ACADEMIC REGULATIONS AND COURSE STRUCTURE

(R19 Regulations)

ELECTRICAL & ELECTRONICS ENGINEERING

FOR B.Tech., FOUR YEAR DEGREE COURSE

(Applicable for the batches admitted from 2019-20)

VASIREDDY VENKATADRI INSTITUTE OF TECHNOLOGY

NAMBUR, PEDA KAKANI MANDAL, GUNTUR-522508
An Autonomous Institution, Approved by AICTE,
All Courses Accredited by NBA & NAAC with 'A' Grade, Permanently Affiliated to
JNTUK University

ACADEMIC REGULATIONS (R19) FOR B. TECH. (REGULAR)

Applicable for the students of B. Tech. (Regular) from the Academic Year 2019-20 onwards

The B.Tech Degree of Jawaharlal Nehru Technological University Kakinada, Kakinada shall be conferred on candidates who are admitted to the programme and who fulfill all the requirements for the award of the Degree.

VISION

To impart quality education through exploration and experimentation and generate socially-conscious engineers, embedding ethics and values, for the advancement in science and technology.

MISSION

- To educate students with a practical approach to dovetail them to industry-needs.
- To govern the institution with a proactive and professional management with passionate teaching faculty.
- To provide holistic and integrated education and achieve over all development of students by imparting scientific and technical, social and cognitive, managerial and organizational skills.
- To compete with the best and be the most preferred institution of the studious and the scholarly.
- To forge strong relationships and linkage with the industry.

OBJECTIVES

- Equip the institute with state-of-the-art infrastructure comparable to the best in the industry.
- Tap the resources of the best minds in the field as faculty and visiting faculty.
- Groom students to become global entrepreneurs and responsible citizens.
- Provide financial assistance to meritorious students.
- Requisition the services of the best HR managers to place our students in reputed industries.
- Provide conducive atmosphere to the faculty for Research & Development and ensure active participation of the students.

Department Vision

To nurture young and fresh minds into disciplined and globally competent technocrats with ethical values to excel in the arena of Electrical and Electronics Engineering leading to sustainable development of society.

Department Mission

- ➤ To produce qualified engineers with technical knowledge and innovative skills to cater the dynamic requirements in the field of Electrical and Electronics Engineering.
- ➤ To provide state-of-the-art resources that contributes to achieve excellence in teaching-learning, research and development activities.
- > To produce graduates with leadership and Entrepreneurship qualities.
- ➤ To make our students life-long learners capable of building their careers upon a solid foundation of knowledge.
- Ensure that our students are well trained in interpersonal skills, team work, professional ethics, environmental awareness and participate in professional society activities.

1. Admission Criteria

The eligibility criteria for admission into UG Engineering programmes are as per the norms approved by Government of Andhra Pradesh from time to time.

The sanctioned seats in each programme in the college are classified into CATEGORY-A, and CATEGORY-B at 1st year level and only CATEGORY-A at Lateral Entry 2nd year level. The percentages of Category–A, Category-B and Lateral Entry Seats are decided from time to time by the Government of Andhra Pradesh.

- CATEGORY A (70%): These seats are filled through Convener, EAMCET as per the norms approved by the Government of Andhra Pradesh.
- CATEGORY B (30%): These seats are filled by the College as per the norms approved by the Government of Andhra Pradesh.
- Lateral Entry: Lateral entry candidates shall be admitted into the Third semester directly as per the norms approved by the Convener, ECET, and Government of Andhra Pradesh.

2. Award of B. Tech. Degree

A student will be declared eligible for the award of B. Tech. Degree if he fulfills the following academic regulations:

• A student after securing admission shall complete the B.Techprogramme in a minimum of four academic years (8 Semesters), and a maximum period of eight academic years starting from the date of commencement of first year first semester, failing which student shall forfeit seat in B.Tech Course. Each student shall secure 160 credits (with CGPA>=4) required for the completion of the under graduate programme and award of B.Tech Degree.

3. Courses of Study

The following courses of study are offered at present as specializations for the B. Tech. Courses

S. No	Branch	Branch Code	Intake
1	Civil Engineering	01	120
2	Electrical and Electronics Engineering	02	180
3	Mechanical Engineering	03	180
4	Electronics and Communication Engineering	04	180
5	Computer Science and Engineering	05	240
6	Information Technology	12	180

4. Distribution and Weightage of Marks

- i) The performance of a student in each semester shall be evaluated subject wise with a maximum of 100 marks for theory subject and 75 marks for practical subject. The Mini project work shall be evaluated for 50 marks and the Major Project work shall be evaluated for 150 Marks.
- ii) For theory subjects the distribution shall be 40 marks for Internal Evaluation and 60 marks for the Semester End Examinations.
- iii) For theory subjects, during the semester there shall be two internal Mid Examinations. The weightage of internal marks for 40 consists of Descriptive Test 15 Marks, Assignment Test- 10 Marks (Open book system with questions in accordance with BLOOMS taxonomy), and Objective Test -10 Marks and Subject Seminar 5 marks.

- The Descriptive Test is for 90 minutes duration conducted for 30 marks and will be scaled down to 15 Marks. Each Descriptive test question paper shall contain 3 questions, one question from each unit and all questions need to be answered. All the questions should be prepared in accordance with BLOOMS Taxonomy.
- The Assignment Test conducted for 20 Marks and will be scaled down to 10 Marks. The test is open book system and the duration of the exam is 60 minutes. The assignment question paper contains 3 questions given by the subject teacher concerned and all questions should be answered. Students can bring a maximum of three printed text books related to that subject. (Soft copies of the text books will not be allowed.) The assignments have to provide broadened exposure to the course. The questions shall include problem solving approach, problem analysis & design, implementation, case studies etc.
- The objective examination is for 20 minutes duration. (Conducted with 20 multiple choice question with a weightage of ½ Mark each)
- For the subject seminar, marks of each student shall be evaluated based on the presentation on any topic of his/her choice in the subject duly approved by the faculty member concerned.
- Internal Marks shall be calculated with 70% weightage for better of the two Mid Exams and 30% weightage for other.
- iv) The Semester end examination shall be conducted for 3 hours duration. The question paper shall be given in the following pattern:
 - The question paper contains one question from each unit with internal choice. Each question carries 12 marks. Each course shall consist of five units of syllabus. The questions shall be framed in line with the Course Outcomes defined and cognitive levels.
- v) For practical subjects there shall be continuous internal evaluation during the semester for 25 marks and 50 Marks for Semester end examination. The internal 25 marks shall be awarded as follows: day to day work 05 marks, Record-05 marks and the remaining 15 marks are to be awarded by conducting an internal laboratory test of 3 hours duration.
 - The semester end examination for laboratory courses shall be conducted for three hour duration at the end of semester for 50 marks as follows: Procedure - 10 marks, Experiment/Program execution - 15 Marks, Results-10 Marks and Viva-voice -15 Marks. For laboratory course in English 30 marks for written exam which includes listening comprehension and 20 marks for viva which includes JAM and Group Discussion.
- vi) For the subject having design and / or drawing, (such as Engineering Graphics, Engineering Drawing, Machine Drawing) and estimation, the distribution shall be 40 marks for internal evaluation (20 marks for day –to– day work, and 20 marks for internal tests) and 60 marks for end examination. There shall be two internal tests in a Semester and the Marks for 20 can be calculated with 70% weightage for better of the two performances and 30% weightage for other and these are to be added to the marks obtained in day-to-day work.
- vii) For Engineering Project on Community services / Mini Project, there shall be continuous evaluation during the semester for 20 marks and semester end evaluation for 30 marks. The distribution of continuous evaluation marks is as follows: Day to Day Assessment- 05 Marks and average of two reviews of 15 Marks each.
 - The distribution of semester end examination marks for Engineering Project on Community services/Mini Project is as follows: Report -10 Marks and Presentation and Viva Voce -20 Marks.

vii) For Major Project, there shall be continuous evaluation during the semester for 50 marks and semester end evaluation for 100 marks

The distribution of continuous evaluation marks is as follows: Day-to-day Assessment- 30 Marks and average of at least two reviews of 20 Marks each. The Departmental review committee consists of HoD, two senior Faculty and supervisor concerned.

The semester end examination for Major Project work shall be conducted at the end of VIII Semester. It is evaluated by the Committee consisting of an external examiner, Head of the Department, Senior Faculty and Supervisor of the Project.

- viii)Laboratory marks and the internal marks awarded by the faculty are final. However, any grievance regarding marks will be addressed by the result committee if necessary. The recommendations of the committee are final and binding.
- ix) MOOCS Courses: All students are eligible to register and complete MOOCS courses relevant to their professional electives listed by the respective departments in the curriculum. However, if any student fails to complete a MOOCS course or the course is not offered by the agency concerned, that student is eligible to attend the examination following the same syllabus and pattern of examination in the VIII semester.
 - The MOOCS grades awarded to the student by the agency are converted to the course grades based on the percentage of marks obtained. The duration for course registered under MOOCS should range between 8 to 12 Weeks.
- x) A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to Industrial Oriented Mini Project/Summer Internship/practical training, if the student secures not less than 40% of marks (i.e., 40 out of 100 allotted marks) in each of them. The student is deemed to have failed, if he/she (i) does not submit a report on Industrial Oriented Mini Project/Summer Internship, or does not make a presentation of the same before the evaluation committee as per schedule, or (ii) does not present the seminar as required, or (iii) secures less than 40% of marks in Industrial Oriented Mini Project/Summer Internship and project seminar evaluations.

A student may reappear once for each of the above evaluations, when they are scheduled again; if the student fails in such 'one reappearance' evaluation also, the student has to reappear for the same in the next subsequent semester, as and when it is scheduled.

5. Attendance Requirements

- Students shall put in a minimum average attendance of 75% in the semester.
- Condonation of shortage in attendance may be recommended by the respective Head of the
 Department on genuine medical grounds, provided the student puts in at least 65%
 attendance and the Principal is satisfied with the genuineness of the reasons and the conduct
 of the student.
- Students, having more than 65% and less than 75% of attendance, shall have to pay requisite fee towards condonation.
- Students whose shortage of attendance is not condoned in any semester are not eligible to take their end examinations of that semester. They get detained and their registration for that semester shall stand cancelled. They will not be promoted to the next semester. They may rejoin in that semester in which the student is detained by getting approval from the principal.
- If any candidate fulfils the attendance requirement in the present semester, he shall not be eligible to readmit into the same class.

6. Minimum Academic Requirements

The following academic requirements have to be satisfied in addition to the attendance requirements mentioned in item No.5

- A student is deemed to have satisfied the minimum academic requirements if he has earned the credits allotted to each theory/practical design/drawing subject/project and secures not less than 35% of marks in the end semester exam, and minimum 40% of marks in the sum total of the internal marks and end semester examination marks.
- A student shall be promoted from first year to second year if he fulfills the minimum attendance requirement.
- A student will be promoted from II year to III year if he fulfills the academic requirement of 40% of the credits up to II B.Tech II semester from all the examinations, whether or not the candidate takes the examinations and secure prescribed minimum attendance in II Year II Semester.
- A student shall be promoted from III year to IV year if he fulfills the academic requirements
 of 40% of the credits up to III year II semester from all the examinations, whether or not the
 candidate takes the examinations and secure prescribed minimum attendance in III Year II
 Semester.
- A student shall register and put up minimum attendance in all 160 credits and earn all 160 credits.
- Break in Study: Student, who discontinues the studies for whatever may be the reason, can get readmission into appropriate semester of B. Tech programme after break in study, with the prior permission of the Principal and following the transitory regulations applicable to each batch in which he/she joins. A student may utilize this break in study (Maximum of Two years for Regular Students and Maximum of One Year for Lateral Entry Students) only once in the entire period of B. Tech program.

7. Course Pattern

- The entire course of study is for four academic years, all the years are on semester pattern and the medium of instruction is English.
- A student who eligible to appear for the end semester examination in a subject, but absent from it or has failed in the end semester examination, may write the exam in that subject when conducted next.
- When a student is detained for lack of credits/shortage of attendance, he may be readmitted into the same semester in which he has been detained. However, the academic regulations under which he was first admitted shall continue to be applicable to him.

8. CGPA

The grade points and letter grade will be awarded to each course based on students' performance as per the grading system shown in the following Table.

