

Syllabus (III B. Tech - Soft Skills)

	,
	Effective communication skills
\checkmark	Start with self and connect with others.
\checkmark	The art of narrating and storytelling.
\checkmark	Enhance teamwork and influence change.
	Advanced Verbal ability concepts – practice and Professional writing skills
\checkmark	Nurture and enhance the verbal ability strength through practice.
\checkmark	Conducting mock verbal (ability) tests and their timely review.
\checkmark	List the steps of writing an email effectively & comprehend the importance of structuring an email.
\checkmark	Overview of various elements related to accuracy, brevity and correctness in our everyday writing at
	the workplace (Project proposals / covering letters / blogs / short essays).
	Industry sneak and résumé / CV building strategies
\checkmark	Industry & aspirant career expectations and tailoring action learning plan aptly.
\checkmark	Crafting winning résumé(s) suiting to different profiles.
\checkmark	Framing responses to résumé based interview questions.
	Behavioral competency building - Part II and psychometric test (HR Round Preparation)
\checkmark	Listing personal characteristics and preparing blueprint to inculcate them.
\checkmark	Assess the students' ability to fit into a specific work environment or with specific personality types.
\checkmark	Determine basic characteristics of an individual.
	Presentation skills & Mock interviews
\checkmark	Illustration of presentation structure via impromptu / free speech – and essential criteria for an
	effective presentation
\checkmark	Importance of non-verbal communication (signposting)
\checkmark	Inciting the interview process by practicing a gamut of behavioral mock interviews.
	> > > > > > <td< th=""></td<>

VASIREDDY VENKATADRI INSTITUTE OF TECHNOLOGY :: NAMBUR

Course : Soft Skills (Employability Skills –II)

Facilitators: Dr. Madhav U Sri. Eashwar Nath Rathod B Smt. K. Kiranmayi Dr. K Suresh Babu

Module 1 - Tasks

- ✓ Listening & comprehension skills lessons from the corporate training videos / scenes in films.
- ✓ Role play story telling & anchoring
- ✓ Extempore students' experience with college/program.
- ✓ Listening & comprehension skills lessons from the corporate training videos / scenes in films

Module 2 - Tasks

- ✓ Story paraphrasing, peer introduction and monologue.
- ✓ Assignment on short essay and blog building/digital profile creation.

Module 3 - Tasks

- ✓ Overview & analysis of a Job Description(JD) and its reflection in resume / self introduction
- Crafting of resumes by mapping skills & competences to different profiles offered for engineering graduates.
- ✓ An act on one day in the life of an HR manager/ Project leader etc.

Module 4 - Tasks

- ✓ Case scenarios to identify behavioral competencies and personality traits
- \checkmark increase self-awareness and improve interactions with others

Module 5 - Tasks

- ✓ Pair & Group work debating / demonstration of product promotion, etc.
- ✓ Peer mock interview practice on selected profiles.

Reference Books

- 1. The Ace of Soft Skills: Attitude, Communication and Etiquette for Success, PearsonEducation; 1 edition, 2013.
- 2. Barun K. Mitra, "Personality Development & Soft Skills", Oxford Publishers, Third impression, 2017.
- 3. ICT Academy of Kerala, "Life Skills for Engineers", McGraw Hill Education (India) Private Ltd., 2016.
- 4. Caruso, D. R. and Salovey P, "The Emotionally Intelligent Manager: How to Develop and Usethe Four Key Emotional Skills of Leadership", John Wiley & Sons, 2004.
- 5. Kalyana, "Soft Skill for Managers"; First Edition; Wiley Publishing Ltd, 2015.
- 6. Larry James, "The First Book of Life Skills"; First Edition, Embassy Books, 2016.
- 7. Shalini Verma, "Development of Life Skills and Professional Practice"; First Edition; Sultan Chand (G/L) & Company, 2014.
- 8. Daniel Goleman, "Emotional Intelligence"; Bantam, 2006.
- 9. Remesh S., Vishnu R.G., "Life Skills for Engineers", Ridhima Publications, First Edition, 2016.
- 10. Butterfield Jeff, "Soft Skills for Everyone", Cengage Learning India Pvt. Ltd; 1 edition, 2011.
- 11. Training in Interpersonal Skills: Tips for Managing People at Work, Pearson Education, India; 6th Edition, 2015.

Digital References

- 1. Infosys Springboard (https://infyspringboard.uk.onwingspan.com/web/en/login)
- 2. AICTE Digital Learning Portal (https://free.aicte-india.org/)
- 3. APSCHE LMS Bringing Learning to People (https://apschelms.e-pragati.in/#/)
- 4. Dale Carnegie Academy (https://www.dalecarnegie.com/en)
- 5. TedX Program (https://www.ted.com/about/programs-initiatives/tedx-program)
- 6. Toast Masters International (https://www.toastmasters.org/)
- 7. NPTEL (https://nptel.ac.in/)
- 8. Coursera / Udemy / Unacademy / Wikipedia (https://en.wikipedia.org/wiki/Main_Page)

Human Values in the AICTE Model Curriculum for Engineering 2018

In 2018, AICTE included UHV in the Model Curriculum. UHV-II (Understanding Harmony) is to be offered as an essential 3-credit course (H-102) in 3rd/4th semester after an orientation to values in UHV-I, which is a prominent module in the Student Induction Program.

UHV-I: Student Induction Program (mandatory)

Pages related to Induction Program "Guide to Induction Program" pages 31-38 of Volume I (see <u>https://www.aicte-india.org/sites/default/files/Vol.%20I_UG.pdf</u>)

UHV-II: 3-credit Course (H-102) (mandatory)

LTPC 2-1-0-3 Pages related to Course H-102 "Universal Human Values 2: Understanding Harmony" pages 166-170 of Volume II (see <u>https://www.aicte-</u> india.org/sites/default/files/Vol.%20II%20%20AICTE%20UG%20%20Curriculum.pdf)

Please see AICTE Web Page: <u>https://www.aicte-india.org/</u> Model Curriculum (from Home Page > Education > Model Curriculum & Sugg. Books (UG Engg.) https://www.aicte-india.org/education/model-syllabus

I. Induction Program

(Please refer **Appendix-A** for guidelines. Details of Induction program also available in the curriculum of Mandatory courses.)

Induction program (mandatory) 3 weeks duration

II. UNIVERSAL HUMAN VALUES 2: UNDERSTANDING HARMONY Course code: HSMC (H-102) Credits: 2-1-0-3

Curricular Structure

Semester L-T-P-C Course No. & Title 3 or 4 2-1-0-3 H-102 Universal Human Values 2: Understanding Harmony

Human Values Courses

During the Induction Program, students would get an initial exposure to human values through Universal Human Values – I. This exposure is to be augmented by this compulsory full semester foundation course.

Universal Human Values 2: Understanding Harmony

Course code: HSMC (H-102) Credits: L-T-P-C 2-1-0-3 or 2L:1T:0P 3 credits Pre-requisites: None. Universal Human Values 1 (desirable)

1. OBJECTIVE:

The objective of the course is four fold:

1.Development of a holistic perspective based on self-exploration about

themselves (human being), family, society and nature/existence.

2. Understanding (or developing clarity) of the harmony in the human being,

family, society and nature/existence

3. Strengthening of self-reflection.

4. Development of commitment and courage to act.

2. COURSE TOPICS:

The course has 28 lectures and 14 practice sessions in 5 modules:

Module 1: Course Introduction - Need, Basic Guidelines, Content and Process for Value Education

1. Purpose and motivation for the course, recapitulation from Universal Human Values-I

2. Self-Exploration-what is it? - Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration

3. Continuous Happiness and Prosperity- A look at basic Human Aspirations

4. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority

5. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario

6. Method to fulfil the above human aspirations: understanding and living in harmony at various levels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking

Module 2: Understanding Harmony in the Human Being - Harmony in Myself!

7. Understanding human being as a co-existence of the sentient 'I' and the material 'Body'

8. Understanding the needs of Self ('l') and 'Body' - happiness and physical facility

9. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)

10. Understanding the characteristics and activities of 'I' and harmony in 'I'11. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail

12. Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

Module 3: Understanding Harmony in the Family and Society- Harmony in Human-Human Relationship

13. Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship14. Understanding the meaning of Trust; Difference between intention and competence

15. Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship

16. Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals

17. Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives

Module 4: Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

18. Understanding the harmony in the Nature

19. Interconnectedness and mutual fulfilment among the four orders of naturerecyclability and selfregulation in nature

20. Understanding Existence as Co-existence of mutually interacting units in allpervasive space

21. Holistic perception of harmony at all levels of existence.

Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

Module 5: Implications of the above Holistic Understanding of Harmony on Professional Ethics

22. Natural acceptance of human values

23. Definitiveness of Ethical Human Conduct

24. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order

25. Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.

26. Case studies of typical holistic technologies, management models and production systems

27. Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and organizations

28. Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. To discuss the conduct as an engineer or scientist etc.

3. READINGS:

3.1 Text Book

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books,

New Delhi, 2010

3.2 Reference Books

1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.

- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J C Kumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)

13. Gandhi - Romain Rolland (English)

4. MODE OF CONDUCT (L-T-P-C 2-1-0-3 or 2L:1T:0P 3 credits)

Lectures hours are to be used for interactive discussion, placing the proposals about the topics at hand and motivating students to reflect, explore and verify them.

Tutorial hours are to be used for practice sessions.

While analysing and discussing the topic, the faculty mentor's role is in pointing to essential elements to help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements. In the discussions, particularly during practice sessions (tutorials), the mentor encourages the student to connect with one's own self and do self-observation, self-reflection and self-exploration.

Scenarios may be used to initiate discussion. The student is encouraged to take up "ordinary" situations rather than" extra-ordinary" situations. Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Tutorials (experiments or practical) are important for the course. The difference is that the laboratory is everyday life, and practical are how you behave and work in real life. Depending on the nature of topics, worksheets, home assignment and/or activity are included. The practice sessions (tutorials) would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely behaving and working based on basic human values.

It is recommended that this content be placed before the student as it is, in the form of a basic foundation course, without including anything else or excluding any part of this content. Additional content may be offered in separate, higher courses.

This course is to be taught by faculty from every teaching department, including HSS faculty.

Teacher preparation with a minimum exposure to at least one 8-day FDP on Universal Human Values is deemed essential.

5. ASSESSMENT:

This is a compulsory credit course. The assessment is to provide a fair state of development of the student, so participation in classroom discussions, selfassessment, peer assessment etc. will be used in evaluation. Example: Assessment by faculty mentor: 10 marks Self-assessment: 10 marks Assessment by peers: 10 marks Socially relevant project/Group Activities/Assignments: 20 marks Semester End Examination: 50 marks The overall pass percentage is 40%. In case the student fails, he/she must repeat the course.

6. OUTCOME OF THE COURSE:

By the end of the course, students are expected to become more aware of themselves, and their surroundings (family, society, nature); they would become more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind.

They would have better critical ability. They would also become sensitive to their commitment towards what they have understood (human values, human relationship and human society). It is hoped that they would be able to apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction.

This is only an introductory foundational input. It would be desirable to follow it up by

a) faculty-student or mentor-mentee programs throughout their time with the institution

b) Higher level courses on human values in every aspect of living. E.g. as a professional

III-Year-II Semester

MICROPROCESSORS AND MICROCONTROLLERS

L	Т	P	C		
3	0	0	3		

PRE-REQUISITES: The Purpose of the course is to provide students with the Knowledge of Microprocessors and Microcontroller. To solve real world problems in an efficient manner, this course also emphasis on architecture, Programming and system design used in various day to day gadgets.

Course objectives: The student should be able to

- To understand the organization and architecture of Micro Processor
- 2. To understand addressing modes to access memory and modes of operation
- 3. To interface different devices to 8086.
- 4. To understand 8051 micro controller architecture
- 5. To understand the basics of PIC18 architecture and develop programs using C.

	Syllabus				
Unit	Contents	Mapped			
No		CO			
	Introduction to Microprocessor Architecture(13h)				
	Introduction and evolution of Microprocessors,8086 Pin diagram- Architecture of				
Ι	8086, Register Organization of 8086, Memory organization of 8086- General bus	CO1			
	operation of 8086-Introduction to 80286-80386 and 80486 and Pentium				
	[Elementary treatment only]				
	Minimum and Maximum Mode Operations (10h)				
II	Instruction set- Addressing modes, Minimum and Maximum mode operations of	CO2			
	8086- Read and write cycle timing diagrams, 8086 Control signal interfacing				
	I/O Interface(20h)				
	8255 PPI– Architecture of 8255–Modes of operation–Interfacing A to D converters–				
ш	Interfacing D to A converters- Stepper motor interfacing, DMA controller (8257)-				
111	Architecture– Modes of operations, Programmable Interrupt Controller (8259)–				
	Modes of Operation- Command words of 8259, Keyboard/display controller (8279)-	-			
	Architecture–Modes of operation[Elementary treatment only]				
	Introduction to 8051 Micro Controller (12h)				
IV	Introduction to 8051 Micro Controller- Architecture- Register set, I/O ports,	CO4			
	Memory Organization-Interrupts, Timers and Counters-Serial Communication.				
	Introduction to PIC Micro Controller (10h)				
V	Block diagram of basic PIC 18 micro controller, registers I/O ports, Data types, I/O	CO5			
	programming, logical operations, data conversion., Numerical problems. (06 hrs)				
Cont	tent Beyond the syllabus:	1			
Pow	ering A Generation: Generating Electricity using Fossil-fuelled plants, Cog	eneration,			
Com	bined-cycle and Biomass plants, Geothermal plants, and Decentralized generation. (El	lementary			
treati	ment only)				

Advanced Transmission Technologies: High-temperature super conducting technology, Advanced composite conductors.(Elementary treatment only)

New Technologies for Electric power Distribution Systems: Concept of Intelligent Substations (Elementary treatment only).

Tariff structure design process: Identification of tariff structures, tariff constraints (Elementary treatment only)

	Course Outcomes
Upon s	uccessful completion of the course, the student will be able to
CO1	Understand the concepts of 8086 architecture, register and memory
	organization{Knowledge level, KL1}
CO2	Understand and apply the concepts of the modes of operations and instruction set to develop
	the Assembly level language programs. {Apply level, KL3}
CO3	Classify the types of interfacing devices and implement to interface with 8086 {Knowledge
	level, KL1}
CO4	Explain the 8051 architecture and its features. {Knowledge level kL1}
CO5	Understand the PIC18 architecture and Develop the programs using C {Apply level, KL3}

Learning Resources

Text books:

- 1. "Advanced Micro Processors and Interfacing", Ray and Burchandi, Tata McGraw-Hill
- 2. "The 8051 Micro Controller Architecture, Programming and Applications", Kenneth J Ayala, Thomson Publishers, 2nd Edition.
- 3. "PIC Microcontroller and Embedded Systems using Assembly and C for PIC 18", Muhammad Ali Mazidi, RolindD.Mckinay, Danny causey, Pearson Publisher 21st Impression..

Reference books:

- 1. "A Text book of Microprocessors and Micro Controllers", R.S. Kaler, I.K. International Publishing House Pvt. Ltd.
- 2. "Microcontrollers Theory and Applications", Ajay V. Deshmukh, Tata McGraw– Hill Companies –2005
- 4. "Microcontrollers Principles and Applications", Ajit Pal, PHI Learning Pvt Ltd, 2011.
- 5. "Microprocessors and Interfacing", Douglas V Hall, Mc-Graw Hill, 2nd Edition.

e- Resources & other digital material

https://nptel.ac.in/courses/108107029

Micro-Syllabus

Unit 1: Introduction to Microprocessor Architecture (13h)

Introduction and evolution of Microprocessors– 8086 Pin diagram- Architecture of 8086– Register Organization of 8086–Memory organization of 8086– General bus operation of 8086– Introduction to 80286–80386 and 80486 and Pentium [Elementary treatment only

Unit No	Module	Micro content
		Evolution and Applications of Microprocessors
	Introduction and evolution of Microprocessors–	Differences between 8085 and 8086.
1.a		8086 common pins, minimum mode and maximum mode pins.
		Detailed architecture(BIU and EU)
	Register Organization of 8086	General purpose registers, segment registers, Pointer and Index registers, flag register.
		Physical Memory organization (odd bank and evenbank) [Elementary treatment only
		Factors to be considered for selection of site,
1b.	Memory organization of 8086	Efficiency (Formula orientation),
	General bus operation of 8086	General 8086 system bus structure and operation with timing diagram. [Elementary treatment only]
	Introduction to 80286–80386 and	Features of 80286, 80386, 80486 and Pentium. [Elementary treatment only]
	80486 and Pentium	

Unit 2 Minimum and Maximum Mode Operations:(10h)

Instruction set- Addressing modes- Minimum and Maximum mode operations of 8086-8086 Control signal interfacing-Read and write cycle timing diagrams

Unit No	Module	Micro content		
		Arithmetic Instructions- Data Transfer Instructions-		
		Logical Instructions - Branch and loop instructions		
	Instruction set	- String Instructions - Process Control Instructions		
20	Addressing modes, Control signal interfacing	Immediate, Register, Direct, Indirect, Based,		
2a		Indexed, Based Indexed, Based Relative, Indexed		
		Relative, Based Indexed Relative and I/O port		
		addressing modes		
		Control signal (ALE, BHE, M/IO', DT/R', RD',		
		WR', DEN, READY) interfacing		
	Minimum and	Block diagram of Minimum mode-Operation		
2b	Maximum mode	Read and write cycle timing diagrams		
	operations- Read and	Block diagram of Maximum mode-Operation		

write cycle timing	Read and write cycle timing diagrams
diagrams	

Unit 3 I/O Interface: (20h)

8255 PPI– Architecture of 8255–Modes of operation–Interfacing A to D converters– Interfacing D to A converters– Stepper motor interfacing–DMA controller (8257)– Architecture– Modes of operations– Programmable Interrupt Controller (8259)– Modes of Operation-Command words of 8259.Keyboard/display controller (8279)–Architecture -Modes of operations of 8279 [Elementary treatment only]

Unit No	Module	Micro content				
	8255 Architecture	Features, Pin diagram and Block diagram of 8255				
	DMA controller (8257)-	Features, Pin diagram and Block diagram of				
	Architecture	8257				
3 a	Programmable Interrupt	Features, Pin diagram and Block diagram of				
	Controller (8259)	8259				
	Keyboard/display	Features, Pin diagram and Block diagram of				
	controller (8279)–	8279.				
	Architecture					
	Modes of operation of	BSR mode and I/O mode (Mode 0 ,Mode1 and				
	8255	Mode 2)				
	Interfacing A to D	Interfacing of 0808/0809 ADC with 8086				
	converters- Interfacing D	Interfacing of 0800 DAC with 8086 ALP to				
	to A converters- Stepper	rotate 4 phase stepper motor in clockwise and				
	motor interfacing	anti-clock wise direction				
3b.	Modes of operations of 8257	Rotating priority mode, Fixed priority mode,				
		Extended write mode, TC stop mode and Auto				
		Load mode				
	Modes of Operation of	Fully nested mode, Specially Fully nested				
	8259	mode, Rotating priority mode, Special Masked				
		mode, Polled Mode				
	Modes of operations of	Keyboard modes: Scanned keyboard, scanned				
	8279	sensor matrix and strobed input modes.				

Unit 4 Introduction to 8051 Micro Controller (12h)

Introduction to 8051 Micro Controller– Architecture– Register set–I/O ports and Memory Organization– Interrupts–Timers and Counters–Serial Communication.

Unit No	Module	Micro content
1	Introduction to 8051	Features, Pin diagram and block diagram and
4	Micro Controller-	applications of 8051

Architecture– Register set–I/O ports		Registers of 8051			
		Program memory and Internal memory			
4b.	Memory Organization– Interrupts–Timers and Counters–Serial Communication.	interrupts (IE0, IE1, TF0, TF1 and serial port) – IE register, IP register Timers/counters: TMOD register, TCON register and modes of Timers Serial Communication: SBUF register, SCON register and PCON register			
Unit 5 Introduction	to PIC Micro Controller (10h)			
PIC Architecture:	Block diagram of basic	PIC 18 micro controller, registers I/O ports.			
Programming in C fo	or PIC: Data types, I/O progr	amming, logical operations, data conversion			
Unit No Module		Micro content			
5a.	Block diagram of basic PIC 18 micro controller	Difference between 8051MC and PIC18, Types of PIC microcontrollers. Features and block diagram of PIC18			
	Registers, I/O ports	Working Register, File register, Special Function registers, General purpose registers and CCP registers			
	Data types, I/O	C-Programs related to Data types, I/O			
5b.	programming, logical	programming, logical operations, data			
	operations, data conversion	conversion. [Elementary treatment only].			

CO-PO mapping Table

Co	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations													
					(High:	3, Med	ium: 2	, Low:	1)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1	2													
CO2	2		1											
CO3	2													
CO4	2													
CO5	2		1											

POWER SYSTEMS-III

L	Т	Р	С
3	0	0	3

Pre-Requisites: Power Systems-I and Power Systems-II

Preamble:

The course is designed to give the required knowledge for the calculation of power flow in a power system network using various techniques, short circuit analysis, power system analysis for steady state and transient stability. It also deals with economic operation of power systems, modelling of speed governing system, turbines and generators including single area and two area load frequency control.

Course Objectives:

- To study the Gauss Seidel, Newton Raphson, Decoupled and Fast Decoupled load flow methods.
- To understand the short circuit calculations for symmetrical and unsymmetrical faults.
- To study the stability analysis of power systems.
- To understand optimal dispatch of generation with and without losses.
- To study the load frequency control for single and two area system.

	Syllabus	
Unit No	Contents	Map ped CO
I	Power Flow Studies (13hrs) Necessity of power flow studies, Derivation of static power flow equations, Load flow solutions using Gauss Seidel Method, Newton Raphson Method, Decoupled and Fast Decoupled Methods, Numerical problems (3 bus system up to one iteration only).	CO1
п	 Short Circuit Analysis Symmetrical Fault Analysis: (6hrs) Symmetrical fault analysis-Short circuit current and MVA calculations, Series reactors-Selection and Advantages of reactors, Numerical problems. Unsymmetrical Fault Analysis: (7hrs) Symmetrical component theory-Positive, Negative and Zero sequence components, Sequence impedances and networks, Various types of faults-LG, LL and LLG on unloaded alternator, Numerical problems. 	CO2
	Stability AnalysisSteady State Stability: (7hrs)Classification of power system stability,Transfer Reactance, Synchronizing PowerCoefficient ,Power Angle Curve , Determination of Steady State Stability, Methods	

III	to improve steady state stability, Numerical Problems.	CO3	
	Transient Stability: (6hrs)		
	Swing Equation, Determination of Transient Stability by Equal Area Criterion,		
	Application of Equal Area Criterion-Critical Clearing Angle and time, Methods to		
	improve transient stability, Numerical Problems.		
	Economical Operation of Power Systems:		
	Different Curves: (6hrs)		
	Optimal operation of Generators in Thermal power stations, Input-output		
IV	characteristics, Cost Curve, Heat rate curve, Incremental fuel and Production costs.	CO4	
	Mathematical Analysis: (6hrs)		
	Optimum generation allocation with and without transmission line losses, Loss		
	Coefficients, General transmission line loss formula, Numerical Problems.		
	Load Frequency Control		
	Single Area Control: (7hrs)		
	Modeling of speed governing system, steam turbine and generator, Control area		
	concept, Single area control-Transfer function and Block diagram representation of		
	an isolated power system, Steady state analysis, Dynamic response, Proportional		
V	plus Integral control of single area and its block diagram representation, Numerical	CO5	
	Problems.		
	Two Area Control: (6hrs)		
	Transfer function and Block diagram representation, Tie-line bias control, Steady		
	state analysis, real time applications of load frequency control and economic load		
	dispatch.		
Content Beyond the Syllabus:			
Power flow solution including convergence characteristics, Case studies of different faults, Swing			
Equat	ion solution using point by point method, Economic load dispatch including all constrai	nts.	

	Course Outcomes
Upon s	successful completion of the course, the student will be able to
CO1	Find out the load flow solution of a power system network using different load flow
	methods.
CO2	Evaluate the fault current for different types of faults with a view to
	provide data for the design of protective devices.
CO3	Analyze the steady state and transient stability concepts of a power system.
CO4	Calculate optimal scheduling for generators with and without losses.
CO5	Acquire the knowledge of load frequency control for various systems.
	Learning Resources
Textbo	ooks:
1	Modern Power System Analysis, LI Negroth & D.P.Ketheri, Tete McGrey, Hill Publishing

1. Modern Power System Analysis- I.J.Nagrath & D.P.Kothari: Tata McGraw-Hill Publishing Company, 2nd edition.

2. Electrical Power Systems- C.L. Wadhwa, New Age International Publishers, 7th Edition.

Reference books:

- 1. Power System Analysis-Grainger and Stevenson, Tata McGraw-Hill
- 2. Power Systems Operation and Control Chakravarthi, Prentice Hall, Inc.
- 3. Power System Analysis -Hadi Saadat, TMH Edition .
- 4. Power System Stability & Control -PrabhaKundur, TMH.

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/117105140/
- 2. https://nptel.ac.in/courses/108/105/108105104
- 3. <u>https://nptel.ac.in/courses/108/107/108107127/</u>
- 4. https://nptel.ac.in/courses/108/105/108105060/
- 5. <u>https://www.coursera.org/learn/electric-power-systems</u>
- 6. <u>https://www.edx.org/ power-systems</u>
- 7. <u>https://www.classcentral.com/course/electric-power-systems</u>

Micro-Syllabus

Unit-1 Power Flow Studies (13hrs)

Necessity of power flow studies, Derivation of static power flow equations, Load flow solutions using Gauss Seidel Method, Newton Raphson Method, Decoupled and Fast Decoupled Methods, Numerical problems.

Unit No	Module	Micro content
	Dowor Flow Studiog	Introduction and Necessity of power flow studies
19	Power Flow Studies	Classification of buses
14.	Power Flow Faustions	Data for power flow studies
	Tower Flow Equations	Derivation of static power flow equations
	Iterative Methods and Problems	Load flow solutions using iterative methods(in polar coordinates only)
		Gauss Seidel Method with and without PV buses, concept of acceleration factor.
		Newton Raphson Method
1b.		Decoupled and Fast Decoupled Methods
		Line flows and line losses equations
		Algorithm and flow chart of all iterative methods
		Comparison of iterative methods
		Numerical problems (3 bus system up to one iteration
		only)

Unit-2 Short Circuit Analysis

Symmetrical Fault Analysis: (6hrs)

Symmetrical fault analysis-Short circuit current and MVA calculations, Series reactors-Selection and Advantages of reactors, Numerical problems.

Unsymmetrical Fault Analysis: (7hrs)

Symmetrical component theory-Positive, Negative and Zero sequence components, Sequence impedances and networks, Various types of faults-LG, LL and LLG on unloaded alternator, Numerical problems.

Unit No Module	Micro content
----------------	---------------

		Introduction and Reasons for faults		
		Classification of faults		
		Concept of synchronous reactance		
		Symmetrical fault analysis using Thevenin's		
20		theorem		
2a.	Analysis	Symmetrical fault analysis using bus impedance		
		matrix and its advantages		
		Concept of Series reactors		
		Selection and Advantages of reactors		
		Numerical problems-Short circuit current and		
		MVA calculations.		
		Symmetrical component theory		
		Relation between unbalanced vectors(voltage and current) and symmetrical component		
2b.	Unsymmetrical Fault	Sequence impedances and networks		
	Analysis	Sequence networks for power system components		
		Fault current expression for LG, LL and LLG		
		fault on unloaded alternator		
		Numerical problems.		

Unit-3 Stability Analysis

Steady State Stability: (7hrs)

Classification of power system stability, Transfer Reactance, Synchronizing Power Coefficient , Power Angle Curve , Determination of Steady State Stability, Methods to improve steady state stability, Numerical Problems.

Transient Stability: (6hrs)

Swing Equation, Determination of Transient Stability by Equal Area Criterion, Application of Equal Area Criterion-Critical Clearing Angle and time, Methods to improve transient stability, Numerical Problems.

Unit No	Module	Micro content		
		Introduction to stability studies		
		Classification of power system stability		
		Concept of steady state stability limit & Transfer		
		Reactance		
	Steady State Stability	Power angle equation derivation		
30		Power angle curve		
58.		Concept of synchronizing power coefficient		
		Determination of Steady State Stability		
		Methods to improve steady state stability		
		Steady state stability limit in terms of ABCD		
		parameters		
		Numerical Problems		
21		Swing equation derivation		
50.	Transient Stability	Concept of Equal Area Criterion		
		Application of Equal Area Criterion		

Expressions of Critical Clearing Angle and time for
single circuit and double circuit transmission line
Methods to improve transient stability
Numerical Problems

Unit-4 Economical Operation of Power Systems:

Different Curves: (6hrs)

Optimal operation of Generators in Thermal power stations, Input–output characteristics, Cost Curve, Heat rate curve, Incremental fuel and Production costs.

Mathematical Analysis: (6hrs)

Optimum generation allocation with and without transmission line losses, Loss Coefficients, General transmission line loss formula, Numerical Problems.

Unit No	Module	Micro content	
		Introduction and over view of thermal plant operation	
		Input-output characteristics	
		Cost Curve and equation	
40	Different Curves	Incremental Cost Curve and equation	
4a.	Different Curves	Incremental efficiency	
		Heat rate curve	
		Incremental fuel and Production costs	
		Equality and inequality constraints	
		Optimum generation allocation without transmission	
		line losses expression	
		Optimum generation allocation with transmission line	
41		losses expression	
40.	Mathematical Analysis	Concept of exact and approximate penalty factors	
		General transmission line loss formula	
		Incremental transmission line loss formula	
		Loss Coefficients	
		Numerical Problems	

Unit-5 Load Frequency Control

Single Area Control: (7hrs)

Modelling of speed governing system, steam turbine and generator, Control area concept, Single area control-Transfer function and Block diagram representation of an isolated power system, Steady state analysis, Dynamic response, Proportional plus Integral control of single area and its block diagram representation, Numerical Problems.

Two Area Control: (6hrs)

Transfer function and Block diagram representation, Tie-line bias control, Steady state analysis, real time applications of load frequency control and economic load dispatch.

Unit No	Module	Micro content
5a.	Single Area Control	Introduction and Concept of load frequency control

	Necessity of constant frequency			
		Control area concept		
		Operation of speed governing system		
		Modelling of speed governing system(Transfer		
		function and Block diagram representation)		
		Modelling of steam turbine (Transfer function and		
		Block diagram representation)		
		Modelling of generator(Transfer function and		
		Block diagram representation)		
		Transfer function and Block diagram		
		representation of an isolated power system		
	(Single area control)			
		Steady state analysis-Controlled and Uncontrolled		
		case		
		Dynamic response		
		Proportional plus Integral control of single area-		
		steady state frequency error derivation		
		Numerical Problems		
		Transfer function and Block diagram		
		representation of two area control		
5b.		Concept of Tie-line bias control		
	Two Area Control	Steady state analysis-Controlled and Uncontrolled		
		case		
		Real time applications of load frequency and		
		economic dispatch control		

CO-PO mapping Table

Co	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations													
	(High: 3, Medium: 2, Low: 1)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1									1	2	1
CO2	2	2	1										2	1
CO3	3	2											2	1
CO4	3	2									2	1	2	1
CO5	3	2										1	2	1

III-Year-II Semester

Digital Electronics

L	Т	Р	С
3	0	0	3

PRE-REQUISITES: NIL

Course objectives: The student should be able to

- 1. To understand common forms of number representation in digital circuits and Boolean algebra.
- 2. To learn basic techniques for the design of digital circuits and fundamental concepts used in the design of digital systems and simplify logic expressions using basic theorems, K-map and Tabular methods.
- 3. To understand the concept of Combinational logic design and realize logic expressions using MUX and Decoder
- 4. Illustrate the concept of sequential logic design; analyze the operation of flip-flop and conversion from one flip-flop to another, and application of flip-flop.
- 5. To impart to student the concepts of sequential machines of digital system.

Syllabus				
Unit No	Contents	Mapped CO		
I	Number Systems and Boolean Algebra14 HoursNumber systems:Introduction to different number system and their conversions,Complement of number system and subtraction using complement method, Weighted and Non-weighted codes and its Properties, Error detection and correction codes,Error detection and properties, Error detection and properties of Boolean Algebra:Boolean algebra and logic gates, Basic theorems and properties of 	CO1		
II	Minimization Methods of Boolean functions11 HoursMinimization of logic expressions by algebraic method, Sum of Products (SOP),Product of Sums (POS), K-Map Method, Don't Care Combinations, Prime andessential Prime Implicants, Tabular Method.	CO2		
III	Combinational Circuits14 HoursDesign procedure,Half/full adders, Half / full subtractors,Carry look ahead adder, Multiplexer/De-Multiplexer, Encoder/Decoder, Priority encoders, Implementation of Higher-Order Device Using Lower Order devices,Implementation of combinational logic using MUX/Decoder, Magnitude Comparator.	CO3		
IV	Sequential Circuits12 HoursSequential CircuitsFundamentals:Basic Architectural Distinctions betweenCombinational and Sequential circuits, SR Latch, Flip Flops:SR, JK, JK MasterSlave, D and T Type Flip Flops, Excitation Table of all Flip Flops, Timing andTriggering Consideration, Conversion from one type of Flip-Flop to another.	CO4		

	Registers and Counters: Shift Registers Left, Right and Bidirectional Shift					
	Registers, Applications of Shift Registers, Design and Operation of Ring and Twisted					
	Ring Counter, Operation of Asynchronous and Synchronous Counters.					
	Sequential Machines 8 Hours					
X 7	Finite State Machines, Synthesis of Synchronous Sequential Circuits, Mealy and	CO5				
v	Moore models, Serial Binary Adder, Sequence Detector, Parity-bit Generator	05				
	Synchronous Modulo N – Counters, Finite state machine capabilities and limitations.					
Con	tent Beyond the syllabus:					
Prog	grammable Logic Devices,BCD adder					
LIS	T OF EXPERIMENTS					
ĺ	1. Verify the truth tables of Basic Logic gates.					
4	2. Verify the truth tables of universal gates.					
	3. Realize the half adder and full adders and verify it's function.					
2	4. Realize the half subtractor and full subtractor and verify it's function.					
4	5. Verify the functioning of 2-bit comparator IC.					
6	5. Realize 3-variable function using (8:1MUX) 74151 IC.					
,	7. Realize Mod-N counter using IC7490					
8	3. Realize ring and Johnson counters using IC 7476					

	Course Outcomes							
Upon s	Upon successful completion of the course, the student will be able to							
CO1	Distinguish the analog and digital systems, apply positional notations, number systems,							
	computer codes in digital systems. (Remember, Understand, and Apply)							
CO2	Uunderstand the Boolean Algebra theorems, simplify and design logic circuits. (Understand,							
	Apply, Analyze and valuate)							
CO3	Implement combinational logic circuit design and modular combinational circuits using							
	encoders, decoders, multiplexers and demultiplexers. (Apply, Analyze, valuate, and create)							
CO4	Understand the basic elements of sequential logic circuits. (Understand, Apply, Analyze)							
CO5	Design and analyze sequential circuits. (Apply, Analyze and create)							

Learning Resources						
Text books:						
1.	Digital Design by Mano, PHI					
2.	Modern Digital Electronics by RP Jain, TMH					
3.	3. Switching Theory and Logic Design by A. Anand Kumar, PHI.					
4.	4. Switching and Finite Automata Theory- ZviKohavi& Niraj K. Jha, Cambridge.					
Refere	ence books:					

- 1. Switching Theory and Logic Design by Hill and Peterson Mc-Graw Hill TMH edition
- 2. Fundamentals of Logic Design by Charles H. Roth Jr, Jaico Publishers

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/108/105/108105113/
- 2. <u>https://www.coursera.org/learn/digital-systems</u>
- 3. <u>https://swayam.gov.in/nd1_noc20_ee70/preview</u>

Micro-Syllabus

Unit – 1

Number Systems and Boolean Algebra 14 Hours

Number systems: Introduction to different number system and their conversions, Complement of number system and subtraction using complement method, Weighted and Non-weighted codes and its Properties, Error detection and correction codes,

Boolean Algebra: Boolean algebra and logic gates, Basic theorems and properties of Boolean Algebra, Boolean functions, canonical and standard forms, Universal Gates.