Range of Marks (Theory)	Range of Marks (Lab)	Letter Grade	Level	Grade Points
90	67	0	Outstanding	10
80 to <90	60 to <67	S	Excellent	9
70 to <80	52 to <60	A	Very Good	8
60 to <70	45 to <52	В	Good	7
50 to <60	37 to <45	C	Fair	6
40 to <50	30 to <37	D	Satisfactory	5
<40	<30	F	Fail	0

ABSENT	ABSENT	AB	Absent	0

• Computation of Semester Grade Point Average (SGPA)

The performance of each student at the end of each semester is indicated in terms of Semester Grade Point Average (SGPA) calculated as shown in below equation (1).

$$SGPA (Si) = (Ci X Gi) / Ci \qquad -----(1)$$

Where Ci is the number of credits of the ith course and Gi is the grade point scored by the student in the ith course.

• Computation of Cumulative Grade Point Average (CGPA)

The Cumulative Performance of each student at the end of each semester is indicated in terms of CGPA and it is calculated as shown in equation (2).

$$CGPA = (C_i X S_i) / C_i \qquad ----(2)$$

Where Si is the SGPA of the i^{th} semester and C_i is the total number of credits in that semester.

- The SGPA and CGPA shall be rounded off to 2 decimal points and reported in the transcripts.
- The approximate equivalence of marks to a given CGPA is calculated by using the formula: Percentage Equivalence of CGPA = $[CGPA - 0.5] \times 10$

9. Award of Class

The criterion for the award of division, after successful completion of the program is as shown in the following table.

Class Awarded	CGPA to be secured	
First Class with distinction*	7.75	
First Class	6.5 - <7.75	From the CGPA secured from 160
Second Class	5.5 - < 6.5	credits
Pass Class	4 - <5.5	
Fail	<4	

- * Awarded only if all the credit courses prescribed are cleared within four years for regular candidates and three years for lateral entry candidates
- * The students who are approved for break in study for entrepreneurships/start-ups will also be considered for award of first class with distinction
- * For the purpose of awarding First, Second and Pass Class, CGPA obtained in the examinations appeared within the maximum period allowed for the completion of the program shall be considered.

10. Minimum Days of Instructions

Each semester consists of a minimum of 90 instruction days excluding examination days.

11. Transfer of Branch

There shall be no branch transfer after the completion of the first year admission process.

12. Withholding of results

If the student has not paid any dues to the college or if any case of indiscipline is pending against him/her, the result of the student will be withheld. His/her degree will be withheld in such cases.

13. Transitory Regulations

A candidate who is detained or discontinued a semester, on re-admission, he shall be required to pass all the courses in the curriculum prescribed for such batch of students in which the student joins subsequently. Also the academic regulations be applicable to him/her

which are in force at the time of his/her admission. However, exemption will be given to those candidates who have already passed in such courses in the earlier semester(s) and additional courses are to be studied as approved by the Board of Studies and ratified by the Academic Council.

14. Amendments to Regulations

Revisions of Regulations, Curriculum and Syllabi

The college may from time-to-time revise, amend or change the Regulations, Curriculum, Syllabus and Scheme of examinations through the Board of Studies with the approval of Academic Council and Governing Body of the college.

15. Transferred Students

The students seeking transfer to VVIT from various Universities/ Institutions have to obtain the credits of any equivalent subjects as prescribed by the Academic Council. Only the internal marks obtained in the previous institution will be considered for the evaluation of failed subjects.

ACADEMIC REGULATIONS (R19) FOR B. Tech. (LATERAL ENTRY SCHEME)

Applicable for the students admitted into II year B. Tech. from the Academic Year 2020-21 onwards

1. Award of B. Tech. Degree

A student will be declared eligible for the award of B. Tech. Degree if he fulfills the following academic regulations:

- A student shall be declared eligible for the award of the B. Tech Degree, if he pursues a course of study in not less than three academic years and not more than six academic years.
- The candidate shall register for 121 credits and secure all the 121 credits.
- **2.** The attendance regulations of B. Tech. (Regular) shall be applicable to B.Tech Lateral Entry Students.

3. Promotion Rule

- A student shall be promoted from second year to third year if he fulfills the minimum attendance requirement.
- A student shall be promoted from III year to IV year if he fulfills the academic requirements
 of 40% of the credits up to III year II semester from all the examinations, whether or not the
 candidate takes the examinations and secures prescribed minimum attendance in III year II
 semester.

4.Award of Class

After a student has satisfied the requirement prescribed for the completion of the program and is eligible for the award of B. Tech. Degree, he shall be placed in one of the following four classes:

Class Awarded	CGPA to be	
	secured	
First Class with distinction	7.75	
First Class	6.5 - <7.75	From the CGPA secured from 121
Second Class	5.5 - < 6.5	credits from II Year to IV Year
Pass Class	4 - <5.5	
Fail	<4	

5. All the other regulations as applicable to B. Tech. 4-year degree course (Regular) will hold good for B. Tech Lateral Entry Scheme.

MALPRACTICE RULES DISCIPLINARY ACTION FOR IMPROPER CONDUCT IN EXAMINATIONS

S.No.	Nature of Malpractices/Improper conduct	Punishment
1. (a)	Possesses or keeps accessible in	Expulsion from the examination hall and
1. (a)	examination hall, any paper, note book, programmable calculators, Cell phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject of the examination)	cancellation of the performance in that subject only.
(b)	Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.	Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.
2.	Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that Semester/year. The Hall Ticket of the candidate is to be cancelled and sent to the University.
3.	Impersonates any other candidate in connection with the examination.	The candidate who has impersonated shall be expelled from examination hall. The candidate is also debarred and forfeits the seat. The performance of the original candidate who has been impersonated, shall be cancelled in all the subjects of the examination (including practical and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that semester/year. The candidate is also debarred for two

consecutive semesters from class work and University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. If the imposter is an outsider, he will be handed over to the police and a case is registered against him. Expulsion from the examination hall and 4. Smuggles in the Answer book or cancellation of performance in that subject additional sheet or takes out or arranges to send out the question paper during and all the other subjects the candidate has the examination or answer book or already appeared including practical additional sheet, during or after the examinations and project work and shall not examination. be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. 5. objectionable, Cancellation of the performance in that Uses abusive offensive language in the answer paper subject. or in letters to the examiners or writes to the examiner requesting him to award pass marks. Refuses to obey the orders of the Chief In case of students of the college, they shall 6. Superintendent /Assistant be expelled from examination halls and Superintendent / any officer on duty or cancellation of their performance in that misbehaves or creates disturbance of subject and all other subjects the candidate(s) any kind in and around the examination has (have) already appeared and shall not be hall or organizes a walk out or permitted to appear for the remaining instigates others to walk out, or examinations of the subjects of threatens the officer-in charge or any semester/year. The candidates also are person on duty in or outside the debarred and forfeit their seats. In case of examination hall of any injury to his outsiders, they will be handed over to the person or to any of his relations police and a police case is registered against whether by words, either spoken or them. written or by signs or by visible representation, assaults the officer-incharge, or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any

	part of the College campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.	
7.	Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.
8.	Possess any lethal weapon or firearm in the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat.
9.	If student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.	Student of the colleges expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat. Person(s) who do not belong to the College will be handed over to police and, a police case will be registered against them.
10.	Comes in a drunken condition to the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations

		of the subjects of that semester/year.
11.	Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.	Cancellation of the performance in that subject and all other subjects the candidate has appeared including practical examinations and project work of that semester/year examinations.
12.	If any malpractice is detected which is not covered in the above clauses 1 to 11 shall be reported to the Controller o Examinations for further action to award suitable punishment.	

Prohibition of ragging in educational institutions Act 26 of

1997

Salient Features

- Ragging within or outside any educational institution is prohibited.
- Ragging means doing an act which causes or is likely to cause Insult or Annoyance of Fear or Apprehension or Threat or Intimidation or outrage of modesty or Injury to a student

	Imprisonment upto		Fine Upto
Teasing, Embarrassing and Humiliation	6 Months	+	Rs. 1,000/-
Assaulting or Using Criminal force or Criminal intimidation	O ^{CC} 1 Year	+	Rs. 2,000/-
Wrongfully restraining or confining or causing hurt	2 Years	+	Rs. 5,000/-
Causing grievous hurt, kidnapping or Abducts or rape or committing unnatural offence	5 Years	+	Rs. 10,000/-
Causing death or abetting suicide	10 Months	+	Rs. 50,000/-

In case any emergency call Toll Free No. 1800 425 1288 LET US MAKE VVIT A RAGGING FREE CAMPUS

- Ragging is prohibited as per Act 26 of A.P. Legislative Assembly, 1997.
- Ragging entails heavy fines and/or imprisonment.
- Ragging invokes suspension and dismissal from the College.
- Outsiders are prohibited from entering the College and Hostel without permission.
- Girl students must be in their hostel rooms by 7.00 p.m.
- 6. All the students must carry their Identity Cards and show them when demanded
- The Principal and the Wardens may visit the Hostels and inspect the rooms any time.

In case any emergency call Toll Free No. 1800 425 1288 LET US MAKE VVIT A RAGGING FREE CAMPUS

COURSE STRUCTURE (R19)

I Year I Semester							
S.No.	Course Code	Course Title	L	T	P	С	
1	HS01	Communicative English					
1	11501	(Common to ALL)	3	1	0	3	
2	BS01	Mathematics – I					
2	D 301	(Common to ALL)	3	1	0	3	
3	BS02	Applied Physics	3	1	0	3	
4	ES01	Programming for Problem Solving using C					
4	ESUI	(Common to ALL)	3	1	0	3	
5	ES02	Engineering Graphics	1	0	0	2.5	
6	HS01L	Communicative English Lab-I	0	0	0	1.5	
U		(Common to ALL)	U	U	U	1.5	
7	BS02L	Applied Physics Lab	0	0	0	1.5	
8	ES01L	Programming for Problem Solving Using C Lab	0	0	0	1.5	
8	ESUIL	(Common to ALL)	U	J	U	1.5	
9	MC01	Constitution of India	3	0	0	0	
		Total Credits				19	

	I Year II Semester						
S.No.	Course Code	Course Title	L	Т	P	C	
1	BS03	Mathematics - II	2	1	0	3	
		(Common to ALL)					
2	BS04	Mathematics - III	2	1	0	3	
2	Воот	(Common to ALL)		1	U	3	
3	BS05	Applied Chemistry	3	0	0	3	
4	ES03	Data Structures	3	0	0	3	
5	ES04	Basic Circuit Analysis	2	1	0	3	
6	HCON	Communicative English Lab - II	0	0	3	1.5	
O	HS02L	(Common to ALL)	U	U	3	1.3	
7	BS05L	Applied Chemistry Lab	0	0	3	1.5	
8	ES03L	Data Structures Lab	0	0	3	1.5	
9	ES05	Engineering Workshop	0	0	3	1.5	
10	MC02	Environmental Studies	3	0	0	0	
		Total Credits				21	

II Year I Semester						
S.No.	Course Code	Course Title	L	T	P	C
1	BS06	Complex Variables and Statistical Methods	2	1	0	3
2	ES06	Python Programming	2	0	0	2
3	ES07	Basic Electronic Devices and Circuits	3	1	0	3
4	PC01	Electrical machines -I	3	1	0	3
5	PC02	Electrical Circuit Analysis	2	1	0	3
6	PC03	Electromagnetic Fields	2	1	0	3
7	ES06L	Python Programming Lab	0	0	2	1
8	ES07L	Basic Electronic Devices and Circuits Lab	0	0	3	1.5
9	PC02L	Electrical Circuit Analysis Lab	0	0	3	1.5
10	MC03	Essence of Indian Traditional Knowledge	2	0	0	0
		Total Credits				21

II Year II Semester						
S.No.	Course Code	Course Title		Т	P	C
1	ES09	Thermal and Hydro Prime Movers	2	1	0	2
2	PC04	Linear IC Applications	2	1	0	2
3	PC05	lectrical Machines - II		1	0	3
4	PC06	Control Systems		1	0	3
5	PC07	Power systems-I		1	0	3
6	PC08	Digital Electronics		1	0	3
7	ES09L	Thermal and Hydro Prime Movers Lab (0	2	1
8	PC05L	Electrical Machines - I Lab	Electrical Machines - I Lab 0		3	1.5
9	PC06L	Control Systems Lab		0	3	1.5
10	PR01	Social Relevant Project 0 0 2		2	1	
		Total Credits				21

III Year I Semester						
S.No.	Course	Course Title	L	T	P	C
	Code					
1	PC09	Power Systems - II	2	1	0	3
2	PC10	Special Electrical Machines	3	0	0	3
3	PC011	Power Electronics	3	0	0	3
4	OE01	Open Elective I	2	0	0	2
5	OE02	Open Elective II	3	0	0	3
6	PE01	Professional Elective I	3	0	0	3
		1. High Voltage Engineering				
		2. Energy Conservation & Auditing				
		3. Advanced Control Systems				
		4. Electrical Machine Design				
7	PC05L	Electrical Machines –II Lab	0	0	3	1.5
8	PC011L	Power Electronics Lab	0	0	3	1.5
9	OE01L	IoT Lab	0	0	2	1
Total Credits 2						21

III Year II Semester						
S.No.	Course Code	Course Title		Т	P	C
1	HS03	Managerial Economics & Financial Analysis	3	0	0	3
2	PC012	Microprocessors & Microcontrollers	2	0	0	2
3	PC013	Electrical Measurements and Instrumentation	3	0	0	3
4	PC014	Power System-III		1	0	3
5	OE03	Open Elective III		0	0	2
6	PE02	Professional Elective II 1. Renewable Energy Sources 2. Switched Mode Power Conversion 3. AI Aplications to Electrical Engineering 4. Linear system Analysis		0	0	3
7	PC012L	Microprocessors & Microcontrollers Lab	0	0	3	1.5
8	PC013L	Electrical Measurements and Instrumentation Lab		0	3	1.5
9	PR02	Mini Project		0	4	2
Total Credits 2						21

	IV Year I Semester							
S.No.	Course Code	Course Title		Т	P	С		
1	HS04	Management Science	3	0	0	3		
2	PC015	Switch Gear and Protection	3	0	0	3		
3	PC016	FACTS		0	0	3		
4	OE04	Open Elective IV	3	0	0	3		
5	PE03	Professional Elective III 1. Electric Drives 2. PLC (Programmable Logic controller) 3. Power System Reliability 4. Reactive Power Compensation & Management		0	0	3		
6	PC015L	Power systems Lab	0	0	3	1.5		
7	OE04L	Big Data Anayltics lab	0	0	3	1.5		
8	PR03	Project stage- I	0	0	6	3		
	Total Credits							

IV Year II Semester							
S.No.	Course Code	Course Title	L	T	P	С	
1	PE04	Professional Elective IV 1. Utilization of Electrical Energy 2. Digital Control Systems 3. HVAC & DC Transmission 4. Electric Power Quality		0	0	3	
2	PE05	Professional Elective V 1. Data Analytics for Smart Grids 2. Electric Vehicles 3. SCADA Systems and Applications 4. NPTEL/ MOOC Cource		0	0	3	
3	OE05	Open Elective V 1. Signals and Systems		0	0	3	
4	PR04	Project stage -II	0	0	12	6	
		Total Credits				15	

OPEN ELECTIVES

Open Elective-I	Open Elective-II	Open Elective-III	Open Elective-IV
1. Internet of Things	Neural Networks & Fuzzy Logic	Big Data Analytics	1. Cyber Security
2. Electrical Machines Modelling and	2. Smart Cities	2. Machine Learning	2. DeepLearning Techniques
3. MEMS	3. BlockChain Technology	3. Computer Networks	3. Computer Organization
4. Cloud computing	4. Green Building	4. Digital Signal Processing	4. Mobile Computing

List of Open Elective Subjects offered by EEE Branch

Open Elective-I

1.Neural Networks
2.Electrical Estimating and Costing
3.Principles of Electric Power Conversion

Open Elective-II

1.Programmable Logic Controller and Applications
2.Energy Storage Systems
3.Soft Computing Techniques

Open Elective-III

1.Electric Vehicles
2.Indian Electricity Act, 2003
3.Power Systems for Data Centres

Courses for Honors degree

POOL-1	POOL-2	POOL-3	POOL-4				
(II-II)	(III-I)	(III-II)	(IV-I)				
Analysis of Linear	Energy Economics	Power System	Advanced Power				
Systems	Energy Economics	Optimization	Converters				
Energy Storage	Distribution System	Advanced Power	Hybrid Electrical				
Systems	Distribution System Engineering	System	Vehicle				
Systems	Engineering	Protection	Venicle				
Semiconductor	Sensors and	Advanced	Modern Control Theory				
Device Modeling	Transducers	Power Systems	Wodern Control Theory				
Renewable and	Process Control	Real Time Control of	Power System				
Distributed Energy	Engineering	Power System	Operation and				
Technologies	Engineering	Power System	Deregulation(PSOD)				
MOOC-1*(NPTEL/SWAYAM) Duration:12Weeks minimum MOOC-2*(NPTEL/SWAYAM) Duration:12Weeks minimum							

MOOC-2*(NPTEL/SWAYAM) Duration:12Weeks minimum

*Course/subject title can't be repeated

General Minor Tracks

Department of CSE for Electrical and Electronics Engineering

S.No.	Course Name		T	P	C
1	DBMS	3	0	2	4
2	JAVA	3	0	2	4
3	Advanced JAVA	3	0	2	4
4	Software Engineering	3	0	2	4
5	NPTEL	3	0	2	4
6	NPTEL	3	0	2	4

Note:

- i. A student can select four subjects from the above six subjects @3-0-2-4 credits per subject.
- ii. Compulsory MOOC / NPTELcourses for 04 credits (02 courses @02 credits each)

L T P C 3 0 0 3

COMMUNICATIVE ENGLISH (Common to All Branches)

Course Objectives

- 1. Adopt activity based teaching-learning methods to ensure that learners would be engaged in use of language both in the classroom and laboratory sessions.
- 2. Facilitate effective listening skills for better comprehension of academic lectures and English spoken by native speakers
- 3. Focus on appropriate reading strategies for comprehension of various academic texts and authentic materials
- 4. Help improve speaking skills through participation in activities such as role plays, discussions and structured talks/oral presentations
- 5. Impart effective strategies for good writing and demonstrate the same in summarizing, writing well organized essays, record and report useful information
- 6. Provide knowledge of grammatical structures and vocabulary and encourage their appropriate use in speech and writing

Course Outcomes

At the end of the course, the learners will be able to

- **CO1.** identify the context, topic, and pieces of specific information from social or transactional dialogues spoken by native speakers of English (L3)
- **CO2.** formulate sentences using proper grammatical structures and correct word forms (L3)
- **CO3.** speak clearly on a specific topic using suitable discourse markers in informal discussions (L3)
- **CO4.** write summaries based on global comprehension of reading/listening texts (L3)
- **CO5.** produce a coherent paragraph interpreting a figure/graph/chart/table (L4)
- **CO6.** take notes while listening to a talk/lecture to answer questions (L3)

Syllabus Blueprint

Contents		earning Outcomes	Bloom's Level	No of Hrs
Unit-1				
Listening: Identifying the topic, the	1.	Identify the context, topic,	L3	
context and specific pieces of		and pieces of specific		
information by listening to short		information from social or		
audio texts and answering a series of		transactional dialogues		
questions.		spoken by native speakers of		
Speaking: Asking and answering		English	L2	
general questions on familiar topics	2.	ask &answer general		
such as home, family, work, studies		questions on familiar topics	L3	
and interests; introducing oneself	3.	employ suitable strategies for		
and others.		skimming &scanning to get		10

Dandings Chimming to get the main		the compandides of a tout and		
Reading: Skimming to get the main		the general idea of a text and		
idea of a text; scanning to look for	4	specific information	T 2	
specific pieces of information.	4.	recognize paragraph structure	L3	
Reading for Writing: Beginnings	_	with beginnings/endings	T 2	
and endings of paragraphs -	5.		L3	
introducing the topic, summarizing		grammatical structures and		
the main idea and/or providing a		correct word forms		
transition to the next paragraph.				
Grammar and Vocabulary:				
Content words and function words;				
word forms: verbs, nouns, adjectives				
and adverbs; nouns: countables and				
uncountables; singular and plural;				
basic sentence structures; simple				
question form - wh-questions; word				
order in sentences.				
Unit-2				
Listening: Answering a series of	1.	1	L2	
questions about main idea and		general topics		
supporting ideas after listening to	2.	speak clearly on a specific		
audio texts.		topic using suitable discourse	L3	
Speaking: Discussion in pairs/		markers in informal		
small groups on specific topics		discussions		
followed by short structured talks.	3.	understand the use of	L2	
Reading: Identifying sequence of		cohesive devices for better		
ideas; recognizing verbal techniques		reading comprehension		10
that help to link the ideas in a	4.	write well-structured	L3	
paragraph together.		paragraphs on specific topics		
Writing: Paragraph writing	5.	make necessary grammatical	L3	
(specific topics) using suitable		corrections in short texts		
cohesive devices; mechanics of				
writing - punctuation, capital letters.				
Grammar and Vocabulary:				
Cohesive devices - linkers, sign				
posts and transition signals; use of				
articles and zero article;				
prepositions.				
Unit-3	1.	summarize the content with	L3	10
Listening: Listening for global		clarity &precision from short		
comprehension and summarizing		talks		
what is listened to.	2.	report what is discussed in	L3	
Speaking: Discussing specific		informal discussions		
topics in pairs or small groups and	3.	infer meanings of unfamiliar	L3	
reporting what is discussed		words using contextual clues		
Reading: Reading a text in detail by	4.	· ·		
making basic inferences -		global comprehension of	L3	
making basic interences -		giodai comprehension of	LJ	

recognizing and interpreting specific		reading/ listening texts		
context clues; strategies to use text	5.	use correct tense forms,		
clues for comprehension.		appropriate structures and a	L3	
Writing: Summarizing - identifying		range of reporting verbs in		
main idea/s and rephrasing what is		speech and writing		
read; avoiding redundancies and				
repetitions. Grammar and				
Vocabulary: Verbs - tenses;				
subject-verb agreement; direct and				
indirect speech, reporting verbs for				
academic purposes.				
Unit-4	1.	infer &predict about content	L4	10
Listening: Making predictions		of spoken discourse		
while listening to conversations/	2.	<u>-</u>		
transactional dialogues without		conversationsunderstanding	L3	
video; listening with video.		verbal &non-verbal features		
Speaking: Role plays for practice of		of communication		
conversational English in academic	3.			
contexts (formal and informal) -		used in academic texts	L2	
asking for and giving	4.			
information/directions.		interpreting a figure / graph /	L4	
Reading: Studying the use of		chart / table		
graphic elements in texts to convey	5.			
information, reveal	٥.	description and interpretation	L4	
trends/patterns/relationships,		of graphical elements	LT	
communicate processes or display		or grapmear elements		
complicated data.				
Writing: Information transfer;				
describe, compare, contrast, identify				
significance/trends based on				
information provided in				
figures/charts/graphs/tables.				
Grammar and Vocabulary:				
Quantifying expressions - adjectives				
and adverbs; comparing and				
contrasting; degrees of comparison;				
use of antonyms				
Unit-5	1.	take notes while listening to a	L3	
Listening: Identifying key terms,	1.	talk/lecture to answer	LJ	
understanding concepts and		questions		
answering a series of relevant	2.	<u>=</u>	L3	10
questions that test comprehension.	۷.	presentations using effective	13	10
Speaking: Formal oral presentations		strategies	L3	
on topics from academic contexts -	3.	produce a well-organized	13	
without the use of PPT slides.	٦.	essay with adequate details	L4	
Reading: Reading for	4.	•	174	
icaumg. Reaumg 101	7.	can short texts by confecting		

comprehension.	common errors	
Writing: Writing structured essays		
on specific topics using suitable		
claims and evidences		
Grammar and Vocabulary:		
Editing short texts – identifying and		
correcting common errors in		
grammar and usage (articles,		
prepositions, tenses, subject verb		
agreement)		

Detailed Syllabus

Unit 1 A Proposal to Girdle the Earth (Excerpt) by Nellie Bly

Theme: Exploration

- 1. "How to Fashion Your Own Brand of Success" by Howard Whitman
- 2. "How to Recognize Your Failure Symptoms" by Dorothea Brande

Listening

• identifying thetopic, the context and specific pieces of information

Speaking

• introducing oneself and others

Reading

- skimming for main ideas
- scanning for specific pieces of information

Writing/ Reading for Writing

• paragraphs, beginnings, introducing the topic, key words, main idea

Grammar and Vocabulary

- content words and function words
- word forms: verbs, nouns, adjectives and adverbs
- nouns: countable and uncountable; singular and plural forms
- basic sentence structures; simple question form: why-questions; word order in sentences

Learning Outcomes

- understand social or transactional dialogues spoken by native and non-native speakers of English and identify the context, topic, and pieces of specific information.
- ask and answer general questions on familiar topics and introduce oneself/others
- employ suitable strategies for skimming and scanning to get the general idea of a text and locate specific information
- recognize paragraph structure and be able to match headings/main ideas with paragraphs
- form sentences using proper grammatical structures and correct word forms

Unit 2 An excerpt from The District School As It Was by One Who Went to It by Warren Burton

Theme: On Campus

- 3. "How to Conquer the Ten Most Common Causes of Failure" by Lois Binstock
- 4. "How to Develop Your Strength to Seize Opportunities" by Maxwell Maltz

Listening

 answering a series of questions about main idea and supporting ideas after listening to audio texts

Speaking

• discussion in pairs/ small groups on specific topics; preparing and delivering short structured talks using suitable cohesive devices

Reading

- identifying sequence of ideas
- recognizing verbal techniques that help link the ideas in a paragraph

Writing/ Reading for Writing

- paragraph writing (specific topics) using suitable cohesive devices; using key words/phrases and organizing points in a coherent manner
- mechanics of writing: punctuation, capital letters

Grammar and Vocabulary

- cohesive devices-linkers, sign posts and transition signals
- use of articles and zero articles
- prepositions

Learning Outcomes

- comprehend short talks on general topics
- participate in informal discussions and speak clearly on a specific topic using suitable discourse markers
- understand the use of cohesive devices for better reading comprehension
- write well-structured paragraphs on specific topics using suitable cohesive devices
- identify basic errors of grammar/usage and make necessary corrections in short texts

Unit 3 The Future of Work?