Unit No	Module	Micro content				
	different number	Importance of radix or base and numerical				
	system and their	Different number systems: binary, decimal, octal&hexa				
1a.or 2a.	conversions	decimal.				
Number systems		Binary addition, subtraction, multiplication				
	Signed numbers &	2's complement arithmetic & 1's complement				
	Binary arithmetic	arithmetic.				
	Classification of	Weighted and Non-weighted codes and self				
1h or 2h hinary	Binary codes	complementing, cyclic codes				
codes & Boolean		Error detection and correction codes				
algebra	Axioms and laws of	Pasia theorems and properties of Pooleon Algebra				
aigeora	Boolean algebra	Basic theorems and properties of Boolean Algebra				
	Logic Gates	Boolean functions, canonical and standard forms				

Unit-2: Minimization Methods of Boolean functions 11 Hours

Minimization of logic expressions by algebraic method, Sum of Products (SOP), Product of Sums (POS), K-Map Method, Don't Care Combinations, Prime and essential Prime Implicants, Tabular Method.

Unit No	Module	Micro content
3a.or 4a.		Sum of Products (SOP)), Product of Sums (POS)
Minimization of	Minimization of logic	2-variable,3- variable & 4- variable K-maps
logic expressions	expressions by algebraic	Don't cares
by algebraic	method	
method & K-Map	K-Map Method	5-variable K-map
Method		
3b.or 4b. prime	Quine McCluskey	Prime implicants and Essential prime implicants

implicant chart	method	prime implicant chart				
Unit-3:Combination	al Circuits	14 Hours				
Design procedure, Half/full adders, Half / full subtractors, Carry look ahead adder, Multiplexer/I						
Multiplexer, Encoder/Decoder, Priority encoders, Implementation of Higher-Order Device Using						
Lower Order devic	es, Implementation of con	nbinational logic using MUX/Decoder, Magnitude				

Com	narato	r
Com	puruto	т.

Unit No	Module	Micro content		
5a.or 6a.		Half/full adders, Half / full subtractors, Carry look		
Combinational	Addars/subtractors	ahead adder		
Circuits	Adders/subtractors	Magnituda Comparator		
fundamentals		Magmude Comparator.		
5b.or 6b.		Multiplexer/De-Multiplexers & Encoder/Decoders		
Implementation of	Mux/Demux			
combinational	Applications of	Implementation of Higher Order Device Using		
logic using	Mux/Demux	Lower Order devices.		
MUX/Decoder				

Unit-4:Sequential Circuits

12 Hours

Sequential Circuits Fundamentals: Basic Architectural Distinctions between Combinational and Sequential circuits, SR Latch, Flip Flops: SR, JK, JK Master Slave, D and T Type Flip Flops, Excitation Table of all Flip Flops, Timing and Triggering Consideration, Conversion from one type of Flip-Flop to another.

Registers and Counters: Shift Registers Left, Right and Bidirectional Shift Registers, Applications of Shift Registers, Design and Operation of Ring and Twisted Ring Counter, Operation of Asynchronous and Synchronous Counters.

Unit No	Module	Micro content		
7 9.		Distinctions between Combinational and Sequential		
/a.or 8a.	ויד יויד	circuits; types of triggering, types of flip flops,		
Sequential Circuits	Flip Flops	Excitation Table of all Flip Flops; Conversion from		
Fundamentais		one type of Flip-Flop to another.		
		Synchronous and asynchronous counters and also		
	Registers and Counters	their design		
/b. or 8b. Registers		Operation of Ring and Twisted Ring Counter		
und Counters		Shift Registers Left, Right and Bidirectional Shift		
		Registers, Applications of Shift Registers		
		·		

Unit-5: Sequential Machines

8 Hours

Finite State Machines, Synthesis of Synchronous Sequential Circuits, Mealy and Moore models, Serial Binary Adder, Sequence Detector, Parity-bit Generator Synchronous Modulo N – Counters, Finite state machine capabilities and limitations.

Unit Module	Micro content
-------------	---------------

9a.or 10a. Fundamentals of FSM	Fundamentals of FSM	Finite State Machines, Synthesis of Synchronous Sequential Circuits, Mealy and Moore models Finite state machine capabilities and limitations.
9b.or 10b. State Models	State Models and diagrams	Serial Binary Adder, Sequence Detector, Parity-bit Generator Synchronous Modulo N – Counters.

CO-PO mapping Table

Co	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations													
	(High: 3, Medium: 2, Low: 1)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1	3	2	2							1				3
CO2	3	2	2							1				3
CO3	3	2	2							1				3
CO4	3	2	2							1				3
CO5	3	2	2							1				3

Special Electrical Machines

L	Т	T P			
3	0	0	3		

PRE-REQUISITES:1) Electrical Machines-I &II

Course objectives: The student should be able to

- 1. To explain theory of different permanent magnetic material and applications.
- 2. To explain the performance and control of stepper motors, and their applications.
- 3. To describe the operation and characteristics of switched reluctance motor.
- 4. To explain the operation permanent magnet brushless square wave and sine wave motors
- 5. To explain the theory of travelling magnetic field and applications of linear motors

Syllabus				
Unit	Contents	Mapped		
No		CO		
I	 Permanent magnet materials and PMDC motors(15hrs) Introduction-classification of permanent magnet materials used in electrical machines- minor hysteresis loop and recoil line-Stator frames of conventional dc machines- Development of electronically commutated dc motor from conventional dc motor. (07hrs) Permanent-magnet materials and characteristics-B-H loop and demagnetization characteristics-Temperature effects: high temperature effects-reversible losses Irreversible losses -Application of permanent magnets in motors. (08hrs) 	CO1		
п	Stepper Motors (14 hrs) Classification of stepper motors – Hybrid and Variable Reluctance Motor (VRM) - Construction and principle of hybrid type synchronous stepper motor – Different configuration for switching the phase windings control circuits for stepper motors – Open loop and closed loop control of 2-phase hybrid stepping motor. (08hrs) Construction and principle of operation of Variable Reluctance Motor (VRM) – Single stack and multiple stack – Open loop control of 3- phase VR Stepper Motor- Applications(06hrs)	CO2		
ш	 Switched Reluctance Motors (10hrs) Construction – Comparison of conventional and switched reluctance motors – Design of stator and rotor pole arcs – Torque producing principle and torque expression (5 hrs) Different converter configurations for SRM – Drive and power circuits for SRM – Position sensing of rotor – Applications of SRM(5 hrs) 	CO3		
IV	Square and Sine Wave Permanent Magnet Brushless DC Motor (15hrs) Types of constructions – Surface mounted and interior type permanent magnet – Principle of operation of BLDC motor. Torque and EMF equations – Torque speed characteristics – Performance and efficiency- Square wave brushless motors with 120 ⁰ and 180 ⁰ magnetic areas commutation. (8 hrs)	CO4		
	Sine wave Permanent Magnet Brushless Motor Torque and EMF equations -			
------------------------------	--	--	--	--
	Torque/speed characteristics - Comparison between square wave and sine wave			
	permanent magnet motors - Applications. (7 hrs)			
	Linear Induction Motors (10hrs)			
	Construction- principle of operation-Double sided LIM from rotating type Induction			
\mathbf{V}	Motor (5 hrs) CO5			
	Schematic of LIM drive for traction – Development of one sided LIM with back iron			
	equivalent circuit of LIM. (5 hrs)			
Content Beyond the syllabus:				

Powering A Generation: Reactive Power Requirements in steady state-Conventional control strategies-Alternate control strategies sources of reactive power-AC Filters – shunt capacitors-synchronous condensers. (Elementary treatment only)

	Course Outcomes				
Upon s	Upon successful completion of the course, the student will be able to				
CO1	To understand theory of different permanent magnetic material and applications.{Understand				
	level, KL2}				
CO2	To explain the performance and control of stepper motors, and their applications.{Understand				
	level, KL2}				
CO3	To describe the operation and characteristics of switched reluctance motor				
	{ Understand level, KL2}				
CO4	To explain the operation permanent magnet brushless square wave and sine wave motors				
	.{Understand level, KL2}				
CO5	To explain the theory of travelling magnetic field and applications of linear motors				
	. {Understand level, KL2}				

Learning Resources

Text books:

- 1. Brushless Permanent magnet and reluctance motor drives, Clarenden press, T.J.E. Miller, 1989, Oxford.
- 2. Special electrical Machines, K.VenkataRatnam, University press, 2009, New Delhi.

Reference books:

1. Special Electrical Machines ,G.Janradhana, PHI Publishers

e- Resources & other digital material

1. https://nptel.ac.in/courses/108/102/108102156/

Micro-Syllabus

UNIT-I: Permanent magnet materials and PMDC motors (15 hrs)

Introduction-classification of permanent magnet materials used in electrical machines-minor hysteresis loop and recoil line-Stator frames of conventional dc machines-Development of electronically commutated dc motor from conventional dc motor. (07 hrs

Permanent-magnet materials and characteristics-B-H loop and demagnetization characteristics-Temperature effects: high temperature effects-reversible losses Irreversible losses -Application of permanent magnets in motors. (**08hrs**)

Unit Module		Micro content
		Introduction of Magnetic Materials
1.a or		classification of permanent magnet materials used in
2.aIPemanent		electrical machines
magnet	Permanent Magnetic	minor hysteresis loop
materials and	Materials introduction	recoil line
PMDC motors		Stator frames of conventional dc machines
		Development of electronically commutated dc motor
		from conventional dc motor
		Permanent-magnet materials and characteristics
		Permanent-magnet materials and characteristics-B-H
1.b or 2.b		loop
I Permanent magnet	Permanent Magnetic Materials characteristics	demagnetization characteristics
materials and PMDC motors		Temperature effects: high temperature effects
		reversible losses Irreversible losses
		Application of permanent magnets in motors

UNIT-II: Stepper Motors (14 hrs)

Classification of stepper motors – Hybrid and Variable Reluctance Motor (VRM) - Construction and principle of hybrid type synchronous stepper motor – Different configuration for switching the phase windings control circuits for stepper motors – Open loop and closed loop control of 2-phase hybrid stepping motor. (**08hrs**)

Construction and principle of operation of Variable Reluctance Motor (VRM) – Single stack and multiple stack – Open loop control of 3- phase VR Stepper Motor- Applications(**06hrs**)

Unit	Module	Micro content			
		Classification of stepper motors			
3 aor 1 a		Construction of Hybrid Stepper Motor			
Stepper Motors	Hybrid Stepper Motor	principle of hybrid type synchronous stepper			
		motor			
		Different configuration for switching the phase			

		windings control singuits for stonger motors			
		which the second of the second			
		Open loop control of 2-phase hybrid stepping			
		motor			
		closed loop control of 2-phase hybrid stepping			
		motor			
		Construction of Variable Reluctance Motor			
		(VRM)			
		principle of operation of Variable Reluctance			
3.b or 4.b	Vriable Reluctance Motor (VRM)	Motor (VRM)			
Stepper Motors		Single stack and multiple stackoperation of			
		Variable Reluctance Motor (VRM)			
		Open loop control of 3- phase VR Stepper Motor			
		Applications of stepper motor			
Unit III Switched R	eluctance Motors (10 hrs)				
Construction - Comparison of conventional and switched reluctance motors - Design of stator and					
rotor pole arc	rotor pole arcs – Torque producing principle and torque expression				
(5 hrs)					

Different converter configurations for SRM – Drive and power circuits for SRM – Position sensing of rotor – Applications of SRM(**5 hrs**).

Unit	Module	Micro content			
5.aor 6.aSwitched Reluctance Motors	Construction of Operation VR Motors	Construction of switched reluctance motor Comparison of conventional and switched reluctance motors Design of stator and rotor pole arcs Torque producing principle of switched reluctance motor torque expression of switched reluctance motor			
5.b o 6.b Switched Reluctance Motors	Control of VR Motors	Different converter configurations for SRMDrive and power circuits for SRMPosition sensing of rotorApplications of SRM			
Unit IV Square and Sine Wave Permanent Magnet Brushless DC Motor (15 hrs)					

Types of constructions – Surface mounted and interior type permanent magnet – Principle of operation of BLDC motor. Torque and EMF equations – Torque speed characteristics – Performance

and efficiency- Square wave brushless motors with 120⁰ and 180⁰ magnetic areas commutation. (8 hrs)Sine wave Permanent Magnet Brushless Motor Torque and EMF equations –Torque/speed characteristics – Comparison between square wave and sine wave permanent magnet motors - Applications. (7 hrs)

Unit	Module	Micro content
		Types of constructions – Surface mounted and interior type permanent magnet,
7.a or 8.a	C W	Principle of operation of BLDC motor
Wave Permanent	Permanent Magnet	Torque and EMF equations
Magnet Brushless DC Motor	Brushless DC Motor	Torque speed characteristics – Performance and efficiency-
		Square wave brushless motors with 120° and 180° magnetic areas commutation
		Construction of Sine wave Permanent Magnet Brushless Motor
7.b or .b Square and Sine	or .b are and Sine Sine Wave Permanent	Torque and EMF equations
Wave Permanent	Magnet Brushless DC	Torque/speed characteristics
Magnet Brushless DC Motor	Motor	Comparison between square wave and sine wave permanent magnet motors
		Applications

Unit V Linear Induction Motors (10 hrs)

Construction– principle of operation–Double sided LIM from rotating type Induction Motor (**5 hrs**) Schematic of LIM drive for traction – Development of one sided LIM with back iron equivalent circuit of LIM. (**5 hrs**)

Unit Module		Micro content		
0 a ar 10 a		Construction of Linear Induction motor		
Linear Induction	Construction of Linear	principle of operation Linear Induction motor		
Motors		Double sided LIM from rotating type Induction Motor		
9.h or 10.h		Schematic of LIM drive for traction		
Linear Induction	Applications of Linear Induction motor	Development of one sided LIM with back iron		
Motors		equivalent circuit of LIM		

CO PO MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	1								1
CO2	2	2	3	1								1
CO3	2	2	3	1								1
CO4	2	2	3	1								1
CO5	2	2	3	1								1

Advance Control Systems

LT		P	С
3	0	0	3

PRE-REQUISITES: 1) Control System

- 2) Analog Circuits -1
- 3) Engineering Mathematics -1

Course objectives: The student should be able to

- 1) To study the basic theory required for solving complex control problems.
- 2) To do analysis and modeling of systems and signals.

	Syllabus					
Unit	Contents	Mapped				
No		СО				
т	Concept of state space -state space representation of system, solution of time invariant state equation- state transition matrix. Linear time varying	CO1				
1	System. Discrete system state space representation and solution (7hrs)	COI				
II	Non-linear system , types of non-linearity, singular point, non-linear system stability analysis- phase plane technique, construction of phase trajectories, isocline method. (8Hrs)	CO2				
III	Describing function analysis : Basic concepts, derivation of describing functions for common non-linearities Describing function analysis of non-linear systems – Conditions for stability – Stability of oscillations. (9Hrs)	CO3				
IV	Lyapunov stability analysis- definition of stability, instability and asymptotic stability. Lyapunov stability theorems. Stability analysis of simple linear systems. (9Hrs)	CO4				
V	MIMO systems-controllability- Observability- Effect of pole-zero cancellation, Practical examples-controllable and uncontrollable systems- observable and unobservable systems. Optimal control system-definition- design using state variable feedback and error squared performance indices. (9Hrs)	C05				
Cont	tent Beyond the syllabus:					
Z-tra	Insfer function- block diagram- signal flow graph- discrete root locus.					