Theme: Working Together

- 5. "How to Make the Most of Your Abilities" by Kenneth Hildebrand
- 6. "How to Raise Your Self-Esteem and Develop Self-Confidence" by James W. Newman

Listening

- listening for global comprehension
- summarizing what is listened to

Speaking

- discussing specific topics in pairs/ small groups
- reporting what is discussed

Reading

- reading a text in detail by making basic inferences
- recognizing and interpreting specific context clues
- strategies to use text clues for comprehension

Writing/ Reading for Writing

- summarizing-identifying main idea/s
- rephrasing what is read
- avoiding redundancies and repetitions

Grammar and Vocabulary

• Verbs-tenses; subject-verb agreement; direct and indirect speech, reporting verbs for academic purposes

Learning Outcomes

- comprehend short talks and summarize the content with clarity and precision
- participate in informal discussions and report what discussed
- infer meanings of unfamiliar words using contextual clues
- write summaries based on global comprehension of reading/listening texts
- use correct tense forms, appropriate structure and a range of reporting verbs in speech and writing.

Unit 4 H.G Wells and the Uncertainties of Progress by Peter J. Bowler

Theme: Fabric of Change

- 7. "How to Win Your War Against Negative Feelings" by Dr Maxwell Maltz
- 8. "How to Find the Courage to Take Risks" by Drs Tom Rust and Randy Reed

Listening

- making predictions while listening to conversations/transactional dialogues without video
- listening with video

Speaking

- role plays for practice of conversational English in social and academic contexts (formal & informal)
- asking for and giving information/directions/instructions/suggestions

Reading

• understand and interpret graphic elements used in texts (convey information, reveal trends/patterns/relationships, communicate processes or display data)

Writing/ Reading for Writing

- information transfer
- describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables

Grammar and Vocabulary

- quantifying expressions-adjectives and adverbs
- comparing and contrasting
- degrees of comparison
- use of antonyms

Learning Outcomes

- make inferences and predictions while listening to spoken discourse
- understand verbal and non-verbal features of communication and hold formal / informal conversations
- interpret graphic elements used in academic texts
- produce a coherent paragraph interpreting a figure/graph/chart/table
- use language appropriate for description and interpretation of graphical elements

Unit 5 Leaves from the Mental Portfolio of a Eurasian by Sui Sin Far

Theme: Tools for Life

9."How to Become a Self-Motivator" by Charles T Jones 10. "How to Eliminate Your Bad Habits" by OgMandino

Listening

- identifying the key terms
- understanding concepts
- answering a series of relevant questions that test comprehension

Speaking

• formal oral presentations on topics from academic contexts-without the use of PPT slides

Reading

• reading for comprehension

Writing/ Reading for Writing

• writing structured essays on specific topics using suitable claims and evidences

Grammar and Vocabulary

• reinforcing learning: articles, prepositions, tenses, subject-verb agreement

Learning Outcomes

- take notes while listening to a talk/lecture and make use of them to answer questions
- make formal oral presentations using effective strategies
- comprehend, discuss and respond to academic texts oral and in writing
- produce a well-organized essay with adequate support and detail
- edit short texts by correcting common errors

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1									2	3		1
CO2									2	3		1
CO3									2	3		1
CO4									2	3		1
CO5									2	3		1

L T P C 3 0 0 3

MATHEMATICS – I (Common to ALL branches)

Course Objectives:

- 1. This course will illuminate the students in the concepts of calculus.
- 2. To enlighten the learners in the concept of differential equations and multivariable calculus.
- 3. To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real-world problems and their applications.

Unit-1: Differential equations of first order and first degree:

Linear differential equations-Bernoulli's equations - Exact equations and equations reducible to exact form.

Applications: Newton's Law of cooling – Law of natural growth and decay – Orthogonal trajectories – Electrical circuits.

Unit-2: Linear differential equations of higher order:

Non-homogeneous equations of higher order with constant coefficients – with non-homogeneous term of the type e^{ax} , $\sin ax$, $\cos ax$, polynomials in x^n , $e^{ax}V(x)$ and $x^nV(x)$ - Method of Variation of Parameters.

Applications: LCR circuit – Simple harmonic motion

Unit-3: Mean value theorems:

Mean value theorems (without proofs): Rolle's Theorem – Lagrange's mean value theorem – Cauchy's mean value theorem – Taylor's and Maclaurin's theorems with remainders.

Unit-4: Partial differentiation:

Introduction – Homogeneous function – Euler's theorem - Total derivative – Chain rule – Jacobian – Functional dependence – Taylor's and Mc Laurent's series expansion of functions of two variables.

Applications: Maxima and Minima of functions of two variables without constraints and Lagrange's method (with constraints).

Unit-5: Multiple integrals:

Double integrals (Cartesian and Polar) – Change of order of integration – Change of variables (Cartesian to Polar) – Triple integrals.

Applications: Areas by double integrals and Volumes by triple integrals.

TEXT BOOKS:

- 1. **B.S. Grewal,** Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
- 2. **B.V. Ramana,** Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.

REFERENCE BOOKS:

- 1. **H. K. Das,** Advanced Engineering Mathematics, 22nd Edition, S. Chand & Company Ltd.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wilev-India.

Course Outcomes: At the end of the course, the student will be able to

- solve the differential equations related to various engineering fields.
- utilize mean value theorems to real life problems.
- familiarize with functions of several variables which is useful in optimization.

- apply double integration techniques in evaluating areas bounded by region.
- learn important tools of calculus in higher dimensions. Students will become familiar with 2-dimensional and 3 dimensional coordinate systems.

Micro-Syllabus of MATHEMATICS – I (Calculus)

Unit-1: Differential equations of first order and first degree:

Linear differential equations-Bernoulli's equations - Exact equations and equations reducible to exact form.

Applications: Newton's Law of cooling – Law of natural growth and decay – Orthogonal trajectories – Electrical circuits.

Unit	Module	Micro content	
	Linear differential	Solution of Linear differential equations in 'y'	
	equations	Solution of Linear differential equations in 'x'	
	•	Initial value problem	
	Non-Linear	Bernoulli's equations	
	differential equations	Equations reducible to Linear differential equations	
	Exact differential equations	Solution of Exact differential equations	
1a. & 2a.		Equations reducible to Exact equations	
Differential		Integrating factor found by inspection	
equations of first order and	Non-Exact differential equations	Integrating factor of a Homogeneous equation	
first degree		Integrating factor for an equation of the type	
		$f_1(xy) y dx + f_2(xy) x dy = 0$	
		$\partial M \partial N$	
		Integrating factor, if $\frac{\partial y}{\partial x} = \frac{\partial x}{\partial x}$ be a function of	
		'x'	
		$\partial N - \partial M$	
		Integrating factor, if $\frac{\frac{\partial V}{\partial x} - \frac{\partial W}{\partial y}}{M}$ be a function of 'y'	
1b. & 2b. Applications	Application of	Newton's Law of cooling	
	differential equations of first order and first	Law of natural growth and decay	
	degree	Orthogonal trajectories	
		Electrical circuits	

Unit-2: Linear differential equations of higher order:

Non-homogeneous equations of higher order with constant coefficients – with non-homogeneous term of the type e^{ax} , $\sin ax$, $\cos ax$, polynomials in x^n , $e^{ax}V(x)$ and $x^nV(x)$ - Method of Variation of Parameters.

Applications: LCR circuit – Simple harmonic motion

Unit	Module	Micro content
3a. & 4a. Linear differential equations of	Homogeneous equations of higher order with constant coefficients	Finding the Complementary function
higher order		Particular integral of the type \mathcal{C}^{α} Particular integral of the type
	Non-homogeneous equations of higher order with constant coefficients	'sinax' (or) 'cos ax'
		Particular integral of the type x^n
		Particular integral of the type $e^{ax} V(x)$
		Particular integral of the type $'x^n v(x)'$
	Applications of Non-	Method of variation of parameters
3b. & 4b.		LCR circuit
Applications	of higher order with constant coefficients	Basic problems on simple harmonic motion

Unit-3: Mean value theorems:

Mean value theorems (without proofs): Rolle's theorem – Lagrange's mean value theorem – Cauchy's mean value theorem – Taylor's and Maclaurin's theorems with remainders.

Unit	Module	Micro content				
5a. & 6a.		Rolle's theorem				
Mean value theorems	Mean value theorems	Lagrange's mean value theorem				
5b. & 6b. Mean value theorems		Cauchy's mean value theorem				
	Mean value theorems	Taylor's expansions of $f(x)$				
		Maclaurin's expansions of $f(x)$				

Unit-4: Partial differentiation:

Introduction – Homogeneous function – Euler's theorem - Total derivative – Chain rule – Jacobians – Functional dependence – Taylor's and Mc Laurent's series expansion of functions of two variables.

Applications: Maxima and Minima of functions of two variables without constraints and Lagrange's method (with constraints).

Unit	Module	Micro content
7a. & 8a. Partial differentiation		Euler's theorem
	Partial Differentiation	Total derivative
	Taruai Dinerentiation	Chain rule
		Jacobians
	Applications of Partial Differentiation	Taylor's and Mc Laurent's series expansion of functions of two variables
	Differentiation	Maxima and Minima of functions of two

variables	
Lagrange's method of undetermined multipliers	

Unit-5: Multiple integrals:

Double integrals (Cartesian and Polar) – Change of order of integration – Change of variables (Cartesian to Polar) – Triple integrals.

Applications: Areas by double integrals and Volumes by triple integrals.

Unit	Module	Micro content
9a. & 10a.		Double integrals
Multiple	Evaluation of Double Integrals	Change of order of integration
integrals		Double integrals in Polar co-ordinates
integrais		Change of variables
9b. & 10b. Applications	Evaluation of Triple Integrals	Triple integrals
	Applications of Multiple	Areas by double integrals
	Integrals	Volumes by triple integrals

CO - PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										1
CO2	3	2										1
CO3	3	2										1
CO4	3	2										1
CO5	3	2										1

L T P C 3 0 0 3

APPLIED PHYSICS (Common to ECE and EEE)

Course Objectives:

Applied Physics curriculum which is re-oriented to the needs of Circuital branches of graduate engineering courses offered by Vasireddy Venkatadri Institute of Technology, which serves as a transit to understand the branch specific advanced topics. The course is designed to:

- ➤ Impart Knowledge of Physical Optics phenomena like Interference and Diffraction required to design instruments with higher resolution.
- ➤ Understand the physics of Semiconductors and their working mechanism for their utility in electronic devices.
- > Impart the knowledge of materials with characteristic utility in appliances.

Unit-I: Wave Optics:

Interference: Principle of Superposition-Interference of light — Conditions for sustained Interference-Interference in thin films (reflected geometry) — Newton's Rings (reflected geometry) **Diffraction:**Fraunhofer Diffraction:— Diffraction due to single slit (quantitative), double slit(qualitative), N —slits(qualitative) and circular aperture (qualitative) — Intensity distribution curves — Diffraction grating — Grating spectrum — missing order— resolving power — Rayleigh's criterion — Resolving powers of Microscope(qualitative), Telescope(qualitative) and grating (qualitative).

Unit-II: LASERs and Holography

LASERs: Interaction of radiation with matter – Spontaneous and Stimulated emission of radiation – population inversion – Einstein's coefficients & Relation between them and their significance - Pumping Mechanisms - Ruby laser – Helium-Neon laser – Applications.

Holography: Introduction – principle – differences between photography and holography – construction and reconstruction of hologram – applications of holograms

Unit-III: Magnetism and Dielectrics

Magnetism: Introduction - Magnetic dipole moment - Magnetization-Magnetic susceptibility and permeability- Origin of permanent magnetic moment - Bohr magneton-Classification of magnetic materials: Dia, para & Ferro – Domain concept of Ferromagnetism - Hysteresis – soft and hard magnetic materials – applications of Ferromagnetic material.

Dielectrics: Introduction- Dielectricpolarization-Dielectricpolarizations: Electronic and Ionic (Quantitative), Orientation Polarizations (Qualitative) - Lorentz Internal field-Claussius –Mossotti's equation- Frequency dependence of polarization - Applications of dielectrics.

Unit- IV: Quantum Mechanics

Introduction— matter waves — de Broglie's hypothesis — Davisson-Germer experiment — G.P.Thomson experiment — Heisenberg's Uncertainty Principle—Schrödinger time independent and time dependent wave equations — physical significance of Schrödinger wave function — Particle in a potential box (determination of energy).

Unit- V: Semiconductor Physics

Originofenergybands(qualitative) -Classificationofsolidsbasedonenergybands—Intrinsicsemiconductors-densityof charge carriers -Electrical conductivity-Fermi level - extrinsicsemiconductors-P-type&N-type-Densityof chargecarriers-DependenceofFermienergyoncarrierconcentrationandtemperature-Halleffect-Hallcoefficient-ApplicationsofHalleffect- Drift and Diffusion currents - Einstein's equation.

TEXT BOOKS:

- 1. "Engineering Physics" by B. K. Pandey, S. Chaturvedi Cengage Publications, 2012
- 2. "A Text book of Engineering Physics" by M.N. Avadhanulu, P.G.Kshirsagar S.Chand, 2017.
- 3. "Engineering Physics" by D.K.Bhattacharya and Poonam Tandon, Oxford press (2015).
- 4. "Engineering Physics" by R.K Gaur. and S.L Gupta., Dhanpat Rai publishers, 2012.

REFERENCE BOOKS:

- 1. "Engineering Physics" by M.R.Srinivasan, New Age international publishers (2009).
- 2. "Optics" by Ajoy Ghatak, 6th Edition McGraw Hill Education, 2017.
- 3. "Solid State Physics" by A.J.Dekker, Mc Millan Publishers (2011).

Course Outcomes:

The students will be able to

- 1. **Understand** the principles such as interference and diffraction to design and enhance the resolving power of various optical instruments.
- 2. **Learn** the basic concepts of LASER light Sources and Apply them to holography
- 3. **Study** the magnetic and dielectric materials to enhance the utility aspects of materials.
- 4. **Learn** the fundamental concepts of Quantum behaviour of matter.
- 5. **Identify** the type of semiconductors using Hall Effect.

Micro-Syllabus of Applied Physics

Unit-I: Wave Optics:

Interference: PrincipleofSuperposition-Interferenceoflight - ConditionsforsustainedInterference-Interferencein thin films (reflected geometry) - Newton's Rings (reflected geometry) **Diffraction:**Fraunhofer Diffraction:- Diffraction due to single slit (quantitative), double slit(qualitative), N -slits(qualitative) and circular aperture (qualitative) - Intensity distribution curves - Diffraction grating - Grating spectrum - missing order- resolving power - Rayleigh's criterion - Resolving powers of Microscope(qualitative), Telescope(qualitative) and grating (qualitative).

Unit	Module	Micro content
	Principle of Superpositi	Introduction to interference
	PrincipleofSuperpositi on&Interferenceofligh	Principle of superposition
	t	Coherence
Ia. Interference	l	ConditionsforsustainedInterference
	T., (Interference in thin films by reflection (cosine's law)
	Interferencein thin films	Complementary nature
	1111115	Colours of thin film

		Newton's Rings(reflected geometry)					
	Newton's Rings	Experimental arrangement & conditions for diameters					
		Applications: determination of wavelength of					
		monochromatic source and refractive index of the					
		given transparent liquid.					
		Differences between Fresnel's and Fraunhofer's					
	Fraunhofer Diffraction - Diffraction due to single slit	diffraction					
		Differences between interference and diffraction					
		Fraunhofer diffraction due to single slit(quantitative)					
	single sitt	Fraunhofer diffraction due to circular aperture					
		(qualitative)					
	double slit (qualitative) & N – slits(qualitative)	Fraunhofer diffraction due to double slit (qualitative					
Ib.Diffraction		Fraunhofer diffraction due to grating					
		(N- slits) (qualitative)					
	shts(quantative)	Intensity distribution curves					
	Diffraction grating& Resolving powers	Grating spectrum, missing orders and maximum					
		number of orders possible with a grating					
		Rayleigh's criterion for resolving power					
	Resolving powers	Resolving power of grating, Telescope and					
		Microscope (qualitative)					

Unit-II: LASERs and Holography

LASERs: Interaction of radiation with matter – Spontaneous and Stimulated emission of radiation – population inversion – Einstein's coefficients & Relation between them and their significance - Pumping Mechanisms - Ruby laser – Helium-Neon laser – Applications.

Holography: Introduction – principle – differences between photography and holography – construction and reconstruction of hologram – applications of holograms

Unit	Module	Micro content					
	Interaction of radiation	Introduction to LASERS					
	with matter	Spontaneous emission					
	with matter	Stimulated emission					
		Einstein'scoefficients					
IIa.LASERs	Einstein's coefficients	Populationinversion					
		Pumping mechanisms					
	I ACEDC construction	Rubylaser					
	LASERS construction and working	Helium-Neon laser					
	and working	Applications of Lasers					
IIb.Holography	Principle of helegraphy	Introduction and Principle of holography					
	Principle of holography	Differences between photography and holography					
	construction and	Construction of hologram					
	reconstruction of	Reconstruction of hologram					
	hologram	Applications of holography					

Unit-III: Magnetism and Dielectrics

Magnetism: Introduction - Magnetic dipole moment - Magnetization-Magnetic susceptibility and permeability- Origin of permanent magnetic moment - Bohr magneton-Classification of magnetic materials: Dia, para & Ferro - Domain concept of Ferromagnetism - Hysteresis - soft and hard magnetic materials - applications of Ferromagnetic material.

Dielectrics: Introduction- Dielectric polarization-Dielectric polarizations: Electronic and Ionic (Quantitative), Orientation Polarizations (Qualitative) - Lorentz Internal field-Claussius - Mossotti's equation-Frequency dependence of polarization - Applications of dielectrics.

Unit	Module	Micro content					
		Introduction to Magnetism, Definitions of					
	Introduction&	Magnetic dipole moment, Magnetization,					
	Origin of permanent	Magnetic susceptibility and Permeability					
	magnetic moment	Originofmagneticmoment					
		Bohr magneton					
		Dia magnetic materials					
IIIa. Magnetism	Classification of magnetic	Para magnetic materials					
iiiu. Mugnetisiii	materials	Ferro magnetic materials					
		Domain concept of Ferromagnetism					
	Domain concept of	HysteresisCurve (B-H Curve)					
	Ferromagnetism &	Soft and hard magnetic materials classification					
	Hysteresis	based on HysteresisCurve					
		Applications of magnetic materials					
		Introduction to dielectrics					
	Introduction& definitions	Dielectric polarization, Dielectric polarizability, susceptibility					
		Dielectric constant					
		Electronic polarization (Quantitative)					
IIIb.Dielectrics	Types of polarizations	Ionic polarization (Quantitative)					
		Orientational polarizations (Qualitative)					
	Internal field& Claussius –Mossotti's	Lorentz Internalfieldsinsolids					
		Clausius-Mossotti's equation					
	equation	Frequency dependence of polarization					
		Applications of Dielectrics					

Unit- IV: Quantum Mechanics

Introduction— matter waves — de Broglie's hypothesis — Davisson-Germer experiment — G.P.Thomson experiment — Heisenberg's Uncertainty Principle—Schrödinger time independent and time dependent wave equations — physical significance of Schrödinger wave function — Particle in a potential box (determination of energy).

Unit	Module	Micro content				
IV. Quantum Mechanics	Introduction& de Broglie's hypothesis	Introduction to Matter waves				
		de Broglie's hypothesis				
		Properties of Matter waves				
	Davisson-Germer experiment & G.P.Thomson experiment	Davisson and Germer's experiment				
		G. P. Thomson experiment				
		Heisenberg's uncertainty principle				
	Schrödinger wave function & equations	Schrödinger's wave function and it's physical significance				
		SchrodingerTimeIndependentwave equation				
		SchrodingerTimeDependentwave equation				
		Application to particle inone dimensionalbox				

Unit- V: Semiconductor Physics

Originofenergybands(qualitative) -Classificationofsolidsbasedonenergybands-Intrinsicsemiconductors-densityof charge carriers -Electricalconductivity-Fermi level extrinsicsemiconductors-P-type&N-type-Densityof chargecarriers-

Dependence of Fermiener gyon carrier concentration and temperature - Halleffect - Hall coefficient - Applications of Halleffect - Drift and Diffusion currents - Einstein's equation.

Unit	it Module Micro content						
		Introduction to energy bands and Origin of energy					
	Origin of energy bands	bands in crystalline solids					
V.Semiconductor Physics		Classification of solids into conductors,					
		semiconductors and insulators based on energy					
		bands					
	Intrinsic&extrinsicsemico nductors	Intrinsic semiconductor and Carrier Concentration					
		Equation for Conductivity					
		Extrinsic Semiconductors (p-type and n-type)and					
		Carrier Concentration					
	Drift and Diffusion &Halleffect	Drift and Diffusion in semiconductors					
		Einstein's Equation					
	& Hallettect	Hall Effect and it's applications					

Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										1
CO2	3	2										1
CO3	3	2										1
CO4	3	2										1
CO5	3	2										1

Programming for Problem Solving using C (Common to All Branches)

Course Objectives:

- 1. To familiarize to notion of an algorithm, editing and executing programs in Linux.
- 2. To Understanding branching, iteration.
- 3. To represent Data using arrays.
- 4. To use Modular programming and recursive solution formulation.
- 5. To familiarize pointers and dynamic memory allocation.
- 6. To handle data through files

UNIT-I: Introduction to C

Introduction to Computers: hardware, Memory hierarchy, Types of Computers, Types of Software – Operating Systems, Translators, Device drivers and packages. Algorithms and its characteristics, Program development steps. Structure of a C program, Features of C, The main () Function, Standard I/O functions.

Programming Style - Indentation, Comments, Identifiers, Data Types, Operators, Precedence and Associativity. Variables and Declarations, Format Modifiers, Escape Sequences, Types of Statements

Casting - Implicit Type Conversions, Explicit Type Conversions, Mathematical Library Functions

UNIT-II: Control Flow & Modules

Selection: if-else Statement, nested if, examples, Multi-way selection: switch, else-if, examples. **Repetition**: Basic Loop Structures, Pre-test and Post-test Loops, Counter-Controlled and Condition-Controlled Loops, for, while and do while.

Branching: break & continue.

Modular Programming: Function and Parameter Declarations, Returning a Value, Types of parameters. Parameter – scalar data as argument.

Recursion: Definition, Base condition for recursion, Mathematical Recursion, Recursion versus Iteration.

UNIT-III Arrays & Strings

Arrays: Introduction to Arrays, Input and Output of Array Values, Array Initialization, Arrays as Function Arguments, Two-Dimensional Arrays, Larger Dimensional Arrays- Matrices, 1D & 2D arrays as arguments.

Strings: String Fundamentals, String Input and Output, String Processing, Library Functions, Strings as arguments.

Unit – IV Pointers & Structures

Pointers: Concept of a Pointer, Initialization of Pointer variables, Pointers as function arguments, Passing by address, Dangling memory, Pointer Arithmetic, Character pointers, Pointers to Pointers, Array of pointers & Pointer to array, Dynamic memory management functions, Command line Arguments.

Structures: Derived types, Structure's declaration, Initialization of structures, accessing structures, nested structures, arrays of structures, structures and functions, pointers to structures, self-referential structures, unions, typedef, enum, bit-fields.

UNIT-V: Files

Storage classes – auto, static, extern, register. Pre-processor statements

Data Files: Declaring, Opening, and Closing File Streams, File handling functions, Reading from and Writing to Text Files, File copy, merge, Writing and reading records, Random File Access.