	Course Outcomes					
Upon s	Upon successful completion of the course, the student will be able to					
CO1	Graduates will be able to understand different state model of a system, and have the					
	knowledge to find its solution. {Knowledge & Understand (1 & 2) }					
CO2	Graduates will be able to understand nonlinear system models, and analyse its stability.					
	{Understand & Analyze (2 & 4)}					

CO3	Graduates will be able to analyse the describing function analysis of various nonlinear
	systems. {Analyze (4)}
CO4	Graduates will be able design different systems and analyse its stability using Lyapunov
	stability analysis. { Analyze & Design (4 & 6) }
CO5	Graduates will be industry ready by analysis of controllability and observability of the
	dissimilar system. {Analyze (4)}

Learning Resources Text books: 1. "Discrete Time Control Systems", K. Ogata, PHI, 1996. 2. "Modern Control Engineering", K. Ogata, PHI, 1996. 3. Modern Control Systems, R. C. Dorf and R. H. Bishop, 8th ed., Pearson Education, Delhi, 2004. Reference books: 1. Process Control Instrumentation Technology, C. D. Johnson, 7th ed., Prentice Hall of India, New Delhi, 2003.

- 2. "Modern Control System Theory", M. Gopal, New Age International Publishers, 2nd edition, 1996.
- 3. "Digital control and state variables methods", Madangopal, PHI, 1997.
- 4. Modern control engineering Katsuhiko Ogata, Pearson Edn.

e- Resources & other digital material

- 1. http://nptel.iitm.ac.in/courses/108101037/
- 2. http://nptel.iitm.ac.in/video.php?subjectId=108102043
- 3. http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
 - Delhi/Control%20system%20design%20n%20principles/index.htm

Micro-Syllabus

Unit – 1: Concept of state space - state space representation of system, solution of time invariant state equation- state transition matrix. Linear time varying system. Discrete system state space representation and solution (7hrs)

Unit	Module	Micro content				
		State space representation of system				
		Solution of time invariant state equation				
Concept of state	Concept of state	State transition matrix				
space	space	Linear time varying system				
		Discrete system state space representation and solution				
Unit-2: Non-linear	Unit-2: Non-linear system, types of non-linearity, singular point, non-linearsystem stability					
analysis- phase plane technique, construction of phase trajectories, isocline method. (8Hrs)						
Unit	Module	Micro content				

		Types of non-linearity
NT	on-linear stem Non-linear system	Singular point
Non-linear		Non-linearsystem stability analysis
system		Phase plane technique
		Construction of Phase Trajectories
		Isoline Method.

Unit-3: **Describing function analysis**: Basic concepts, derivation of describing functions for common non-linearities Describing function analysis of non-linear systems – Conditions for stability – Stability of oscillations. (9Hrs).

Unit Module		Micro content		
		Basic concepts		
		Derivation of describing functions for common		
Describing	Describing function	non-linearities		
function analysis	analysis	Describing function analysis of non-linear systems		
		Conditions for stability		
		Stability of oscillations		
Unit-4: Lyapunov	stability analysis- defin	ition of stability, instability and asymptotic		
stability. Lyapunov	stability theorems. Sta	bility analysis of simple linear systems. (9Hrs)		
Unit	Module	Micro content		
		Definition of stability		
Lyapunov	Lyapunov stability	Instability and asymptotic stability		
stability analysis	analysis	Lyapunov stability theorems.		
		Stability analysis of simple linear systems.		
Unit-5: MIMO systems-controllability- Observability- Effect of pole-zero cancellation,				
Practical examples-controllable and uncontrollable systems- observable and unobservable				
systems. Optimal c	control system-definition	n- design using state variable feedback and error		

squared performance indices. (9Hrs)

Unit	Module	Micro content
		Observability
		Effect of pole-zero cancellation
		Practical examples
MIMO systems-	MIMO systems-	Controllable and uncontrollable systems
controllability	controllability	Observable and unobservable systems
		Optimal control system-definition
		Design using state variable feedback
		Error squared performance indices.

Contr	ibution	n of Co	urse O	utcome	es towa	rds ach	nievem	ent of I	Program	n Outco	mes & S	Strength of	of correl	ations (H	ligh: 3,
							Medi	um: 2,	Low:	1)					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-	PSO-	PSO-
													1	2	3
CO1	3	2	-	1	-	-	-	-	-	-	-	-	-	2	2
CO2	2	3	-	-	-	-	-	-	-	-	-	-	-	-	3
CO3	-	3	2	-	-	-	-	-	-	-	-	-	2	2	-
CO4	-	2	3	-	-	-	-	-	-	-	-	-	-	-	2
CO5	-	-	-	-	3	-	-	-	-	-	-	2	-	2	-

CO-PO mapping Table

Solar and Wind Energy Conversion Systems

L	Т	Р	С
3	0	0	3

PRE-REQUISITES:

1) Power Electronics

Course objectives: The student should be able to

- 1. Understand the principles and to study the control of Solar PV system.
- 2. Model and design the components of Solar PV energy system.
- 3. Study the principles and the mechanisms of wind energy conversion systems.
- 4. Obtain the mathematical models for DFIG, PMSG, stand alone and Grid Connected WECS system control.
- 5. Implement the control principles for PV & wind energy integration.

	Syllabus	
Unit	Contents	Mapped
No		CO
	Solar PV energy conversion(12 hrs)	
Ι	Curve, Impacts of Temperature and Insolation, Shading impacts on I–V curves, I–V	CO1
	Curves for different loads, MPPT, System sizing, System Performance, Economics	
	Solar PV System control (12 hrs)	
II	Mathematical models -PV cell, PV Array, Battery pack, dc-dc converter, P&O	CO2
	MPPT technique, DC bus voltage regulation	
	Wind Energy Conversion components (12 hrs)	
	Basics of wind energy systems: Components of WECS, Power obtained from the	
	wind, Power Regulation, yaw control, Pitch control, stall control, Schemes for	
III	Maximum Power Extraction.	CO3
	Wind Turbines & Generators: Fixed-speed Induction Generator (FSIG) based	
	Wind Turbines, Doubly Fed Induction Generator (DFIG) based Wind Turbines,	
	Fully Rated Converter-based (FRC) Wind Turbines	
	Control of Wind Power Conversion (12 hrs)	
IV	Mathematical models for DFIG, PMSG, stand alone and Grid Connected WECS	CO4
	system control, Models for MPPT	
	Grid Connection of Solar PV and Wind Power (12 hrs)	
	PV integration technology:PV inverter topologies- configurations and control	
V	strategies of solar PV integration.	C05
v	Wind power integration technology: Wind power and voltage control for	0.05
	synchronous and induction generators-based integration; active and reactive power	
	control.	
Con	tent Beyond the syllabus:	
1	. Grid codes and technical regulations of Solar PV integration	

- 2. Grid codes and technical regulations of Wind power integration
- 3. Integrating multiple renewable energy sources

LIST OF EXPERIMENTS

Any Ten of the following experiments are to be conducted:

- 1. Modelling of PV system
- 2. Modelling of DFIG based wind power system
- 3. Simulation of Grid connected PV MPPT (P&O) single stage
- 4. Simulation of Grid connected PV MPPT (P&O) double stage.
- 5. Virtual inertia emulation using PV Battery systems and its studies under varying loads
- 6. Grid connected DFIG wind generation analysis under varying wind, and grid conditions.
- 7. PV+BESS+Diesel generator simulation with virtual inertia in autonomous mode.
- 8. Use of ultra-capacitors to improve dynamic performance of PV+BESS+Diesel generator autonomous system
- 9. Fuel Cell grid integration studies and analysis.
- 10. Improving dynamic response with Fuel cell and Microturbine combination
- 11. Forecasting of wind and solar energy for techno-economic analysis

List of Additional Experiments: Any of the two experiments are to be conducted

- 1. Simulation study on Solar PV Energy System.
- 2. Modelling and simulation of electric vehicle charging system

Course Outcomes				
Upon s	successful completion of the course, the student will be able to			
CO1	Understand the principles and control of Solar PV Energy system {Understand level, KL2}			
CO2	Model and Select Solar PV energy system components {Create level, KL6}			
CO3	Interpret the principles and control of Wind Energy Conversion {Apply level, KL3}			
CO4	Model and Select Solar Wind energy conversion system components{Create level, KL6}			
CO5	Apply the control principles for PV & wind power - grid integration control{Apply level,			
	KL3}			

Learning Resources

Text books:

- 1. H.P. Garg & J. Prakash, "Solar Energy Fundamentals and Applications", Indian Edition First Revised Edition, Mc Graw Hill Education.
- 2. G. D. Rai, "Non-Conventional Energy Sources", Khanna Publishers, First edition.

Reference books:

- 1. Solar Photovoltaics, Fundamentals, Technologies and Applications, Second Edition, Chetan Singh Solanki, PHI Learning Private Limited (2012).
- 2. Ali Keyhani Mohammad Marwali and Min Dai, Integration and Control of Renewable Energy in Electric Power System, John Wiley publishing company, 2nd Edition, 2010.

e- Resources & other digital material

1. https://www.coursera.org/learn/solar-energy-system-design

- 2. https://nptel.ac.in/courses/103103206
- 3. https://www.coursera.org/lecture/solar-energy-and-electrical-system-design/inverters-and-solar-panels-cgwIm
- 4. https://onlinecourses.nptel.ac.in/noc21_ge04/preview
- 5. https://link.springer.com/book/10.1007/978-3-319-14941-7

Micro-Syllabus

Unit I: Solar PV energy conversion (12 hrs)

Generic Photovoltaic Cell, Equivalent Circuits, Cells to Modules to Arrays, I –V Curve, Impacts of Temperature and Insolation, Shading impacts on I–V curves, I–V Curves for different loads, MPPT, System sizing, System Performance, Economics.

Unit No	Module	Micro content
		Generic Photovoltaic Cell
		Equivalent Circuits
		Cells to Modules to Arrays
		I –V Curve
1. Solar PV	Solar PV energy	Impacts of Temperature and Insolation
energy conversion	conversion	Shading impacts on I–V curves
		I–V Curves for different loads
		Maximum power point tracking (MPPT)
		System sizing and Performance
		Economics

Unit-II: Solar PV System control (12 hrs)

Mathematical models -PV cell, PV Array, Battery pack, dc-dc converter, P&O MPPT technique, DC bus voltage regulation.

Module	Micro content
	Introduction to mathematical models
	Model of PV cell
	PV Array
Solar PV System control	Battery pack
	Design of dc-dc converter
	Various MPPT techniques for solar PV systems
	P&O MPPT technique
	DC bus voltage regulation.
	Module Solar PV System control

Unit-III: Wind Energy Conversion components (12 hrs)

Basics of wind energy systems:Components of WECS, Power obtained from the wind, Power Regulation, yaw control, Pitch control, stall control, Schemes for Maximum Power Extraction,

Wind Turbines & Generators: Fixed-speed Induction Generator (FSIG) based Wind Turbines, Doubly Fed Induction Generator (DFIG) based Wind Turbines, Fully Rated Converter-based (FRC) Wind Turbines

9. Wind Energy Conversion components Basics of wind energy systems Components of WECS 9. Wind Energy Conversion components Basics of wind energy systems Power Regulation yaw control Pitch control 4. Control of Wind Power Conversion Conversion Fully Rated Converter-based (FRC) Wind Turbines Generators Fixed-speed Induction Generator (DFIG) based Wind Turbines 4. Control of Wind Power Conversion (L1 brs) Doubly Fed Induction Generator (DFIG) based Wind Turbines 4. Control of Wind Power Module Mathematical models for DFIG, PMSG, stand alore and Grid Connected WECS system control, Models for MPPT. 4. Control of Wind Power Module Mathematical models for DFIG 4. Control of Wind Power Control of Wind Power Mathematical models for DFIG 6. Conversion Control of Wind Power Mathematical models for DFIG 4. Control of Wind Power Mathematical models for DFIG Mathematical models for DFIG 4. Control of Wind Power Mathematical models for DFIG Mathematical models for DFIG 4. Control of Wind Power Conversion Mathematical models for DFIG Mathematical models for DFIG 4. Control of Wind Power Power (12 hrs) PV Mathematical models for DFIG 5. Grid Mind power integration<		Module	Micro content
9. Wind Energy Conversion components Basics of wind energy systems Power Regulation 9. Wind Energy Conversion components Power Regulation Wind Turbines & Generators Schemes for Maximum Power Extraction Fixed-speed Induction Generator (DFIG) based Wind Turbines Fixed-speed Induction Generator (DFIG) based Wind Turbines Unit-IV Control of Wind Power Conversion Fully Rated Converter-based (FRC) Wind Turbines Mathematical models for DFIG, PMSG, stand alore and Grid Connected WECS system control, Models for MPPT. Mathematical models for DFIG Unit No Module Mathematical models for DFIG A.Control of Wind Power Control of Wind Power Mathematical models for DFIG Conversion Control of Wind Power Mathematical models for DFIG Unit-V Grid Connection of Solar PV and Wind Power integration technology:PV inverter topologies- configurations and control strategies of solar PV integration. Module Wind power integration technology:Wind power and voltage control for synchronous and induction generators-based integration technology PV inverter topologies FV integration generators based integration PV inverter topologies PV inverter configurations control strategies of solar PV integration Stard PW and Wind power and voltage control for synchronous generators-based integration active power control Wind p			Components of WECS
9. Wind Energy Conversion components Wind Turbines & Generators Wind Turbines & Generators Wind Turbines & Generators Wind Turbines & Generators Unit-IV Control of Wind Power Conversion Unit-IV Control of Wind Power Conversion Control of Wind Power Conversion Mathematical models for DFIG, PMSG, stand alore and Grid Connected WECS system control, Models for MPPT. Unit No Module A.Control of Wind Power Conversion Module Micro content Mathematical models for DFIG Mathematical models for DFIG Mathematical models for DFIG Mathematical models for DFIG Mathematical models for DFIG Stand-alone and Grid Connected WECS system control. Models for MPPT Unit-V Grid Connection of Solar PV and Wind Power (12 hrs) PV integration technology: Wind power and voltage control strategies of solar PV integration. Wind power integration; active and reactive power control. Mide power and voltage control for synchronous and induction generators-based integration technology Wind power and voltage control for synchronous generators-based integration Wind power and voltage control for synchronous generators-based integration Wind power and voltage control for induction- generators-based integration Wind power and voltage control for induction- generators-based integration active power control Reactive power control			Power obtained from the wind
9. Wind Energy Conversion components Basics of wind energy systems yaw control 9. Wind Energy Conversion components Settemes for Maximum Power Extraction Fixed-speed Induction Generator (FSIG) based Wind Turbines Wind Turbines & Generators Fixed-speed Induction Generator (DFIG) based Wind Turbines Fixed-speed Induction Generator (DFIG) based Wind Turbines Unit-IV Control of Wind Power Conversion (12 brs) Fully Rated Converter-based (FRC) Wind Turbines Mathematical models for DFIG, PMSG, stand alone and Grid Connected WECS system control, Models for MPPT. Mathematical models for DFIG 4.Control of Wind Power Conversion Module Mathematical models for DFIG 4.Control of Wind Power Conversion Mathematical models for DFIG Mathematical models for DFIG Unit-V Grid Connection of Solar PV and Wind Power (12 brs) Stand-alone and Grid Connected WECS system control. Stand-alone and control strategies of solar PV integration technology:PV inverter topologies- configurations and control strategies of solar PV integration; active and reactive power control. Wind power integration technology:Wind power and voltage control for synchronous and induction generators-based integration; control strategies of solar PV integration technology PV inverter topologies. 5.Grid Connection of Solar PV and Wind power integration Wind power and voltage control for synchronous generators-based integration active power control <th></th> <td>Power Regulation</td>			Power Regulation
9. Wind Energy Conversion components Systems Pitch control stall control 9. Wind Energy Conversion components Wind Turbines & Generators Fixed-speed Induction Generator (FSIG) based Wind Turbines Wind Turbines & Generators Fixed-speed Induction Generator (DFIG) based Wind Turbines Unit-IV Control of Wind Power Conversion (12 brs) Boubly Fed Induction Generator (DFIG) based Wind Turbines Mathematical models for DFIG, PMSG, stand alone and Grid Connected WECS system control, Models for MPPT. Mathematical models for DFIG Unit No Module Mathematical models for DFIG 4.Control of Wind Power Control of Wind Power Mathematical models for DFIG Conversion Control of Wind Power (12 hrs) Stand-alone and Grid Connected WECS system control. Vintegration technology:PV inverter topologies- configurations and control strategies of solar PV integration. Wind power integration; active and reactive power control. Vint power integration; active and reactive power control. PV inverter topologies PV inverter topologies 5.Grid PV integration technology PV inverter topologies PV inverter configurations control strategies of solar PV integration Solar PV and Wind power integration solar PV and Wind power and voltage control for induction generators-based integration Wind power and voltage control for induction generators-based integration		Basics of wind energy	yaw control
9. Wind Energy Conversion components stall control Vind Turbines & Generators Schemes for Maximum Power Extraction Wind Turbines & Generators Fixed-speed Induction Generator (PSIG) based Wind Turbines Unit-IV Control of Wind Power Conversion (12 brs) Doubly Fed Induction Generator (DFIG) based Wind Turbines Mathematical models for DFIG, PMSG, stand alone and Grid Connected WECS system control, Models for MPPT. Mitro content Unit No Module Mitro content 4.Control of Wind Power Conversion Module Mathematical models for DFIG Mathematical models for Solar PV and Wind Power Conversion Control of Solar PV and Wind Power (12 hrs) PV integration technology:PV inverter topologies- configurations and control strategies of solar PV integration. Module Vind power integration technology:Wind power and voltage control for synchronous and induction generators-based integration; active and reactive power control. Mitro content Unit No Module Micro content Vind power integration solar PV and Wind power integration solar PV and Wind Power Wind power integration technology Wind power integration sective power control Wind power and voltage control for synchronous generators-based integration		systems	Pitch control
Conversion componentsSchemes for Maximum Power ExtractionWind Turbines & GeneratorsFixed-speed Induction Generator (FSIG) based Wind TurbinesUnit-IV Control of Wind Power Conversion (12 brs)Doubly Fed Induction Generator (DFIG) based Wind TurbinesMathematical models for DFIG, PMSG, stand alone and Grid Connected WECS system control, Models for MPPT.Mathematical models for DFIG Mathematical models for DFIGUnit NoModuleMicro content4.Control of Wind Power ConversionMathematical models for DFIG Mathematical models for DFIG4.Control of Wind Power ConversionMathematical models for DFIG Mathematical models for DFIG10.11 V Grid Connection of Solar PV and Wind Power ConversionPower (12 hrs)PV integration technology:PV inverter topologies- control of wind power integration; active and reactive power control.Micro contentUnit NoModulePV inverter topologies- control of Solar PV and Wind Power and voltage control for synchronous and induction generators-based integration; active and reactive power control.Micro contentUnit NoModulePV inverter topologies PV inverter topologiesPV inverter topologies PV inverter configurations control strategies of solar PV and Wind power integration technologyWind power and voltage control for synchronous generators-based integration active power controlS.Grid Connection of Solar PV and Wind PowerWind power integration active power controlWind power and voltage control for synchronous generators-based integration active power control	9. Wind Energy		stall control
Wind Turbines & GeneratorsFixed-speed Induction Generator (FSIG) based Wind TurbinesUnit-IV Control of Wind Power ConversionFully Rated Converter-based (FRC) Wind TurbinesUnit-IV Control of Wind Power ConversionFully Rated Converter-based (FRC) Wind TurbinesUnit NoModuleMicro content4.Control of Wind Power ConversionMathematical models for DFIG, PMSG, stand alore and Grid Connected WECS system control, Models for DFIG4.Control of Wind Power ConversionControl of Wind Power ConversionMathematical models for DFIG Mathematical models for DFIG Mathematical models for DFIG Mathematical models for PMSG1Unit-V Grid Connection of Solar PV and Wind Power (12 hrs) PV integration technology: Wind power and voltage control for synchronous and induction generators-based integration; active and reactive power control.Micro contentUnit NoModulePV inverter topologies PV inverter topologiesPV inverter configurations control for synchronous and induction generators-based integration technologyPV inverter configurations control strategies of solar PV integration5.Grid Connection of Solar PV and Wind PowerWind power integration technologyPV inverter topologies PV inverter configurations control strategies of solar PV integration active power controlWind PowerWind power integration technologyWind power and voltage control for induction- generators-based integration active power control	components		Schemes for Maximum Power Extraction
Wind Turbines & GeneratorsTurbines Doubly Fed Induction Generator (DFIG) based Wind TurbinesDoubly Fed Induction Generator (DFIG) based Wind TurbinesDoubly Fed Induction Generator (DFIG) based Wind TurbinesUnit-IV Control of Wind Power ConversionFully Rated Convecter-based (FRC) Wind TurbinesMathematical models for DFIG, PMSG, stand alone and Grid Connected WECS system control, Models for MPPT.Mathematical models for DFIGUnit NoModuleMathematical models for DFIGA.Control of Wind Power ConversionMathematical models for DFIGMathematical models for MPTMathematical models for MPSGConversionStand-alone and Grid Connected WECS system control.Unit-V Grid Connection of Solar PV and Wind Power (12 hrs)Models for MPPTVintegration technology:Wind power and voltage control for synchronous and induction generators-based integration; active and reactive vower control.PV inverter topologiesVint NoModuleMicro contentVintor of ModulePV inverter topologiesPV integration solar PV and Wind power integrationPV integrationSolar PV and Wind PowerWind power and voltage control for synchronous generators-based integrationWind Power technologyWind power and voltage control for induction generators-based integrationSolar PV and Wind PowerWind power and voltage control for induction generators-based integrationWind power integration technologyWind power controlWind power integration technologyWind power and voltage control for induction generators-based integratio	components		Fixed-speed Induction Generator (FSIG) based Wind
Wind furthing & GeneratorsDoubly Fed Induction Generator (DFIG) based Wind TurbinesDoubly Fed Induction Generator (DFIG) based Wind TurbinesUnit-IV Control of Wind Power Conversion (12 hrs)Mathematical models for DFIG, PMSG, stand alone and Grid Connected WECS system control, Models for MPPT.Unit NoModuleA.Control of Wind Power ConversionMathematical models for DFIG Mathematical models for DFIG Mathematical models for DFIG4.Control of Wind Power ConversionControl of Wind Power ConversionControl of Wind Power ConversionMathematical models for DFIG Mathematical models for DFIG Mathematical models for DFIG Mathematical models for DFIGUnit-V Grid Connection of Solar PV and Wind Power integration.Power (12 hrs) Power (12 hrs)PV integration technology:PV inverter topologies- configurations and control strategies of solar PV integration.Power (12 hrs) Power and voltage control for synchronous and induction generators-based integration control.Unit NoModuleMicro contentPV integration technologyPV inverter topologies PV inverter configurations control strategies of solar PV integration control strategies of solar PV integration wind power and voltage control for synchronous generators-based integration generators-based integrationS.Grid Connection of Solar PV and Wind PowerWind power integration generators-based integration active power controlWind power Kond Power Kond PowerWind power and voltage control for induction- generators-based integration active power control Reactive power control <th></th> <th>Wind Turbings &</th> <td>Turbines</td>		Wind Turbings &	Turbines
Generators Turbines Fully Rated Converter-based (FRC) Wind Turbines Unit-IV Control of Wind Power Conversion (12 hrs) Mathematical models for DFIG, PMSG, stand alone and Grid Connected WECS system control, Models for MPPT. Unit No Module A.Control of Wind Power Conversion Mathematical models for DFIG Mathematical models for DFIG of Wind Power Conversion Mathematical models for DFIG Mathematical models for DFIG Mathematical models for DFIG Mathematical models for DFIG Mathematical models for DFIG Power Conversion Mathematical models for DFIG Mathematical models for DFIG Mathematical models for DFIG Mathematical models for DFIG Mathematical models for DFIG Models for MPOr Mathematical models for DFIG Mathematical models for DFIG Mathematical models for DFIG Mathematical models for DFIG Mathematical models for DFIG Mathematical models for DFIG Mathematical models for DFIG Vintersion Windes for MPPT Unit-V Grid Connection of Solar PV and Wind Power (12 hrs) PV integration secontrol for synchronous and induction generators-based integration S.Grid Module Micro content		Conceptors	Doubly Fed Induction Generator (DFIG) based Wind
Fully Rated Converter-based (FRC) Wind Turbines Unit-IV Control of Wind Power Conversion (12 hrs) Mathematical models for DFIG, PMSG, stand alore and Grid Connected WECS system control, Models for MPPT. Unit No Module A.Control of Wind Power Conversion Mathematical models for DFIG Mathematical models for DFIG Mathematical models for DFIG Moter Mathematical models for DFIG Moter Mathematical models for DFIG Mathematical models for DFIG Mathematical models for DFIG Mathematical models for DPT Mathematical models for MPST Unit-V Grid Connection of Solar PV and Wind Power (12 hrs) PV PV integration technology:Wind power and voltage control for synchronous and induction generators-based integration, active and reactive power control. PV Unit No Module Micro content PV inverter topologies PV integration PV integration technology PV inverter configurations S.Grid Mid power integra		Generators	Turbines
Unit-IV Control of Wind Power Conversion (12 hrs) Mathematical models for DFIG, PMSG, stand alone and Grid Connected WECS system control, Models for MPPT. Unit No Module Micro content 4.Control of Wind Power Conversion Control of Wind Power Conversion Mathematical models for DFIG Mathematical models for DFIG Mathematical models for DFIG Mathematical models for DFIG Mathematical models for DFIG Power Conversion Mathematical models for DFIG Unit-V Grid Connection of Solar PV and Wind Power (12 hrs) Mathematical models for MPPT Unit-V Grid Connection of Solar PV and Wind Power (12 hrs) PV integration technology:PV inverter topologies- configurations and control strategies of solar PV integration, active and reactive power control. Wind power integration; active and reactive power control. Micro content Unit No Module Micro content PV integration; active and reactive power control. PV inverter topologies Init No Module PV inverter configurations control strategies of solar PV integration S.Grid Mind power integration; technology PV inverter topologies PV indegration of Solar PV and Wind power and voltage control for synchronous generators-based integration S.Grid Wind power integration			Fully Rated Converter-based (FRC) Wind Turbines
Mathematical models for DFIG, PMSG, stand alone and Grid Connected WECS system control, Models for MPPT. Unit No Module Micro content 4. Control of Wind Power Conversion Control of Wind Power Conversion Mathematical models for DFIG Unit-V Grid Connection of Solar PV and Wind Power Integration technology:PV inverter topologies- configurations and control strategies of solar PV integration, active and reactive power control. Module Wind power integration technology:Wind power and voltage control for synchronous and induction generators-based integration; active and reactive power control. PV inverter topologies Unit No Module Micro content PV integration technology:Wind power and voltage control for synchronous and induction generators-based integration; active and reactive power control. PV inverter topologies S.Grid Connection of Solar PV and Wind power integration technology PV integration technologies PV inverter topologies Vind power wer and voltage control for synchronous generators-based integration technology PV inverter topologies PV inverter configurations S.Grid Connection of Solar PV and Wind power integration technology Wind power and voltage control for synchronous generators-based integration Wind power Module Micro content PV inverter topologies PV integration technology Wind power and voltage control for synchronous generators-based i	Unit-IV Control of	Wind Power Conversion (1	2 hrs)
for MPPT. Module Micro content 4. Control of Wind Power Conversion Acontrol of Wind Power Conversion Mathematical models for DFIG Conversion Mathematical models for PMSG Stand-alone and Grid Connected WECS system control. Stand-alone and Grid Connected WECS system control. Unit-V Grid Connection of Solar PV and Wind Power (12 hrs) PV integration technology:PV inverter topologies- configurations and control strategies of solar PV integration. Wind power integration technology:Wind power and voltage control for synchronous and induction generators-based integration; active and reactive power control. Micro content Unit No Module Micro content PV integration generators-based integration; active and reactive power control. PV inverter topologies For integration generators-based integration; active and reactive power control. PV inverter configurations technology 5.Grid Connection of Solar PV and Wind power integration technology PV inverter configurations control strategies of solar PV integration Wind power and voltage control for synchronous generators-based integration technology Wind power and voltage control for induction- generators-based integration Wind power control Reactive power control Reactive power control	Mathematical model	s for DFIG, PMSG, stand al	one and Grid Connected WECS system control, Models
Unit NoModuleMicro content4. Control of Wind Power ConversionControl of Wind Power ConversionMathematical models for DFIG Mathematical models forPMSGConversionStand-alone and Grid Connected WECS system control.Unit-V Grid Connection of Solar PV and Wind Power (12 hrs) PV integration technology:PV inverter topologies- configurations and control strategies of solar PV integration.Wind power integration technology:Wind power and voltage control for synchronous and induction generators-based integration; active and reactive power control.Unit NoModulePV integration technologyFor integration of Solar PV and Wind PowerWind power integration technologyWind power integration technologyWind power integration technologyWind power integration technologyWind power integration technologyWind power integration technologyWind power and voltage control for synchronous generators-based integrationWind power integration technologyWind power and voltage control for synchronous generators-based integrationWind power ond voltage control for induction- generators-based integrationWind power ond voltage control for induction- generators based integration active power controlWind power ontrol Reactive power control	for MPPT.		
4.Control of Wind Power Conversion Control of Wind Power Conversion Mathematical models for DFIG Mathematical models forPMSG Stand-alone and Grid Connected WECS system control. Unit-V Grid Connection of Solar PV and Wind Power (12 hrs) PV integration technology:PV inverter topologies- configurations and control strategies of solar PV integration. Wind power integration technology:Wind power and voltage control for synchronous and induction generators-based integration; active and reactive power control. Unit No Module PV inverter topologies Image: Solar PV and Wind Power Wind power integration technology Wind power integration technology Wind power integration technology Wind power integration technology Wind power and voltage control for synchronous generators-based integration technology Wind power integration technology Wind power and voltage control for synchronous generators-based integration technology Wind power and voltage control for induction- generators-based integration active power control Reactive power control	Unit No	Module	Micro content
4.Control of Wind Power Conversion Control of Wind Power Conversion Mathematical models forPMSG Stand-alone and Grid Connected WECS system control. Stand-alone and Grid Connected WECS system control. Unit-V Grid Connection of Solar PV and Wind Power (12 hrs) PV integration technology:PV inverter topologies- configurations and control strategies of solar PV integration. Wind power integration technology:Wind power and voltage control for synchronous and induction generators-based integration; active and reactive power control. Unit No Module PV integration generators-based integration; active and reactive power control. Unit No Module PV inverter topologies PV inverter topologies PV inverter configurations control strategies of solar PV integration Vind power and voltage control for synchronous generators-based integration Wind power integration technology Wind power and voltage control for synchronous generators-based integration Wind power and voltage control for induction- generators based integration Wind power and voltage control for induction- generators based integration Attemption Reactive power control			Mathematical models for DFIG
4. Control of Wind Power Conversion Control of Wind Power Conversion Stand-alone and Grid Connected WECS system control. Unit-V Grid Connection of Solar PV and Wind Power (12 hrs) Models for MPPT Unit-V Grid Connection of Solar PV and Wind Power (12 hrs) PV integration technology: PV inverter topologies- configurations and control strategies of solar PV integration. Wind power integration technology: Wind power and voltage control for synchronous and induction generators-based integration; active and reactive power control. Micro content Unit No Module Micro content PV integration technology PV inverter topologies PV inverter configurations control strategies of solar PV integration Solar PV and Wind Power Wind power integration technology Wind power and voltage control for synchronous generators-based integration Wind power ontrol technology Wind power and voltage control for induction- generators-based integration	A Control of Wind		Mathematical models for PMSG
Lower Conversion control. Conversion control. Wint-V Grid Connection of Solar PV and Wind Power (12 hrs) PV integration technology:PV inverter topologies- configurations and control strategies of solar PV integration. Wind power integration technology:Wind power and voltage control for synchronous and induction generators-based integration; active and reactive power control. Unit No Module PV integration technology PV integration; active and reactive power control. Unit No Module PV inverter topologies PV integration technology S.Grid PV integration technology Connection of Solar PV and Wind power integration technology Wind power integration technology Wind power integration technology Reactive power and voltage control for induction-generators-based integration Wind power and voltage control for induction-generators based integration Wind power and voltage control for induction-generators based integration	4.Control of white Dowor	Control of Wind Power	Stand-alone and Grid Connected WECS system
ConversionModels for MPPTUnit-V Grid Connection of Solar PV and Wind Power (12 hrs)PV integration technology:PV inverter topologies- configurations and control strategies of solar PV integration.Wind power integration technology:Wind power and voltage control for synchronous and induction generators-based integration; active and reactive power control.Unit NoModulePV integration technologyPV inverter topologies PV inverter topologies PV inverter configurations control strategies of solar PV integration Wind power and voltage control for synchronous generators-based integrationS.Grid Connection of Solar PV and Wind power integration technologyPV inverter configurations control strategies of solar PV integration Wind power and voltage control for synchronous generators-based integrationWind powerWind power and voltage control for induction- generators based integration active power control	Conversion	Conversion	control.
Unit-V Grid Connection of Solar PV and Wind Power (12 hrs)PV integration technology:PV inverter topologies- configurations and control strategies of solar PVintegration.Wind power integration technology:Wind power and voltage control for synchronous and induction generators-based integration; active and reactive power control.Unit NoModulePV integration technologyPV integration technologyPV integration technologyWind power integration technologyWind power and voltage control for synchronous control strategies of solar PV integration control strategies of solar PV integration generators-based integrationWind power wind PowerWind power integration technologyWind power and voltage control for synchronous generators-based integration director based integrationWind power and voltage control for induction- generators based integration active power control Reactive power control			Models for MPPT
Unit-V Grid Connection of Solar PV and Wind Power (12 hrs)PV integration technology:PV inverter topologies- configurations and control strategies of solar PVWind power integration technology:Wind power and voltage control for synchronous and induction generators-based integration; active and reactive power control.Unit NoModuleMicro contentPV integration technologyPV integration technologyPV integration technologyWind power integration technologyWind power integration connection of Solar PV and Wind PowerWind powerWind power integration technologyWind power of solar PV and Wind PowerWind power and voltage control for synchronous generators-based integration active power controlWind PowerReactive power control			
PV integration technology:PV inverter topologies- configurations and control strategies of solar PV integration. Wind power integration technology:Wind power and voltage control for synchronous and induction generators-based integration; active and reactive power control. Unit No Module Micro content PV integration technology PV inverter topologies PV inverter topologies S.Grid PV integration technology PV inverter configurations Solar PV and Wind Power Wind power integration technology Wind power and voltage control for synchronous generators-based integration Wind Power Wind power and voltage control for synchronous generators-based integration Wind power and voltage control for induction-generators based integration	Unit-V Grid Conne	ction of Solar PV and Win	d Power (12 hrs)
Integration. Wind power integration technology:Wind power and voltage control for synchronous and induction generators-based integration; active and reactive power control. Unit No Module Micro content PV integration technology PV inverter topologies PV inverter configurations 5.Grid Connection of Solar PV and Wind Power PW integration technology Wind power integration technology Wind Power Wind power integration technology Wind power and voltage control for synchronous generators-based integration Wind Power Wind power integration technology Wind power and voltage control for induction-generators based integration	PV integration tech	hnology:PV inverter topolog	yies- contigurations and control strategies of solar PV
Wind power integration technology: wind power and voltage control for synchronous and induction generators-based integration; active and reactive power control.Unit NoModuleMicro contentPV initegration technologyPV inverter topologies PV inverter configurations control strategies of solar PV integration Wind power and voltage control for synchronous generators-based integrationSolar PV and Wind PowerWind power integration technologyWind power and voltage control for synchronous generators-based integration active power controlWind power and voltage control for induction- generators based integration active power controlWind power control			Sies configurations and control strategies of solar 1 v
generators-based integration; active and reactive power control. Unit No Module Micro content PV integration PV inverter topologies PV inverter configurations 5.Grid control strategies of solar PV integration control strategies of solar PV integration Solar PV and Wind power integration Wind power and voltage control for synchronous generators-based integration Wind Power Wind power control Wind power control	integration.		
Unit NoModuleMicro contentModuleMicro contentPV integration technologyPV inverter topologiesPV inverter configurations control strategies of solar PV integrationSolar PV and Wind PowerWind power integration technologyWind power and voltage control for synchronous generators-based integrationWind power and voltage control for induction- generators based integrationactive power controlReactive power control	Wind power integr	ation technology: Wind pov	ver and voltage control for synchronous and induction
FV integration technology PV inverter topologies FV inverter configurations PV inverter configurations control strategies of solar PV integration control strategies of solar PV integration Solar PV and Wind Power Wind power integration technology Wind power and voltage control for synchronous generators-based integration Wind Power Additional power and voltage control for induction- generators based integration Additional power Additional power control Reactive power control Reactive power control	Wind power integr generators-based integr	eation technology: Wind powerstion; active and reactive	ver and voltage control for synchronous and induction power control.
5.Grid technology PV inverter configurations Connection of control strategies of solar PV integration Solar PV and Wind power integration Wind power and voltage control for synchronous generators-based integration Wind Power Wind power control Wind power and voltage control for induction-generators based integration Reactive power control Reactive power control	Wind power integr generators-based integr Unit No	egration; active and reactive	wer and voltage control for synchronous and induction power control.
5.Grid Connection of Solar PV and Wind power integration Wind Power Wind power integration Wind power control Wind power and voltage control for synchronous generators-based integration Wind power control Wind power control Reactive power control Reactive power control	Wind power integr generators-based integr Unit No	egration; active and reactive Module	wer and voltage control for synchronous and induction power control. Micro content PV inverter topologies
Connection of Solar PV and Wind Power Wind power integration technology Wind power and voltage control for synchronous generators-based integration Wind power of technology Wind power and voltage control for induction- generators based integration Active power control Reactive power control	Wind power integr generators-based integr Unit No	egration; active and reactive Module PV integration technology	wer and voltage control for synchronous and induction power control. Micro content PV inverter topologies PV inverter configurations
Solar PV and Wind Power Wind power integration generators-based integration Wind power Wind power integration Wind power and voltage control for induction- generators based integration active power control Reactive power control	Wind power integr generators-based inte Unit No	egration technology:Wind powegration; active and reactive Module PV integration technology	wer and voltage control for synchronous and induction power control. Micro content PV inverter topologies PV inverter configurations control strategies of solar PV integration
Wind Power Wind power integration technology Wind power and voltage control for induction-generators based integration Additional active power control Additional active power control	Wind power integr generators-based inte Unit No 5.Grid Connection of	egration; active and reactive Module PV integration technology	wer and voltage control for synchronous and induction power control. Micro content PV inverter topologies PV inverter configurations control strategies of solar PV integration Wind power and voltage control for synchronous
technology generators based integration active power control Reactive power control	Wind power integr generators-based inte Unit No 5.Grid Connection of Solar PV and	ration technology:Wind powegration; active and reactive Module PV integration technology	wer and voltage control for synchronous and induction power control. Micro content PV inverter topologies PV inverter configurations control strategies of solar PV integration Wind power and voltage control for synchronous generators-based integration
active power control Reactive power control	Wind power integr generators-based inte Unit No 5.Grid Connection of Solar PV and Wind Power	ration technology: Wind power integration; active and reactive Module PV integration technology	wer and voltage control for synchronous and induction power control. Micro content PV inverter topologies PV inverter configurations control strategies of solar PV integration Wind power and voltage control for synchronous generators-based integration Wind power and voltage control for induction-
Reactive power control	Wind power integr generators-based into Unit No 5.Grid Connection of Solar PV and Wind Power	ation technology: Wind power integration Module PV integration technology	wer and voltage control for synchronous and induction power control. Micro content PV inverter topologies PV inverter configurations control strategies of solar PV integration Wind power and voltage control for synchronous generators-based integration Wind power and voltage control for induction- generators based integration
	Wind power integr generators-based inte Unit No 5.Grid Connection of Solar PV and Wind Power	ation technology:Wind power integration; active and reactive Module PV integration technology	wer and voltage control for synchronous and induction power control. Micro content PV inverter topologies PV inverter configurations control strategies of solar PV integration Wind power and voltage control for synchronous generators-based integration Wind power and voltage control for induction-generators based integration active power control