Text Books:

- 1. ANSI C Programming, E Balaguruswamy, Mc-GrawHill, 5th Edition
- 2. ANSI C Programming, Gary J. Bronson, Cengage Learning.
- 3. Programming in C, ReemaThareja, OXFORD Publications

Reference Books:

- 1. C Programming-A Problem Solving Approach, Forouzan, Gilberg, Cengage.
- 2. Let us C, YashwantKanetkar, BPB Publications
- 3. Mastering in C, KR Venu Gopal, TMH

Course Outcomes: After completing this course, Students will be able to-

- CO 1: Understand algorithms and basic terminology of C
- CO 2: Solve problems using control structures and modular approach
- CO 3: Make use of 1D and 2D arrays along with strings for linear data handling
- **CO 4: Determine** the use of pointers and structures
- **CO 5: Implement** various operations on data files.

Correlation of Course Outcomes with Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO ₂
CO1	1	2	3	2	1	-	-	-	3	3	1	2	1	2
CO2	2	3	3	2	-	-	-	-	1	1	2	2	2	2
CO3	3	3	3	2	-	-	-	-	2	1	2	2	2	3
CO4	2	2	2	2	-	-	-	-	2	1	2	2	2	2
CO5	2	2	2	2	-	-	-	-	2	1	2	2	1	2

Micro-Syllabus of Problem Solving and Programming in C

UNIT I: Introduction to Computers: Hardware, Memory hierarchy, Types of Computers, Types of Software – Operating Systems, Translators, Device drivers and packages. Algorithms and its characteristics, Program development steps. Structure of a C program, Features of C, The main () Function, Standard I/O functions.

Programming Style - Indentation, Comments, Identifiers, Data Types, Operators, Precedence and Associativity. Variables and Declarations, Format Modifiers, Escape Sequences, Types of Statements

Casting - Implicit Type Conversions, Explicit Type Conversions, Mathematical Library Functions

Unit	Module	Micro content
		Components of Computer: Hardware &
		Software
		Algorithm and its characteristics
Introduction to C	Introduction to	Program development steps
introduction to C	Computers	Structure of a C Program
		Features of C
		The main () function and standard I/O
		functions

		Indentation, Comments, Identifiers, Data	
	Programming Style	Types	
		Operators, Precedence and Associativity.	
		Variables and Declarations	
		Format Modifiers, Escape Sequences	
		Types of Statements	
		Implicit Type Conversions	
	Casting	Explicit Type Conversions	
		Mathematical Library Functions	

UNIT II: Selection: if-else Statement, nested if, examples, Multi-way selection: switch, else-if, examples. **Repetition**: Basic Loop Structures, Pre-test and Post-test Loops, Counter-Controlled andCondition-Controlled Loops, for, while and do while.

Branching: break & continue.

Modular Programming: Function and Parameter Declarations, Returning a Value, Types of parameters. Parameter – scalar data as argument.

Recursion: Definition, Base condition for recursion, Mathematical Recursion, Recursion versus Iteration.

Unit	Module	Micro content	
		if else, nested if examples	
	Selection Statements	Multi Way Selection: switch, else if	
		examples	
	Iterative Statements	Counter Controlled Loops	
	Herative Statements	Logic Controlled Loops	
	Unconditional	Break & Continue	
Control Flow & Modular	Branching		
Programming		Function and Parameter Declarations	
	Modular	Returning a Value	
	Programming	Types of parameters. Parameter – scalar	
		data as argument.	
		Definition, Base condition for recursion	
	Recursion	Mathematical Recursion	
		Recursion versus Iteration	

UNIT III: Arrays: Introduction to Arrays, Input and Output of Array Values, Array Initialization, Arraysas Function Arguments, Two-Dimensional Arrays, Larger Dimensional Arrays- Matrices, 1D & 2D arrays as arguments.

Strings: String Fundamentals, String Input and Output, String Processing, Library Functions, Strings as arguments.

Unit	Module	Micro content			
		Introduction to Arrays, Input and Output			
		of Array Values, Array Initialization			
	A maxic	Arraysas Function Arguments Two-Dimensional Arrays, Larger			
Arrays & Strings	Arrays				
		Dimensional Arrays			
		Matrices, 1D & 2D arrays as arguments			
	Strings	String Fundamentals, String Input and			

Output
String Processing, Library Functions
Strings as arguments

UNIT IV: Pointers: Concept of a Pointer, Initialization of Pointer variables, Pointers as function arguments, Passing by address, Dangling memory, Pointer Arithmetic, Character pointers, Pointers to Pointers, Array of pointers & Pointer to array, Dynamic memory management functions, Command line Arguments.

Structures: Derived types, Structures declaration, Initialization of structures, accessing structures, nested structures, arrays of structures, structures and functions, pointers to structures, self-referential structures, unions, typedef, enum, bit-fields.

Unit	Module	Micro content	
		Concept of a Pointer, Initialization of	
		Pointer variables	
		Pointers as function arguments, Passing by	
		address	
	Pointers	Dangling memory, Pointer Arithmetic,	
		Character pointers	
		Pointers to Pointers	
		Dynamic Memory Allocation	
Pointers and Structures		Pointer to Arrays and Array of Pointers	
1 omices and structures	Command line	Command line Arguments	
	Arguments	Command fine Auguments	
		Derived types, Structures declaration,	
		Initialization of structures	
		Accessing structures, nested structures,	
	Structures	arrays of structures	
		structures and functions, pointers to	
		structures, self-referential structures	
		Unions, typedef, enum, bit-fields.	

UNIT V: Storage classes – auto, static, extern, register. Preproessor statements **Data Files**: Declaring, Opening, and Closing File Streams, File handling functions, Reading from and Writing to TextFiles, File copy, merge, Writing and reading records, Random File Access.

Unit	Module	Micro content		
Storage Classes and Files	Storage Classes	auto, static, extern and register		
	Preprocessor	Proprocessor Statements		
	Statements	Preprocessor Statements		
		Declaring, Opening, and Closing File		
		Streams		
		File handling functions, Reading from and		
	Data Files	Writing to TextFiles		
		File copy, merge, Writing and reading		
		records		
		Random File Access		

ENGINEERING GRAPHICS

Course Objectives:

- Expose the students to use Drafting packages for generating Engineering curves and conventions followed in Preparation of engineering drawings.
- ➤ Make the students to understand the concepts of orthographic projections of Lines and Plane Surfaces.
- > To understand the concepts of orthographic projections of Regular Solids.
- ➤ Develop the ability of understanding sectional views and Development of Solid Surfaces.
- ➤ Enable them to use computer aided drafting packages for Conversion of Isometric view to Orthographic Projection and vice versa.

UNIT-I: INTRODUCTION TO AUTOCAD:

Basic commands, Customization, ISO and ANSI standards for coordinate dimensioning, Annotations, layering, 2D drawings of various mechanical components, 2D drawings of various electrical and electronic circuits. Creation of engineering models- floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc. Applying colour coding according to building drawing practice; (Experiments should be Planned According to respective Core Branch Applications)

UNIT-II: THEORY OF PROJECTION:

Principles of Orthographic Projections-Convention: Projections of Points, Projections of Lines inclined to both planes, Projections of planes inclined to one Plane & Projections of planes inclined to both Planes

UNIT III: PROJECTIONS OF REGULAR SOLIDS:

Projections of Solids –with the axis perpendicular to one of the principal planes, with the axis Inclined to one of the principal planes, Projections of Solids –with the axis Inclined to Both the principal planes

UNIT IV: DEVELOPMENT OF SURFACES & SECTIONAL ORTHOGRAPHIC VIEWS

Development of surfaces of Right Regular Solids – Prism, Pyramid, Cylinder and, Cone. Draw the sectional orthographic views of geometrical solids

UNIT V: ISOMETRIC PROJECTIONS

Conversion of isometric views to orthographic views, drawing of isometric views - simple Solids, Conversion of orthographic views to isometric views of simple Drawings

TEXT BOOKS:

- 1. Engineering Drawing by N.D. Butt, Chariot Publications
- 2. Engineering Graphics with Autocad by Kulkarni D.M., PHI Publishers
- 3. Engineering Drawing + AutoCad K Venugopal, V. Prabhu Raja, New Age
- 4. Engineering Drawing by Agarwal & Agarwal, Tata McGraw Hill Publishers

REFERENCE BOOKS:

- 1. Engineering Drawing by K.L.Narayana& P. Kannaiah, Scitech Publishers
- 2. Engineering Graphics for Degree by K.C. John, PHI Publishers

- 3. Engineering Graphics by PI Varghese, McGrawHill Publishers
- 4. AutoCAD 2018 Training Guide (English, Paperback, Sagar Linkan) ISBN: 9789386551870, 938655187X RUPAPUBLICATIONS

Websites

- 1 .https://www.autodesk.com.au/campaigns/autocad-tutorials
- 2. https://nptel.ac.in/courses/112104172

Cours	Course Outcomes: Upon successful completion of the course, the student will be able to					
CO1:	Prepare engineering drawings as per BIS conventions Understand level, KL2}					
CO2:	Produce computer generated of orthographic projections of Lines and Plane surfaces using CAD software {Apply level, KL3}					
CO3:	Use the knowledge of orthographic projections of Solids to represent engineering information/concepts and present the same in the form of drawings {Apply level, KL3}					
CO4:	Use the knowledge of sectional views and Development of Solid Surfaces in Real time Applications {Apply level, KL3}					
CO5:	Develop isometric drawings of simple objects reading the orthographic projections of those objects {Analyze level, KL4}					

CO-PO Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	_	3	_	_	_	_	2	_	1
CO2	2	1	1	_	3	_	_	_	_	2	_	1
CO3	2	2	2	_	3	_	_	_	_	2	_	1
CO4	2	2	2	_	3	_	_	_	_	2	_	1
CO5	2	2	2	_	3	_	_	_	_	2	_	1

CO-PSO Matrix:

	PSO1	PSO2
CO1	_	1
CO2	_	1
CO3	_	1
CO4	_	1
CO5	_	1
CO6	_	1

1 – Slight (Low) 2 – Moderate	(Medium) 3 – Substantial (High)	"-" – No relation
-------------------------------	---------------------------------	-------------------

L T P C 0 0 3 1.5

COMMUNICATIVE ENGLISH LAB I

(Common to All branches)

Course Objectives

The main objective of the course is to adopt activity-based teaching-learning methods to ensure that learners would be engaged in use of language both in the classroom and laboratory sessions and appear confidently for competitive examinations for career development.

The specific objectives of the course are to

- 1. Facilitate effective listening skills for better comprehension of academic lectures and English spoken by native and non-native speakers
- **2.** Focus on appropriate reading strategies for comprehension of various academic texts and authentic materials like newspapers, magazines, periodicals, journals, etc.
- **3.** Help improve speaking skills through participation in activities such as role plays, discussions and structured talks/oral presentations
- **4.** Impart effective strategies for good writing and demonstrate the same in summarizing, writing well organized essays, record and report useful information
- **5.** Provide knowledge of grammatical structures and vocabulary and encourage their appropriate use in speech and writing

Course Outcomes

At the end of the course, the learners will be able to

- **CO1.** identify the context, topic, and pieces of specific information from social or transactional dialogues spoken by native speakers of English and speak clearly on a specific topic using suitable discourse markers in informal discussions (L3)
- CO2. take notes while listening to a talk/lecture; to answer questions in English; formulate sentences using proper grammatical structures and correct word forms; and use language effectively in competitive examinations (L3)
- **CO3.** write summaries based on global comprehension of reading/listening texts; produce a coherent write-up interpreting a figure/graph/chart/table; and use English as a successful medium of communication. (L3)

Detailed Syllabus

CALL based activity. English course books selected for classroom teaching will be used for practice in the computer-based language labs. However, a brief introduction to the English Phonetics will be given to the students. Activities that encourage individual learning of the students based on the suggested texts and web resources will be used in the practical sessions.

Introduction to Sound System of English

Articulation - Airstream mechanism, Manners of Articulation, Places of Articulation, English phonetic symbols.

Accent - Syllabification, word stress and accent, stress rules and stress shift, exceptions to rules. Intonation - Stress and accent in connected speech. Types and functions of Intonation in English. Pair work, Role play, conversational practice and Individual speaking activities based on following essays from *University of Success*.

- 1. "How to Fashion Your Own Brand of Success" by Howard Whitman
- 2. "How to Recognize Your Failure Symptoms" by Dorthea Brand
- 3. "How to Conquer the Ten Most Common Causes of Failure" by Lois Binstock

- 4. "How to Develop Your Strength to Seize Opportunities" by Maxwell Maltz
- 5. "How to Make the Most of Your Abilities" by Kenneth Hildebrand
- 6. "How to Raise Your Self-Esteem and Develop Self-Confidence" by James W. Newman
- 7. "How to Win Your War Against Negative Feelings" by Dr Maxwell Maltz
- 8. "How to Find the Courage to Take Risks" by Tom Rust and Randy Reed
- 9. "How to Become a Self-Motivator" by Charles T Jones
- 10. "How to Eliminate Your Bad Habits" by OgMandino

Text Books

- **1.** English All Round: Communication Skills for Undergraduate Learners-Volume 1, Orient Black Swan, 2019 (to be released)
- 2. University of Success by OgMandino, Jaico, 2015.