Co	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations													
	(High: 3, Medium: 2, Low: 1)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1	3												3	
CO2		3											3	
CO3	3												3	
CO4		3											3	
CO5				2	3								3	

CO-PO mapping Table

MICROPROCESSORS AND MICROCONTROLERS LAB

L	Т	Р	С
0	0	3	1.5

PRE-REQUISITES: 1) MICROPROCESSORS AND MICROCONTROLERS Theory

Preamble: Microprocessors and Microcontrollers laboratory course helps the students to develop their knowledge on processor architecture and the programming skills. This laboratory course provides hands-on experience to interface I/O devices, perform stepper motor rotation and writing assembly level language programs etc. The skills acquired through the experiments help the students to dotheir projects and enhance their knowledge on the latest trends and technologies.

Course objectives:

The main objectives are

- 1. To perform arithmetic, logical, string and port operations using 8086 emulator software.
- 2. To implement timer and serial data operations using 8051microcontroller.
- 3. To interface 8255 and 8279 using 8086Objective.

List of Experiments: Any 10 of the following experiments are to be conducted

- 1. ARITHMETICOPERATIONS
- a. Multi byte addition and subtraction, multiplication and division
- b. ASCII addition and subtraction, multiplication and division.
- 2. LOGICOPERATIONS
- a. Packed BCD to UnpackedBCD
- b. BCD toASCII
- c. Find the number of elements in the array having "1" in their 5th position.
- 3. STRINGOPERATIONS
- a. Change position of word in a given string
- b. Reverse the given string
- c. Insert a word into given string
- d. Remove a word from given string
- e. Find length of the string.
- 4. PORTOPERATIONS
- a. Read data from port 1 and increment it by 1 and transfer it to port2.
- b. Transfer 1 to 10 continuously port1.
- 5. TIMER IN DIFFERENT MODES USING8051
- a. Produce 1khz square wave with 50% duty cycle using timer 0 in mode0.
- b. Produce 1khz square wave with 50% duty cycle using timer 0 in mode1
- c. Produce 1khz triangular wave with 50% duty cycle using timer 0 in mode1
- 6. SERIAL DATACOMMUNICATION
- a. Receive data serially.

- b. Transfer "HELLO" serially at 9600 band, 8 bit data and 1 stopbit.
- 7. Addition & Subtraction using 8086Kit
- 8. Interfacing 8279 Key board Display.
- 9. Interfacing8255–PPI.
 - 10. Stepper motor control using8253/8255

List of Additional Experiments: Any 2 of the following experiments are to be conducted

- 1. Interfacing of 8259- Programmable Interrupt Controller.
- 2. Traffic light control using 8051 micro controller.
- 3. A/D and D/A converter using 8255.

Software(s)/ Hardware(s) used: EMU8086, 8255, 8259 and 8279 interfacing boards.

Cours	Course Outcomes								
Upon	Upon successful completion of the course, the student will be able to								
CO1	Understand and apply the fundamentals of assembly level programming of								
	microprocessor.{Knowledge level, KL1, KL3}								
CO2	Design and implement 8051 microcontroller based systems								
	{Knowledge level, KL1, KL2}								
CO3	Design interfacing circuits with 8086. {Knowledge level, KL1, KL2}								

CO-POs& PSOs Mapping:

(Contribution of Course Outcomes towards achievement of Program Outcomes & Strength													
	of													
	correlations (High: 3, Medium: 2, Low: 1)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-	PSO-
													1	2
CO1	3	1	1	1	1									
CO2	2	1	1	1	1									
CO3	2	1	1	1	2									

III-Year-II	
Semester	

Power Systems Laboratory

L	Т	Ρ	С
0	0	3	1.5

PRE-REQUISITES:

1. Power generation, Transmission and Protection

2. Power System Analysis

Preamble: To impart the practical knowledge of functioning of various power system components and determination of various parameters and simulation of load flows, transient stability, LFC and Economic dispatch.

Course Objectives: The student should be able to

- 1. To control the speed of three phase induction motors.
- 2. To determine /predetermine the performance of three phase induction.
- 3. To determine /predetermine the performance of single-phase induction.
- 4. To improve the power factor of single-phase induction motor.
- 5. To predetermine the regulation of three–phase alternator by various methods, find Xd/ Xq ratio of alternator and asses the performance of three–phase synchronous motor.

LIST OF EXPERIMENTS

Any Ten of the following experiments are to be conducted:

- 1. Sequence impedances of 3-phase transformer
- 2. Sequence impedances of 3-phase alternator by fault analysis
- 3. Calibration of Tong tester
- 4. ABCD parameters of transmission network
- 5. Load flow study using Gauss-Seidel method
- 6. Load flow study using Newton-Raphson method
- 7. Economic load dispatch without transmission losses
- 8. Economic load dispatch with transmission losses
- 9. Load frequency control of single area system without controller
- 10. Load frequency control of single area system with controller
- 11. Load frequency control of two area system without controller
- **12.** Load frequency control of two area system without controller

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Able to understand affect of various faults in various power system components.
CO2	Students can execute energy management systems functions at load
CO3	Able to determine the parameters of various power system components
CO4	Able to understand the power flows and stability in power system.

Learning Resources

Textbooks:

1. Nagrath I J and Kothari D P, "Modern Power System analysis" Tata McGraw Hill

2. Wadhwa C L "Electrical Power Systems" New Age International

3. Badri Ram and Vishwakarma D N "Power System Protection and Switch Gear" Tata McGraw

Hill. 4. Ned Mohan, First Course in Power Systems, Wiley.

Reference books:

1.Power System by V. K. Mehta.

2."Power systems and analysis" by Hadisaadat, Tata McGraw Hill

e- Resources & other digital material

1.https://nptel.ac.in/courses/108/105/108105017

2.https://nptel.ac.in/courses/103/102/108102146

3.www.nptelvideos.in/2012/11/electrical-power systems-i.html

4.<u>https://www.electrical4u.com/power</u> systems

CO-PO mapping Table with Justification:

Cont	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of													
	correlations (High: 3, Medium: 2, Low: 1)													
Mapping	P01	P02	P03	P04	P0 5	P0 6	Р 07	P08	P09	P010	P01 1	P012	PS01	PSO2
C01	1	1	1	1	1	-	-	-	1	-	-	-	-	2
C02	1	2				-	-	-	1	-	-	-	-	2
C03	2	2	2	2	-	-	-	-	1	-	-	-	-	1
C04	2	2	2	2	-	-	-	_	1	-	-	-	-	1

Electrical Simulation Laboratory

L	Т	Р	С
0	0	3	1.5

PRE-REQUISITES: 1) Electrical circuit analysis 2) Electrical Power systems Theory

Preamble: Electrical Simulation lab provides the essential facilities to the students to augment their concepts about the fundamentals of basic circuits and simulate integrator circuit, differentiator circuit, Boost converter, Buck converter, full convertor and PWM inverter. To perform transient analysis of RLC circuit. The lab covers the determination stability analysis of linear time invariant system using matlab of 8056 microprocessor, 8051 microcontroller.

Course Objectives: The student should be able to

- 1. To study programming based on 8086 microprocessor and 8051 Microcontroller
- 2. To study 8056 microprocessor based ALP using arithmetic, logical and shift operations
- 3. To study modular and Dos/Bios programming using 8086 microprocessor
- 4. To study to interface 8086 with I/O and other devices. parallel and serial communication using 8051 microcontroller

LIST OF EXPERIMENTS

Any Ten of the following experiments are to be conducted:

- 1. Transient response of rlc circuits.
- 2. Analysis of three-phase circuit representing the generator, transmission line and load
- 3. Modeling of transformer.
- 4. Integrator & amp; differentiator
- 5. Single-phase full converter.
- 6. Single-phase ac voltage converter.
- 7. Buck & amp; boost converter
- 8. Single-phase inverter with pwm control.
- 9. Three-phase full converter.

10. Stability analysis (bode, root locus, nyquist) of linear time invariant system using matlab.

List of Additional Experiments: Any of the two experiments are to be conducted

- 1. Simulation of three phase full converter using MOSFET and IGBTS.
- 2. Pspice simulation of Reasonant Pulse Communication Circuit..

Course Outcomes: Upon successful completion of the course, the student will be able to

	Course Outcomes									
CO1	Able to write assembly language program using 8086 micro									
	based on arithmetic, logical, and shift operations. (Analyze)									
CO2	Able to Will be able to do modular and Dos/Bios programming using 8086 micro									
	processor. (Remember and Understand)									
CO3	Able to interface 8086 with I/O and other devices (Analyze)									
CO4	Able to do parallel and serial communication using 8051 micro controllers. (Evaluate)									

Learning Resources

Text books:

- 1. "Simulation of Power Electronic Circuit", by M.B. Patil, V.Ramanarayan, V.T. Ranganathan. Narosha, 2009.
- 2. Pspice for circuits and electronics using PSPICE by M.H.Rashid, M/s PHI Publications.
- 3. Pspice A/D user`s manual Microsim, USA.

Reference books:

- 1. The Art of Simulation using PSPICE- Taylor & Francis
- 2. A Guide to Circuit Simulation and Analysis using PSPICE- Paul.W.Tuinenga
- 3. PSpice Simulation of Power Electronics Circuits E. Ramshaw, D.C. Schuurman

e- Resources & other digital material

1.https://archive.nptel.ac.in/courses/108/108/108108166/

2.https://www.youtube.com/watch?v=Ml6_bxXrBGs

3. www.ee.tttb.ac.in/-sequel

4.https://www.eeweb.com/tools/online-spice-simulator/

O-PO mapping Table with Justification:

Cont	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of													
	correlations (High: 3, Medium: 2, Low: 1)													
Mapping	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
C01	2	2								2				
C02			2								1			
C03		1								2				
C04			1								2			

Low Voltage Switchgear(SOC)

L	Т	Р	С		
1	0	2	2		

PRE-REQUISITES: 1) Power Systems and Electric Machines

Course objectives: The student should be able to study

- 6. The fundamentals of Switch gear.
- 7. The principle of operation of relays and classification
- 8. The Contactors working and circuit connections.
- 9. The applications of contactors.
- 10. The working of MPCB, MCCB, RCCB.

	Syllabus					
Unit	Contents	Mapped				
No		CO				
	Fundamentals of Switchgear(6 hrs)					
т	Need for switchgear and protection systems (02 hrs)	CO1				
1	Basics of relays and switchgear (02 hrs)	001				
	Basics of fuse, HRC fuse and HRC fuse (02 hrs)					
	Fundamentals of relays (08 hrs)					
п	Relay connection, Principle and operation of electromagnetic relays (02 hrs)	CO2				
11	Classification of relays, I-T characteristics (02 hrs)	02				
	Relay Applications, (04 hrs)					
	Contactors and circuit connections (8hrs)					
	Construction of contactor.(02hrs)					
III	Circuit connection, working and characteristics (02 hrs) CO3					
	Types and applications (02 hrs)	and applications (02 hrs)				
	Control wiring of contactor .(02 hrs)					
	Applications of Contactors (08 hrs)					
	Protection of motors,					
IV	Power wiring of contactors (02 hrs)	CO4				
	DOL, RDOL starters using contactors (03 hrs)					
	Star-Delta starter using contactors (03 hrs)					
	MPCB, MCCB, RCCB (10 hrs)					
V	Introduction, Principle and Operation of MPCB (06 hrs)	C05				
•	Introduction, Principle and Operation of MCCB (02hrs)	0.05				
	Introduction, Principle and Operation of RCCB (02hrs)					
Con	itent Beyond the syllabus:					
Adv	vanced Protection devices: Super switch, over load relay					
Soft	tware: Interfacing of protective devices through online.					
LIS	T OF EXPERIMENTS					
1. 7	To make control wiring and power wiring of contactor for induction motor.					

- 2. To make control wiring for contactor to work as RDOL starter
- 3. To make control wiring for contactor to work as STAR-DELTA starter
- 4. To make control wiring for contactor to work as reverse STAR-DELTA starter
- 5. To make control wiring for contactor to work as MPCB
- 6. To simulate the DOL starter through online using SIMOCODE.
- 7. To simulate the three RDOL starter through online suing SIMOCODE
- 8. To simulate overload protection through online using SIMOCODE

	Course Outcomes				
Upon s	Upon successful completion of the course, the student will be able to				
CO1	Understand the need for protection systems {Understand level, KL2}				
CO2	Explain the principle and operation of various relays.{Apply level, KL3}				
CO3	Explain the working of contactors { Apply level, KL3}				
CO4	Perform the connections of different types of starters. { Apply level, KL3}				
CO5	Analyze the need for MPCB, MCCB and RCCB.{Analyze level, KL4}				

Learning Resources

Text books:

- 1. A text book on Power System Engineering by M.L. Soni, P.V.Gupta, U.S. Bhatnagar and A. Chakrabarti, Dhanpat Rai& Co Pvt. Ltd.
- 2. Electrical power systems by C.L.Wadhwa, New Age International (P) Ltd, Publishers, 1998.
- 3. Switchgear and protection by Sunil S. Rao Khanna Publications.

Reference books:

- 1. Fundamentals of Power System Protection by Paithankar Y.G and Bhide S.R. PHI, 2007
- 2. Handbook of Switchgears by BHEL, TMH, 2005.

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/108107167
- 2. https://nptel.ac.in/courses/117107148

Micro-Syllabus

Unit – Fundamentals of Switchgear(6 hrs)

Need for switchgear and protection systems (02 hrs)

Basics of relays and switchgear (02 hrs)

Basics fuse and HRC fuse (02 hrs)

Unit No	Module	Micro content
		Requirement of protection system
Fundamentals of	Protection system	Characteristics of protection systems
Switchgear		Basic circuit of protection system
	Fuses	Fuse and fuse element

		Principle of operation of fuse and characteristics			
		HV voltage fuses: HRC fuse and characteristics			
Unit-2: Fundamentals of relays (08 hrs)					
relay construction ar	nd operation (02 hrs)				
Various types of rela	ays (02 hrs)				
Relay applications	(04 hrs				
Unit No	Module	Micro content			
		Construction and working of relays			
		Classification of relays: Electromagnetic, static and			
		numerical relays			
Fundamentals of	Relays	Application of relays different protection schemes			
relays		OC protection, Under voltage protection			
		Differential protection using relays			
		Distance relays			
Unit-3: Contactors	and circuit connections	(8hrs)			
Construction of cont	tactor.(02hrs)	· · · /			
Circuit connection,	working and characteristic	es (02 hrs)			
Types and application	ons (02 hrs)				
Control wiring of co	ontactor .(02 hrs)				
	Unit No Module Micro content				
Unit No	Module	Niicro content			
Unit No		Switching devices in industries			
	Contactors	Switching devices in industries Contactors and its construction			
Contactors and	Contactors	Switching devices in industries Contactors and its construction Terminals Working of contactors			
Contactors and circuit	Contactors	Switching devices in industries Contactors and its construction Terminals Working of contactors Control wiring of contactors			
Contactors and circuit connections	Contactors Circuit connections	Switching devices in industries Contactors and its construction Terminals Working of contactors Control wiring of contactors Power wiring of contactors			
Unit No Contactors and circuit connections Unit-4:Application	Contactors Circuit connections s of Contactors (08 hrs)	Switching devices in industries Contactors and its construction Terminals Working of contactors Control wiring of contactors Power wiring of contactors			
Unit No Contactors and circuit connections Unit-4:Application Power wiring of con	Contactors Circuit connections s of Contactors (08 hrs) mactors (02 hrs)	Switching devices in industries Contactors and its construction Terminals Working of contactors Control wiring of contactors Power wiring of contactors			
Unit No Contactors and circuit connections Unit-4:Application Power wiring of con DOL, RDOL starters	Contactors Circuit connections s of Contactors (08 hrs) ttactors (02 hrs) using contactors (03 hrs)	Switching devices in industries Contactors and its construction Terminals Working of contactors Control wiring of contactors Power wiring of contactors			
Unit No Contactors and circuit connections Unit-4:Application Power wiring of con DOL, RDOL starters u Star-Delta starter usin	Contactors Circuit connections s of Contactors (08 hrs) ttactors (02 hrs) using contactors (03 hrs) g contactors (03 hrs)	Switching devices in industries Contactors and its construction Terminals Working of contactors Control wiring of contactors Power wiring of contactors			
Contactors and circuit connections Unit-4:Application Power wiring of con DOL, RDOL starters us Star-Delta starter usin Unit No	Module Contactors Circuit connections s of Contactors (08 hrs) atactors (02 hrs) using contactors (03 hrs) g contactors (03 hrs) Module	Switching devices in industries Contactors and its construction Terminals Working of contactors Control wiring of contactors Power wiring of contactors Micro content			
Contactors and circuit connections Unit-4:Application Power wiring of con DOL, RDOL starters of Star-Delta starter usin Unit No	Module Contactors Circuit connections s of Contactors (08 hrs) atactors (02 hrs) using contactors (03 hrs) g contactors (03 hrs) Module	Switching devices in industries Contactors and its construction Terminals Working of contactors Control wiring of contactors Power wiring of contactors Power wiring of contactors Single line diagrams of wiring circuits			
Contactors and circuit connections Unit-4:Application Power wiring of con DOL, RDOL starters of Star-Delta starter usin Unit No	Module Contactors Circuit connections s of Contactors (08 hrs) stactors (02 hrs) using contactors (03 hrs) g contactors (03 hrs) Module Wiring of contactors	Switching devices in industries Contactors and its construction Terminals Working of contactors Control wiring of contactors Power wiring of contactors Power wiring of contactors Single line diagrams of wiring circuits Control wiring with push buttons			
Contactors and circuit connections Unit-4:Application Power wiring of con DOL, RDOL starters of Star-Delta starter usin Unit No	Module Contactors Circuit connections s of Contactors (08 hrs) atactors (02 hrs) using contactors (03 hrs) g contactors (03 hrs) Module Wiring of contactors	Micro content Switching devices in industries Contactors and its construction Terminals Working of contactors Control wiring of contactors Power wiring of contactors Power wiring of contactors Single line diagrams of wiring circuits Control wiring with push buttons DOL starter connection using contactors for 3 phase			
Contactors and circuit connections Unit-4:Application Power wiring of con DOL, RDOL starters of Star-Delta starter usin Unit No	Module Contactors Circuit connections s of Contactors (08 hrs) stactors (02 hrs) using contactors (03 hrs) g contactors (03 hrs) Module Wiring of contactors	Switching devices in industries Contactors and its construction Terminals Working of contactors Control wiring of contactors Power wiring of contactors Power wiring of contactors Single line diagrams of wiring circuits Control wiring with push buttons DOL starter connection using contactors for 3 phase induction motor			
Contactors and circuit connections Unit-4:Application Power wiring of con DOL, RDOL starters us Star-Delta starter usin Unit No Applications of Contactors	Module Contactors Circuit connections s of Contactors (08 hrs) asing contactors (03 hrs) g contactors (03 hrs) g contactors (03 hrs) Module Wiring of contactors	Switching devices in industries Contactors and its construction Terminals Working of contactors Control wiring of contactors Power wiring of contactors Power wiring of contactors Single line diagrams of wiring circuits Control wiring with push buttons DOL starter connection using contactors for 3 phase induction motor RDOL starter connection using contactors for 3 phase			
Contactors and circuit connections Unit-4:Application Power wiring of con DOL, RDOL starters of Star-Delta starter usin Unit No Applications of Contactors	Module Contactors Circuit connections s of Contactors (08 hrs) stactors (02 hrs) using contactors (03 hrs) g contactors (03 hrs) Module Wiring of contactors Applications	Micro content Switching devices in industries Contactors and its construction Terminals Working of contactors Control wiring of contactors Power wiring of contactors Power wiring of contactors Single line diagrams of wiring circuits Control wiring with push buttons DOL starter connection using contactors for 3 phase induction motor RDOL starter connection using contactors for 3 phase induction motor			
Contactors and circuit connections Unit-4:Application Power wiring of con DOL, RDOL starters of Star-Delta starter usin Unit No Applications of Contactors	Module Contactors Circuit connections s of Contactors (08 hrs) stactors (02 hrs) using contactors (03 hrs) g contactors (03 hrs) Module Wiring of contactors Applications	Micro content Switching devices in industries Contactors and its construction Terminals Working of contactors Control wiring of contactors Power wiring of contactors Power wiring of contactors Single line diagrams of wiring circuits Control wiring with push buttons DOL starter connection using contactors for 3 phase induction motor RDOL starter connection using contactors for 3 phase induction motor STAR-DELTA starter connection using contactors for 3			

Unit-5: MPCB, MCCB, RCCB (10 hrs) Introduction, Principle and Operation of MPCB (06 hrs) Introduction, Principle and Operation of MCCB (02hrs) Introduction, Principle and Operation of RCCB (02hrs)

	······································					
Unit	Module	Micro content				
		Introduction to MPCB				
	MPCB	Construction and working of MPCB				
		Applications of MPCB				
MDCD MCCD	MCCB	Introduction to MCCB				
MIPCD, MICCD,		Construction and working of MCCB				
NCCD		Applications of MCCB				
		Introduction to RCCB				
	RCCB	Construction and working of RCCB				
		Applications of RCCB				

CO-PO mapping Table

Co	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations											
	(High: 3, Medium: 2, Low: 1)											
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO-1 PSO-2							PSO-2				
CO1	2											
CO2	2											
CO3	2											
CO4	2	1	1		1							
CO5	2	1	1		1							

PLC and SCADA (SOC)

L	Т	Р	С	
1	0	2	2	

PRE-REQUISITES:

Course objectives: The student should be able to

- 1. Study the fundamentals of PLC.
- 2. Study the PLC Hardware modules and implementation of PLC.
- 3. Study the Conceptsof PLC programming and its applications.
- 4. Study the fundamentals of SCADA.
- 5. Study the Design and development of SCADA for various applications.

Syllabus				
Unit	Contents	Mapped		
No		CO		
Ι	Introduction to PLC(8hrs) Identify the specified parts of thegiven PLC along with its function. Identify different Programmingdevices types. Differentiate different types of PLCs.Explain with sketches the redundancy concept for the given PLC.	CO1		
II	PLC Hardware(08 hrs) Identify and describe the given module of PLC. Describe the given addressing of PLC Use instruction set to perform the given operation.Develop ladder logic programs for the given application.Describe with sketches the steps to interface appropriate Input module with the given input device.	CO2		
III	PLC programmingand applications (10 hrs) Specify the proper I/O addressing format for PLC.Describe the format of different relay type instructions.Describe the format of different Timer and counter Instructions.Describe the format of different Logical and Comparison type instruction. Describe the format of different data handling instructions. Describe the elements of different programming languages used to program PLC Develop PLC ladder program for the given simple example. Develop a PLC ladder program for the given industrial application.	CO3		
IV	Introduction to SCADA (06 hrs) Describe applications of SCADA. Describe the function of the given element of SCADA Describe SCADA configuration. Differentiate SCADA and PLC.	CO4		
V	SCADA interfacing and Applications -(8hrs) Interface the given PLC with the SCADA system using OPC. Describe the steps to develop SCADA system for given industrial application.Describe the steps to screen for a given application. develop a simple SCADA.	CO5		
Con <u>SC</u> A	tent Beyond the syllabus: Digital electronics and Logic gates ADA software: I ike Ellipse/FTVSE/Wonder ware etc.	.		

LIST OF SUGGESTEDEXPERIMENTS

- 1. Develop/Execute a ladder program to Verify functions of Logic gates.
- 2. Develop/Execute a ladder program to test the START STOP logic using two inputs and one output.
- 3. Develop/Execute a ladder program for sequential ON-OFF control of lamps.

4. Develop/ Execute ladder program for sequential control of DC motor.(Conditionl)and Develop/ Execute ladder program for sequential control of DC motor (use T OFF instruction).

5. Develop/ Execute ladder program for temperature ON-OFF control.

- 6. Develop /test ladder program for air conditioner system.
- 7. Develop/ Execute ladder program for temperature ON-OFF control.
- 8. Develop/ Execute ladder program for Traffic light control system.
- 9. Use various functions of SCADA simulation editors to develop simple project.
- 10. Develop a SCADA mimic diagram and tag database for conveyor system.
- 11. Develop a SCADA mimic diagram and tag database for On-Off control of lamp.
- 12. Develop a SCADA mimic diagram and tag database for Traffic light control system.

	Course Outcomes				
Upon s	Upon successful completion of the course, the student will be able to				
CO1	Identify different components of PLC. {Understand level, KL2}				
CO2	Select appropriate PLC modules for given application. {Apply level, KL3}				
CO3	Develop PLC ladder program for a given application {Analyze level, KL4}				
CO4	Test a simple SCADA application. {Evaluate level, KL5}				
CO5	Test a simple PLC-SCADA application. {Apply level, KL4}				

Learning Resources						
Text b	Text books:					
1.	"Introduction to Programmable logic controllers". Dunning, G. Thomson /Delmar learning,					
	2005, ISBN 13 : 9781401884260					
2.	"Programmable Logic Controller". Jadhav, V. R. Khanna publishers, 2017 ISBN:					
	9788174092281					
3.	"Supervisory control and Data acquisition". Boyar, S. A, ISA Publication (4th edition) ISBN:					
	978-1936007					
4.	'Practical SCADA for industry''. Bailey David ; Wright Edwin.Newnes (an imprint of					
	Elsevier), 2003 ISBN:0750658053.					
Refer	ence books:					
1.	"Programmable logic controllers (Fourth edition)", Petruzella, F.D, Tata - McGraw Hill					
	India, 201 (),ISBN: 9740071067386.					
2.	"Programmable logic controllers and Industrial automation An introduction", Mitra,					
	Madhuchandra; Sengupta, Samarjit. Penram International Publication, 2015, Fifth reprint,					

ISBN: 9788187972174

e- Resources & other digital material Software: www.fossee.com www.logixpro.com www.instrumentationengineers.org www.ellipse.com

Micro-Syllabus

Unit – 1Introduction to PLC (8hrs)

Identify the specified parts of the given PLC along with its function. Identify different Programming devices types. Differentiate different types of PLCs. Explain with sketches the redundancy concept for the given PLC.

Unit No	Module	Micro content
1. Introduction to PLC(8hrs)	Describe applications of SCADA. Describe the function of the given element of SCADA Describe SCADA configuration. Differentiate SCADA and PLC	 1.1 Need and benefits of Automation. 1.2 Tools of Automation: PLC,SCADA, HMI, DCS, Drives. 1.3 PLC Architecture: Block diagram, workingCPU: function, scanning cycle, speed of executionMemory: organization and function.Input- output modules: discrete and analog, Specialty I/O Modules.Power supply: Block diagram, Working. 1.4 PLC Type: Fixed PLC, Modular PLC. 1.5 Redundancy in PLC system 1.6 Advantages and Disadvantages of <u>P L C</u>

Unit-2: Introduction to PLC(8hrs)

Identify and describe the given module of PLC. Describe the given addressing of PLC Use instruction set to perform the given operation.Develop ladder logic programs for the given application.Describe with sketches the steps to interface appropriate Input module with the given input device.

Unit No	Module	Micro content
	Identify and describe the	2.1 Discrete input modules: AC input modules -
	given module of PLC.	blockdiagram, description, wiring details, and
	Describe the given	specifications.
	addressing of PLC Use	DC input modules - block diagram, description,
2.	instruction set to perform	wiring details, sinking and sourcing concept &
Introduction to	the given operation.	specifications
PLC(8hrs)		2.2Analog input modules- blockdiagram,
	Develop ladder logic	description, interfacing ofinput devices &
	programs for the given	specifications.
	application.Describe with	2.3Discrete output modules: AC output modules -
	sketches the steps to	block diagram, description, wiring, and
	interface appropriate	specifications.

Input module with the	DC output modules - block diagram, description,
given input device.	wiring details, sinking and sourcing concept &
	specifications. Relay and Isolated o/p modules
	2.4 Analog output modules- block diagram,
	description, wiring details& specifications
	2.5. I/O module selection criterion.