Reference Books

- 1. Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.
- 2. Chase, Becky Tarver. Pathways: Listening, Speaking and Critical Thinking. Heinley ELT; 2nd Edition, 2018.
- 3. Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- 4. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.

AICTE Recommended Books

- **1.** Meenakshi Raman and Sangeeta Sharma. Technical Communication. Oxford University Press, 2018.
- 2. Pushplata and Sanjay Kumar. Communication Skills, Oxford University Press, 2018.
- 3. Kulbushan Kumar. Effective Communication Skills. Khanna Publishing House, Delhi

Sample Web Resources

Grammar / Listening / Writing 1-language.com http://www.5minuteenglish.com/ https://www.englishpractice.com/ Grammar/Vocabulary English Language Learning Online http://www.bbc.co.uk/learningenglish/ http://www.better-english.com/ http://www.nonstopenglish.com/ https://www.vocabulary.com/ BBC Vocabulary Games Free Rice Vocabulary Game	Reading: https://www.usingenglish.com/comprehension/ https://www.englishclub.com/reading/shortstories.htm https://www.english-online.at/Listening https://learningenglish.voanews.com/z/3613 http://www.englishmedialab.com/listening.html Speaking https://www.talkenglish.com/ BBC Learning English – Pronunciation tips Merriam-Webster – Perfect pronunciation Exercises
All Skills https://www.englishclub.com/ http://www.world-english.org/ http://learnenglish.britishcouncil.org/	

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1									2	3		1
CO2									2	3		1
CO3									2	3		1

L T P C 0 0 3 1.5

APPLIED PHYSICS LAB

Course Objectives:

The Applied Physics Lab is designed to:

- ➤ Understand the concepts of interference and diffraction and their applications.
- ➤ Apply the concept of LASER in the determination of wavelength.
- Recognize the importance of energy gap in the study of conductivity and Hall Effect.
- > Illustrate the magnetic and dielectric materials applications.
- > Apply the principles of semiconductors in various electronic devices.

Course Outcomes:

The students will be able to:

- 1. Operate optical instruments like microscope and spectrometer
- 2. Determine thickness of a paper with the concept of interference
- 3. Estimate the wavelength of different colours using diffraction grating and resolving power
- 4. Plot the intensity of the magnetic field of circular coil carrying current with distance
- 5. Calculate the band gap of a given semiconductor

LIST OF EXPERIMENTS

(Any 10 of the following listed 15 experiments)

- 1. Determination of wavelength of a source-Diffraction Grating-Normal incidence.
- 2. Newton's rings Radius of Curvature of Plano Convex Lens.
- 3. Determination of thickness of a spacer using wedge film and parallel interference fringes.
- 4. Magnetic field along the axis of a current carrying coil Stewart and Gee's apparatus.
- 5. Energy Band gap of a Semiconductor p n junction.
- 6. Characteristics of Thermistor Temperature Coefficients
- 7. Determination of dielectric constant by charging and discharging method
- 8. Variation of dielectric constant with temperature
- 9. Study the variation of B versus H by magnetizing the magnetic material (B-H curve).
- 10. LASER Determination of wavelength by plane diffraction grating
- 11. Determination of resistivity of semiconductor by Four probe method.
- 12. Determine the radius of gyration using compound pendulum
- 13. Rigidity modulus of material by wire-dynamic method (torsional pendulum)
- 14. Dispersive power of diffraction grating.
- 15. Determination of Hall voltage and Hall coefficients of a given semiconductor using Hall Effect.

Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										1
CO2	3	2										1
CO3	3	2										1
CO4	3	2										1
CO5	3	2										1

Strong: 3 Moderate: 2 Weak: 1

Programming for Problem Solving Using C ${\bf LAB}$

(Common to All Branches)

Course Objectives:

- 1. Apply the principles of C language in problem solving.
- 2. To design flowcharts, algorithms and knowing how to debug programs.
- 3. To design & develop of C programs using arrays, strings pointers & functions.
- 4. To review the file operations, pre-processor commands.

Exercise - 1 Control Flow - I

- a) Write a C Program to Find Whether the Given Year is a Leap Year or not.
- b) Write a C Program to find second biggest of three numbers (Assume that all the numbers are unique).

Exercise - 2 Control Flow - II

- b) Write a C Program to Find Whether the Given Number is
- i) Prime Number
- ii) Armstrong Number

Exercise – 3 Control Flow - III

- a) Write a C program to print Floyd Triangle
- b) Write a C Program to print Pascal Triangle
- c) Write a C program to display a Pyramid

Exercise – 4 Arrays - Demonstration of arrays

- a) Search-Linear.
- b) Sorting-Bubble
- c) Operations on Matrix. Add, Subtract, Multiply

Exercise – 5 Strings

- a) Implementation of string manipulation operations **with** library function: Copy, length, compare
- b) Implementation of string manipulation operations **without** library function: copy, length, compare

Exercise – **6** Functions

- a) Write a C Program demonstrating of parameter passing in Functions and returning values.
- b) Write a C Program illustrating Fibonacci, Factorial with Recursion without Recursion

Exercise – 7 Functions - Continued

Write a C Program to compute the values of sin x and cos x and ex values using Series expansion. (Use factorial function)

Exercise - 8 Arrays, Strings and Pointers

- a) Write a C Program to find min and max of an array of elements using pointers
- b) Write a C Program to concatenate one string to another using pointer.

Exercise – 9 Dynamic Memory Allocations

Write a C program to represent 1D and 2D arrays using malloc () function.

Exercises - 10 Structures

- a) Write a C Program to Store Information of a Movie Using Structure
- b) Write a C Program to sort a set of student records in ascending order.
- c) Write a C Program to Add, subtract & multiply Two Complex Numbers.

Exercise -11 Files

- a) Write a C programming code to open a file and to print it contents on screen.
- b) Write a C program to copy the content of one file to another.
- C) Write a C program merges two files and stores their contents in another file

Course Outcomes: By the end of the Lab, the student able to

- 1. **Comprehend** the various concepts of a C language
- 2. **Develop** algorithms and flowcharts
- 3. **Design** and development of C problem solving skills.
- 4. **Acquire** modular programming skills.

Correlation of Course Outcomes with Program Outcomes and Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO ₁	PSO ₂
CO1	1	2	3	2	1	_	-	-	3	3	1	2	1	2
CO2	2	3	3	2	-	-	-	-	1	1	2	2	2	2
CO3	3	3	3	2	-	-	-	-	2	1	2	2	2	3
CO4	2	2	2	2	-	_	-	-	2	1	2	2	2	2

L T P C 3 0 0 0

CONSTITUTION OF INDIA

Course Objectives:

To Enable the student to understand the importance of constitution
To understand the structure of executive, legislature and judiciary
To understand philosophy of fundamental rights and duties
To understand the autonomous nature of constitutional bodies like Supreme Court and
high court controller and auditor general of India and election commission of India.
To understand the central and state relation financial and administrative.

UNIT-I

Introduction to Indian Constitution: Constitution' meaning of the term, Indian Constitution - Sources and constitutional history, Features - Citizenship, Preamble, Fundamental Rights and Duties, Directive Principles of State Policy.

LEARNING OUTCOMES:

After completion of this unit student will

Understand the concept of Indian constitution

Apply the knowledge on directive principle of state policy

Analyze the History, features of Indian constitution

Evaluate Preamble Fundamental Rights and Duties

UNIT-II

Union Government and its Administration Structure of the Indian Union: Federalism, Centre-State relationship, President: Role, power and position, PM and Council of ministers, Cabinet and Central Secretariat, Lok Sabha, Rajya Sabha, The Supreme Court and High Court: Powers and Functions;

LEARNING OUTCOMES: - After completion of this unit student will

Understand the structure of Indian government

Differentiate between the state and central government

Explain the role of President and Prime Minister

Know the Structure of supreme court and High court

UNIT-III

State Government and its Administration Governor - Role and Position - CM and Council of ministers, State Secretariat: Organisation, Structure and Functions

LEARNING OUTCOMES: - After completion of this unit student will

Understand the structure of state government

Analyze the role Governor and Chief Minister

Explain the role of state Secretariat

Differentiate between structure and functions of state secretariate

UNIT-IV

Local Administration - District's Administration Head - Role and Importance, Municipalities - Mayor and role of Elected Representative - CEO of Municipal Corporation Panchayati: Functions PRI: Zila Panchayat, Elected officials and their roles, CEO Zila Panchayat: Block level Organizational Hierarchy - (Different departments), Village level - Role of Elected and Appointed officials - Importance of grass root democracy

LEARNING OUTCOMES: -After completion of this unit student will

Understand the local Administration

Compare and contrast district administration role and importance

Analyze the role of Myer and elected representatives of Municipalities

Evaluate Zilla panchayat block level organisation

UNIT-V

Election Commission: Election Commission- Role of Chief Election Commissioner and Election Commissionerate State Election Commission: Functions of Commissions for the welfare of SC/ST/OBC and women

LEARNING OUTCOMES: -After completion of this unit student will

Know the role of Election Commission apply knowledge

Contrast and compare the role of Chief Election commissioner and Commissionerate

Analyze role of state election commission

Evaluate various commissions of viz SC/ST/OBC and women

REFERENCES:

- 1. Durga Das Basu, Introduction to the Constitution of India, Prentice Hall of India Pvt.Ltd.. New Delhi
- 2. Subash Kashyap, Indian Constitution, National Book Trust
- 3. J.A. Siwach, Dynamics of Indian Government & Politics
- 4. D.C. Gupta, Indian Government and Politics
- 5. H.M.Sreevai, Constitutional Law of India, 4th edition in 3 volumes (Universal Law Publication)
- 6. J.C. Johari, Indian Government and Politics Hans
- 7. J. Raj Indian Government and Politics
- 8. M.V. Pylee, Indian Constitution Durga Das Basu, Human Rights in Constitutional Law, Prentice Hall of India Pvt.Ltd.. New Delhi
- 9. Noorani, A.G., (South Asia Human Rights Documentation Centre), Challenges to Civil Right), Challenges to Civil Rights Guarantees in India, Oxford University Press 2012

E-RESOURCES:

- 1. nptel.ac.in/courses/109104074/8
- 2. nptel.ac.in/courses/109104045/
- 3. nptel.ac.in/courses/101104065/
- 4. www.hss.iitb.ac.in/en/lecture-details
- 5. www.iitb.ac.in/en/event/2nd-lecture-institute-lecture-series-indian-constitution

Course Outcomes: At the end of the semester/course, the student will be able to have a clear knowledge on the following:

Understand historical background of the constitution making and its importance for
building a democratic India.
Understand the functioning of three wings of the government ie., executive, legislative
and judiciary.
Understand the value of the fundamental rights and duties for becoming good citizen of
India.
Analyze the decentralization of power between central, state and local self-government.
Apply the knowledge in strengthening of the constitutional institutions like CAG,
Election Commission and UPSC for sustaining democracy.

Course Outcomes:

CO-1	Know the sources, features and principles of Indian Constitution.
CO-2	Learn about Union Government, State government and its administration.
CO-3	Get acquainted with Local administration and Pachayati Raj.
CO-4	Be aware of basic concepts and developments of Human Rights.
CO-5	Gain knowledge on roles and functioning of Election Commission

CO-PO Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	3			3		2	3	-	3	2
CO2	2	-	2			2		2	2	-	3	2
CO3	3	-	3			2		2	2	-	3	3
CO4	2	-	3			2		2	2	-	3	3
CO5	3	-	1			3		3	3	-	3	2

L T P C 2 1 0 3

MATHEMATICS-II (Common to All)

Course Objectives:

- > To elucidate the different numerical methods to solve nonlinear algebraic equations
- > To disseminate the use of different numerical techniques for carrying out numerical integration
- > To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real-world problems and their applications

UNIT-1: Iterative methods: (10 hrs)

Introduction—Bisection method—Method of false position—Iteration method—Newton-Raphson method (one variable)—Jacobi and Gauss-Seidel methods for solving system of equations.

UNIT-2: Interpolation: (12 hrs)

Introduction–Errors in polynomial interpolation–Finite differences–Forward differences–Backward differences–Central differences –Relations between operators–Newton's forward and backward formulae for interpolation–Gauss's forward and backward formulae for

Interpolation – Interpolation with unequal intervals–Lagrange's interpolation formula–Newton's divide difference formula.