Unit-3:PLC programmingand applications(12 hrs)

Specify the proper I/O addressing format for PLC.Describe the format of different relay type instructions.Describe the format of different Timer and counter Instructions.Describe the format of different Logical and Comparison type instruction.

Describe the format of different data handling instructions. Describe the elements of different programming languages used to program PLC Develop PLC ladder program for the given simple example. Develop a PLC ladder program for the given industrial application

Unit No	Module	Micro content
3. PLC programmingan d applications(10 hrs)	Specify the proper I/O addressing format for PLC.Describe the format of different relay type instructions.Describe the format of different Timer and counter Instructions.Describe the format of different Logical and Comparison type instruction	 3.1 PLC I/O addressing 3.2 PLC programming Instructions: Relay type instructions, timer instructions. On delay, off delay, retentive, Counter instructions: Up, Down, I ugh speed, Logical instructions. ComparisonInstructions, Data handling Instructions, Arithmetic instructions, Sequencer instruction, PID
3b.	Describe the format of different data handling instructions. Describe the elements of different programming languages used to program PLC Develop PLC ladder program for the given simple example. Develop a PLC ladder program for the given industrial application.	 3.3 PLC programming language—Functional Block Diagram (FBD), Instruction List. Structured text, Sequential Function Chart SFC), Ladder Programming. 3.4 Simple Programming examples using ladder logic: Based on relay, timer, counter, logical, comparison, arithmetic and datahandling instructions, PID, Sequencer instruction. 3.5 PLC Based Applications: Motor sequence control, Traffic light control, elevator control, Tank Level control, conveyor system, Stepper motor control, Reactor Control

Unit-4:Introduction to SCADA (06 hrs)

Describe applications of SCADA. Describe the function of the given element of SCADA Describe SCADA configuration. Differentiate SCADA and PLC.

Unit No	Module	Micro content
12. Introduction to SCADA (06 hrs)	Describe applications of SCADA. Describe the function of the given element of SCADA Describe SCADA configuration. Differentiate SCADA and PLC	 4.1 Introduction to SCADA, Application area of SCADA 4.2 SCADA architecture/block diagram, Benefits of SCADA 4.3 Types of SCADA: Single Master Single Remote Single Master Multiple Remote Multiple Master Multiple Remote 4.4 SCADA System Hardware, Remote Terminal Units (RTUs), Master Terminal Units(MTUs) Communication system 4.5Differentiate SCADA and PLC

Unit-5: SCADA interfacing and Applications -(8hrs)

Interface the given PLC with the SCADA system using OPC. Describe the steps to develop SCADA system for given industrial application.Describe the steps to screen for a given application. develop a simple SCADA.

Unit	Module	Micro content
		5.1 Interfacing SCADA system with PLC:
		Connection diagram, object linking and
	Interface the given PLC	embedding for Process Control (OPC)
	with the SCADA system	architecture,
	using OPC. Describe the	5.2 Steps in Creating SCADA Screen for simple
5.SCADA	steps to develop SCADA	object, Steps for Linking SCA DA object (defining
interfacing and	system for given	Tags and it ms) with PLC ladder program using
Applications -	industrial	OPC,
(8hrs)	application.Describe the	5.3 Concept of Tag.
	steps to screen for a given	types of Tagsaddressing of Tags
	application. develop a	5.4 Alarm generation, trend types.
	simple SCADA	5.5 Applications of SCADA: On-Off control of
		lamp, Traffic light control, level control system,
		water distribution system, elevator system,
		conveyor system.

CO-PO mapping Table

Co	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations													
	(High: 3, Medium: 2, Low: 1)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1			1		1									2
CO2			1		1									2
CO3			1		1									2
CO4			1		1									2
CO5			1		1									2

PSCAD (SOC)

L	Т	P	С
1	0	2	2

PRE-REQUISITES: Not specific

Course objectives: The student should be able to

- 1. Study the fundamentals of PSCAD.
- 2. Study Basic components and Their specifications in PSCAD.
- 3. Study Various controls used in PSCAD.
- 4. Study the Modelling of Transformers in PSCAD.
- 5. Study DC converter configuration in PSCAD.

	Syllabus	
Unit	Contents	Mapped
No		CO
Ι	Introduction to PSCAD(4 hrs) What is PSCAD, some common models found in PSCAD, who uses PSCAD and for what(02 hrs) Classical example to Demonstrate PSCAD (02 hrs)	CO1
п	Basic components and Their Specifications in PSCAD Library (08 hrs) Sources, Transmission line, Transformer, Circuit Breakers, Surge Arresters (02hrs) Setting load flow with a generator(02 hrs) Fast front study data (Station Layout, Busbar dimensions, Transformer winding capacitance)(04 hrs)	CO2
ш	Controls (10 hrs) CSMF components. Use of slider, switch, button and dial (04hrs) Applications of CSMF components(06 hrs)	CO3
IV	Modelling of Transformers (06 hrs) Core configuration, Ungrounded windings, saturation (02hrs.) Harmonic measurement(02 hrs) Load tap changer, phase shifting transformer (02 hrs)	CO4
v	DC Transmission(10 hrs) Why use DC Transmission, DC converter configuration(06 hrs) Twelve pulse converter modelling (04hrs)	CO5
Cor	itent Beyond the syllabus:	
Mo	delling of FACTS: STATCOM control strategy.	
LIS	T OF EXPERIMENTS	
1. 7	Fransient response of RLC circuit using PSCAD.	
2. 7	Fransformer inrush current using PSCAD.	
3. p	ower quality analysis using PSCAD.	
4. A	Analyze symmetrical faults and short circuit studies in a given synchronous machine using	g
PSC	CAD.	

Development of PSCAD model to study the distance protection scheme in long transmission line.
 Obtain the frequency response of single area power system using PSCAD

	Course Outcomes				
Upon s	uccessful completion of the course, the student will be able to				
CO1	Understand the fundamentals of PSCAD Software{Understand level, KL2}				
CO2	Explain the principle and working of Different components in PSCAD. {Apply level, KL3}				
CO3	Understand different controls in PSCAD.{Understand level, KL2}				
CO4	Model Transformer in PSCAD. {				
CO5	Analyze twelve pulse converters in PSCAD. {Apply level, KL4}				

Learning	Resources
----------	-----------

|--|

1. Atousa Yazdani "Modern Distribution system with PSCAD Analysis", CRC Press.

Reference books:

1. Application Guide 2008 for PSCAD

e- Resources & other digital material

- 1. https://www.pscad.com/training-events/courses
- 2. https://elec-engg.com/pscad-training-for-protection-engineers/
- 3.https://www.powersystemdynamics.com/index.php/cad

Micro-Syllabus

Unit-1: Introduction to PSCAD(4 hrs)

What is PSCAD, some common models found in PSCAD, who uses PSCAD and for what (02 hrs) Classical example to Demonstrate PSCAD (02 hrs)

Unit No	Module	Micro content	
1a.	T / 1 / /	What is PSCAD	
Introduction to	Introduction to	some common models found in PSCAD	
PSCAD	FSCAD	who uses PSCAD and for what	
1b. Classical		Network containing 3-phase voltage source, line	
example to	Classical example to	impedance, and Load.	
Demonstrate	Demonstrate PSCAD	Network containing 3-phase voltage source,	
PSCAD		Transmission line, and Load.	
Unit-2: Basic comp	onents and Their Specif	ications in PSCAD Library (08 hrs)	
Sources, Transmission line, Transformer, Circuit Breakers, Surge Arresters (02hrs)			
Setting load flow with a generator (02 hrs)			

Fast front study data (Station Layout, Busbar dimensions, Transformer winding capacitance)(04 hrs)

Unit No	Module	Micro content

2aBasic components and Their Specifications inBasic components and Their Specifications in	Basic components and	Sources
		Transformers
	Their Specifications in	Transmission lines
in PSCAD Library	PSCAD Library	Circuit Breakers,
III I SCAD LIDIALY		Surge Arresters
2b.Setting load		Station Layout
flow with a	Fast front study data	Busbar dimensions
generator		Transformer winding capacitance

Unit-3:Controls (10 hrs)

CSMF components. Use of slider, switch, button and dial (04hrs)

Applications of CSMF components(06hrs)

Unit No	Module	Micro content
20 CSME	CSMF components	Use of slider
components		switch
		button and dial
3b.Applications of	Applications of CSMF	Filtering with a second order function
CSMF components	components	Controlling an Source

Unit-4:Modelling of Transformers (06 hrs)

Core configuration, Ungrounded windings, saturation (02 hrs.)

Harmonic measurement (**02hrs**)

Load tap changer, phase shifting transformer (02hrs)

Unit No	Module	Micro content
4.Modelling of Transformers	Modelling of Transformers	Core configuration
		Ungrounded windings
		saturation
		Harmonic measurement
		Load tap changer
		phase shifting transformer

Unit-5: DC Transmission (10 hrs)

Why use DC Transmission, DC converter configuration(06 hrs)

Twelve pulse converter modelling (04hrs)

Unit	Module	Micro content
5.DC Transmission	DC Transmission	Why use DC Transmission
		DC converter configuration
		Twelve pulse converter modelling

1

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (High: 3, Medium: 2, Low: 1) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO-1 PSO-2 CO1 3 CO2 2 CO3 2 CO4 3 2 CO5 3

CO-PO mapping Table

Process Instrumentation (SOC)

L	Т	P	С
1	0	2	2

PRE-REQUISITES:

Course objectives: The student should be able to

- 1. Selects measurement method for a process parameter by process instruments for temperature level, vibration, force and torque in a process plant.
- 2. Specify instrumentation for temperature level, vibration, force and torque application.
- 3. Identify, describe and Calibrate major instruments for temperature, level, vibration, force and torque in a process plant.

	Syllabus	
Unit	Contents	Mapped
No		CO
	Introduction: Heat, Temperature, Temperature scales, Expansionthermometer, Solid	
Ι	Expansion Thermometer Bimetallic thermometer, Spiral Bimetal element, Helix	CO1
	Bimetal element.	
	Liquid Expansion Thermometer- Mercury in Glasstype, Filled system thermometer,	
п	Class I-Liquid FilledSystems, Class II- VapourSystems, Class III- Gas Filled	CO2
	Systems, Class V- Mercury Filled Systems, Thermocouples Principle:	002
	Seebeck,PeltierThomson effect.	
	Thermoelectric laws Cold junction compensation, Thermo well, Thermocouple	
	extensionwires, Thermocouples selection criteria, Resistance Temperature Detector	
ш	IndustrialRTD, 2-wireRTD, 3-wireRTD, 4-wireRTD, Thermostats, Integrated	CO3
	Circuit(IC) based Temperature sensors, Non-contact type thermometry, Radiation	0.00
	pyrometer, Optical pyrometer, Optical FibreThermometry, Ultrasonic thermometry,	
	LaserthermometryTemperature switches and thermostats	
	Level measurement: Importance and Units, Level measurement methods, Direct	
IV	methods, Bob and Tape method, Sight glass method, Indirect methods, Pressure	CO4
	gauge type, Air bellows, Capacitance typelevelmeasurement and Radiation type	
	level measurement.	
	Differential pressure type level measurement, Ultrasonic	
V	leveldetector,Laser Level Sensors, Optical Level detector Level switches: Float	CO5
	type level switch, Displacer level switch, conductivity level switch.	
LIST	<u>OF EXPERIMENTS</u>	
1.	Use liquid in glass type filled system thermometers	
2.	Perform temperature measurement using expansion thermometer	
3.	Measure temperature of given medium using given thermocouple with the helpotcorre	esponding
	thermocouple table.(Conversion of millivolt to temperature)	
4.	Verify the law of intermediate metal for available type of thermocouple.	
5.	I est the effect of reference junction temperature ongiventhermocouple	1
6.	Convert output of thermocouple (mV) into temperature (^{T} C)using corresponding ther	mocouple
	calibration table.	

- 7. Measure the temperature using RTD and Test.
- 8. Calculate temperature co-efficient of resistance using RTD.
- 9. Measure the temperature using Thermostats and Plotthecharacteristic curve.
- 10. Measure the temperature using IC temperature sensor

Course Outcomes			
Upon s	Upon successful completion of the course, the student will be able to		
CO1	Understand. the concept of heat, temperature and temperature concepts{Understand level,		
	KL2}		
CO2	Explain. the different types of thermometers. {Apply level, KL3}		
CO3	Analyze the different types of resistance thermometer detector.{Analyze level, KL4}		
CO4	Evaluate the importance of Level measurement and its methods. {Evaluate level, KL5}		
CO5	Analyze the operation of Differential pressure type level measurement. {Apply level, KL4}		

Learning Resources		
Text books:		
1. Liptak, B. G , Process Measurement and Analysis. I.S. A publication.		
2. Eckman, D. P, Industrial Instrumentation, Wiley Eastern Limited publication.		
3. Singh, S.K ,Industrial Instrumentation, Tata Mc Graw Hill Publication		
Reference books:		
1. Krishnaswamy, K. and S. Vijayachitra, Industrial Instrumentation, New AgeInternational		
Publication, New Delhi.		
2. Jain, R.K Mechanical and Industrial Measurements, Khanna publication, New Delhi		
e- Resources & other digital material		
1. http://www.pc-education.mcmaster.ca/Instrumentation/temperature.		
2. http://www.dugantech.com/Product_Group-Temperature/Technical%20Articles/TE		
3. http://www.pc-education.mcmaster.ca/Instrumentation/level.		

Micro-Syllabus

Unit–1Introduction: Heat, Temperature, Temperature scales, Expansionthermometer, Solid Expansion Thermometer Bimetallic thermometer, Spiral Bimetal element, Helix Bimetal element

Unit No	Module	Micro content
1 aIntroduction	.aIntroduction:Introduction: Heat,Ieat, Temperature,Temperature,'emperature scalesTemperature scales	Introduction: Heat, Temperature, Temperature scales
Heat Temperature		Expansionthermometer, Solid Expansion Thermometer
Temperature scales		Bimetallic thermometer, Spiral Bimetal element, Helix
remperature seares		Bimetal element
Unit-2: Liquid Expansion Thermometer- Mercury in Glass type, Filled system thermometer, Class I-Liquid Filled Systems, Class II- VapourSystems, Class III- Gas Filled Systems, Class V- Mercury Filled Systems, Thermocouples Principle: See beck, Pettier Thomson effect.

Unit No	Module	Micro content						
2.a. Liquid Expansion Thermometer		Liquid Expansion Thermometer						
	Liquid Expansion Thermometer	Mercury in Glass type, Filled system thermometer						
		Class I-Liquid Filled Systems						
VapourSystems and Gas Filled Systems		Class II- VapourSystems, Class III- Gas Filled						
	VapourSystems and Gas Filled Systems	Systems						
		Class V- Mercury Filled Systems						
		Thermocouples Principle: See beck, Peltier						
		Thomson effect						

Unit-3:Thermoelectriclaws Cold junction compensation, Thermo well, Thermocouple extension wires, Thermocouples selection criteria, Resistance Temperature Detector IndustrialRTD, 2-wireRTD, 3-wireRTD, 4-wireRTD, Thermostats, Integrated Circuit(IC) based Temperature sensors, Non-contact type thermometry, Radiation pyrometer, Optical pyrometer, Optical Fiber Thermometry, Ultrasonic thermometry, Laser thermometry Temperature switches and thermostats

Unit No	Module	Micro content						
		Cold junction compensation, Thermo well,						
		Thermocouple extension wires						
		Thermocouples selection criteria, Resistance						
		Temperature Detector Industrial RTD						
Thermo-electric 2-wireRTD, 3-wireRTD, 4-wireRTD,								
laws		Integrated Circuit(IC) based Temperature sensors						
		Non-contact type thermometry, Radiation						
		pyrometer, Optical pyrometer, Optical Fibre						
		Thermometry, Ultrasonic thermometry, Laser						
		thermometry Temperature switches and thermostats						

Unit-4:Level measurement: Importance and Units, Level measurement methods, Direct methods, Bob and Tape method, Sight glass method, Indirect methods, Pressure gauge type, Air bellows, Capacitance type level measurement and Radiation type level measurement.

Unit No	Module	Micro content						
		Level measurement: Importance and Units, Level						
Level		measurement methods						
measurement:		Direct methods, Bob and Tape method, Sight glass						
Importance and		method						
Methods		Sight glass method, Indirect methods, Pressure						
		gauge type, Airbellows,						

	Capacitance	typelevelmeasurement	and	Radiation
	type level me	easurement.		

Unit-5: Differential pressure type level measurement, Ultrasonic leveldetector,Laser Level Sensors,OpticalLeveldetectorLevelswitches: Float type level switch, Displacer level switch, conductivity level switch.

Unit	Module	Micro content					
		Differential pressure type level measurement					
5aDifferential	Ultrasonic leveldetector, Laser Level Sensors						
pressure type level		Optical I	LeveldetectorLevelswitches:	Float	type		
measurement		level swite	ch				
		Displacer level switch, conductivity level switch.					

CO-PO mapping Table

Co	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations													
	(High: 3, Medium: 2, Low: 1)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1	3													
CO2	2													
CO3	3													
CO4	3													
CO5	2													