UNIT-3: Numerical integration and solution of ordinary difference equations: (10 hrs)

Trapezoidal rule–Simpson's $1/3^{rd}$ and $3/8^{th}$ rule–Solution of ordinary differential equations by Taylor's series–Picard's method of successive approximations–Euler's method–Modified Euler's method–Runge-Kutta method (second and fourth order).

UNIT-4: Laplace Transforms: (14 hrs)

Laplace transforms of standard functions – Shifting theorems – Transforms of derivatives and integrals – Unit step function – Dirac's delta function –Periodic function - Inverse Laplace transforms – Convolution theorem (without proof)

Applications: Evaluation of integrals using Laplace transforms - Solving ordinary differential equations (Initial value problems) using Laplace transforms.

UNIT 5: Fourier series and Fourier Transforms: (14 hrs)

Fourier series: Introduction – Periodic functions – Fourier series of periodic function – Dirichlet's conditions – Even and odd functions – Change of interval – Half-range sine and cosine series.

Fourier Transforms: Fourier integral theorem (without proof) - Fourier sine and cosine integrals - Sine and cosine transforms - Properties - Inverse transforms - Finite Fourier transforms.

Text Books:

1. **B.S. Grewal,** Higher Engineering Mathematics, 44th Edition, Khanna Publishers.

Reference Books:

- 1. **B.V. Ramana,** Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.
- 2. **H.K.Das,** Advanced Engineering Mathematics, 22nd Edition, S. Chand & Company Ltd.
- 3. **Erwin Kreyszig**, Advanced Engineering Mathematics, 10th Edition, Wiley-India.

Course Outcomes: At the end of the course, the student will be able to

- Evaluate approximate in the roots of polynomial and transcendental equations by different algorithms (EVALUATE)
- Solve system of linear algebraic equations using Gauss Jacobi, Gauss Seidel and apply Newton's forward and backward interpolation and Lagrange's formulae for equal and unequal intervals (SOLVE, APPLY, FIND)
- Apply different algorithms for approximating the solutions of ordinary differential equations to its analytical computations and also by Laplace the transforms for solving differential equations (SOLVE, APPLY, FIND)
- Find or compute the Fourier series of periodic signals (SOLVE, APPLY, FIND, ANALYSE)
- Know and be able to apply integral expressions for the forwards and inverse Fourier transform to range of non-periodic waveforms (SOLVE, APPLY, FIND)

Micro-Syllabus of MATHEMATICS-II

UNIT-1: Iterative methods:Introduction—Bisection method—Method of false position—Iteration method—Newton-Raphson method (one variable)—Jacobi and Gauss-Seidel methods for solving system of equations.

Unit	Module	Micro content			
	Numerical solution	Bisection method			
1a. Solving given	of algebraic and	Method of false position			
polynomial	transcendental	Iteration method			
	polynomials	Newton-Raphson's method			
1b		Jacobi's method			
Solving linear	Solving linear system	Gauss-seidel method			
system		Gauss-serger method			

UNIT-2: Interpolation:Introduction–Errors in polynomial interpolation–Finite differences–Forward differences–Backward differences–Central differences –Relations between operators–Newton's forward and backward formulae for interpolation–Gauss's forward and backward formulae for

Interpolation – Interpolation with unequal intervals–Lagrange's interpolation formula–Newton's divide difference formula.

Unit	Module	Micro content				
	Finite difference tables	Forward, backward & central difference tables				
2-		Errors in polynomials				
2a. Equal-Spaced difference tables	Finding functional i	Newton's forward and backward difference interpolation formula				
	values for given data	Gauss forward and backward difference interpolation formula				
2b.		Lagrange's interpolation formula				
Unequal spaced data & relation between various operators	Unequal spaced data & relation between various operators	Relation between various operators (Shift, forward, backward, central, average & differential operators)				

UNIT-3: Numerical integration and solution of ordinary difference equations:

Trapezoidal rule–Simpson's 1/3rd and 3/8th rule–Solution of ordinary differential equations by Taylor's series–Picard's method of successive approximations–Euler's method–Modified Euler's method–Runge-Kutta method (second and fourth order).

Unit	Module	Micro content
		Trapezoidal rule
3a.	Numerical Integration	Simpson's 1/3 rd rule
Numerical		Simpson's 3/8 th
integration		Taylors series method
		Picard's method
		Euler's method
3b.	Numerical solution of	
Numerical	ordinary differential	
solution of	equations for single	
ordinary	variable	Modified Euler's method
differential		
equations for		
single variable		

UNIT – 4: Laplace Transforms: Laplace transforms of standard functions – Shifting theorems – Transforms of derivatives and integrals – Unit step function – Dirac's delta function –Periodic function - Inverse Laplace transforms – Convolution theorem (without proof)
Applications: Evaluation of integrals using Laplace transforms - Solving ordinary differential equations (Initial value problems) using Laplace transforms.

Unit	Module	Micro content				
4a	Laplace transforms and	Shifting theorems				
Laplace	theorem	Derivatives and integrals				
Transforms	theorem	Multiplication and division				
4b. Inverse		Periodic functions				
	Periodic functions	Dirac delta functions				
Laplace transforms and	&Inverse Laplace	Evaluation integrals using Laplace Transforms				
Applications	Transforms	Solving differential equations using Laplace				
Applications		transforms				

UNIT 5: Fourier series and Fourier Transforms:

Fourier series: Introduction – Periodic functions – Fourier series of periodic function – Dirichlet's conditions – Even and odd functions – Change of interval – Half-range sine and cosine series.

Fourier Transforms: Fourier integral theorem (without proof) - Fourier sine and cosine integrals - Sine and cosine transforms - Properties - Inverse transforms - Finite Fourier transforms.

Unit	Module	Micro content		
5a. Fourier Series		Periodic functions		
	Fourier Series	Dirichlet's conditions		
	rouner series	Even and odd function's		
		Change of interval		

		Half range sine and cosine series
		Fourier Sine and Cosine integral
		Properties of Fourier Transforms
		Fourier and Inverse Fourier Transforms
5b.		Fourier cosine and Inverse Fourier cosine
Fourier	Fourier Transforms	Transforms
Transforms		Fourier sine and Inverse Fourier sine
		Transforms
		Finite Fourier Transforms
		Inverse Finite Fourier Transforms

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										1
CO2	3	2										1
CO3	3	2										1
CO4	3	2										1
CO5	3	2										1

L T P C 2 1 0 3

MATHEMATICS – III (Common to ALL branches)

Course Objectives:

- 1. To instruct the concept of Matrices in solving linear algebraic equations
- 2. To familiarize the techniques in partial differential equations
- 3. To furnish the learners with basic concepts and techniques at plus two level to lead them into advanced level by handling various real-world applications

UNIT-I:Solving system of linear equations, Eigen values and Eigen Vectors (12 hrs)

Rank of a matrix by Echelon form and normal form-solving system of homogeneous and non-homogeneous linear equations—Gauss elimination, Gauss Jordan for solving system of equations—Eigen values and Eigen vectors and their properties

UNIT-II: Cayley-Hamilton theorem and quadratic forms:

(12 hrs)

Cayley-Hamilton theorem (without proof)—Finding inverse and power of a matrix by Cayley-Hamilton theorem—Reduction to Diagonal form—Quadratic forms and nature of the quadratic forms—Reduction of quadratic form to canonical forms by orthogonal transformation.

Application: Free vibration of two mass systems.

UNIT – III: Vector Differentiation:

(10 hrs)

Scalar and Vector point functions-Vector Differential operator- Gradient – Directional derivatives– Divergence – Curl – Laplacian second order operator- Vector identities- Scalar Potential.

UNIT-IV: Vector Integration:

(12 hrs)

Line integral – Work done – Circulation- Surface integral- Volume integral Vector integral theorems (without proof): Greens theorem in a plane- Stokes theorem- Gauss Divergence theorem.

UNIT-V: Solutions of Partial differential Equations

(14 hrs)

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions – Solutions of first order linear (Lagrange) equation and nonlinear (standard types) equations.

Second order PDE: Solutions of linear partial differential equations with constant coefficients RHS term of the type e^{ax+by} , $\sin(ax+by)$, $\cos(ax+by)$, x^my^n .

Text Books:

2. **B.S. Grewal,** Higher Engineering Mathematics, 44th Edition, Khanna Publishers.

Reference Books:

- 4. **B.V. Ramana**, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.
- 5. **H.K.Das,** Advanced Engineering Mathematics, 22nd Edition, S. Chand & Company Ltd.
- 6. **Erwin Kreyszig**, Advanced Engineering Mathematics, 10th Edition, Wiley-India.

Course Outcomes: At the end of the course, the student will be able to

- develop the use of matrix algebra techniques that is needed by engineers for practical applications (L6)
- solve system of linear algebraic equations using Gauss elimination, Gauss Jordan (L3)

- to interpret the physical meaning of different operators such as gradient, curl and divergence (L5)
- estimate the work done against a field, circulation and flux using vector calculus (L5)
- identify the solution methods for partial differential equation that model physical processes (L3)

Micro-Syllabus of MATHEMATICS - III

UNIT-I: Solving system of linear equations, Eigen values and Eigen Vectors

Rank of a matrix by Echelon form and normal form-solving system of homogeneous and non-homogeneous linear equations-Gauss elimination, Gauss Jordan for solving system of equations- Eigen values and Eigen vectors and their properties

Unit	Module	Micro content			
		Find rank of the given matrix by reducing into Echelon			
	Rank of the given	form.			
	matrix	Find rank of the given matrix by reducing into Normal			
1a.		form.(Canonical form)			
Solving system		Solve the system of homogeneous linear equations.			
of linear		Solve the system of Non-homogeneous linear equations.			
equations	System of linear	Solve the given system of linear equations using Gauss			
	equations	Elimination method.			
		Solve the given system of linear equations using Gauss			
		Jordan method.			
	Eigen values and	Find eigen values and Eigen vectors of given matrix.			
	Eigen vectors	Tind eigen values and Eigen vectors of given matrix.			
1b.Applications	Properties of	If is an eigen value of Matrix A then find eigen values			
10.Applications	Eigen values and	of A^{m} or A^{-1} or $B = A^{2} + k_{1}A + K_{2}I$ or			
	Eigen vectors	The eigen vectors corresponding to distinct eigen values			
	Ligen vectors	of real symmetric matrix are orthogonal.			

UNIT-II: Cayley-Hamilton theorem and quadratic forms:

Cayley-Hamilton theorem (without proof)—Finding inverse and power of a matrix by Cayley-Hamilton theorem—Reduction to Diagonal form—Quadratic forms and nature of the quadratic forms—Reduction of quadratic form to canonical forms by orthogonal transformation.

Unit	Module	Micro content					
	Cayley-Hamilton	Verify Cayley-Hamilton theorem for given matrix A and					
	theorem	hence find A ⁻¹ or A ⁴ .					
		Reduce the given matrix into diagonal form.					
	Quadratic Forms	Reduce the quadratic form into canonical form using					
		orthogonal transformation method.					

UNIT – III: Vector Differentiation:

Scalar and Vector point functions-Vector Differential operator- Gradient – Directional derivatives Divergence – Curl – Laplacian second order operator- Vector identities- Scalar Potential.

Unit	Module	Micro content
3a.	Divergent, Curl	Find Gradient of given scalar function.

Vector	and Gradient	Find Unit normal vector at given point on given surface.	
Differential		Tind Cint normal vector at given point on given surface.	
operator		Find divergent or Curl of given vector function.	
3b. Vector		Find Scalar potential function.	
identities	Vector identities	Problems on Laplacian second order operator.	
lucitutes		Prove the given vector identity.	

UNIT-IV: Vector Integration:

Line integral – Work done – Circulation- Surface integral- Volume integral Vector integral theorems (without proof): Greens theorem in a plane- Stokes theorem- Gauss Divergence theorem.

Unit	Module	Micro content		
4a.	Line integration,	Evaluate given line integration along the given curve.		
Vector	surface integration	Find work done by force in moving a particle from A to B along curve C.		
integration	& volume integration	Find surface integral of vector function.		
41	Green's theorem	Find volume integral of vector function. Verify Green's theorem.		
4b. Vector	,Stoke's theorem	Evaluate using stoke's theorem.		
integration Di	Divergence throem.	Evaluate using Divergence theorem.		

UNIT- V: Solutions of Partial differential Equations:Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions – Solutions of first order linear (Lagrange) equation and nonlinear (standard types) equations.

Second order PDE: Solutions of linear partial differential equations with constant coefficients – RHS term of the type e^{ax+by} , $\sin(ax+by)$, $\cos(ax+by)$, x^my^n .

Unit	Module	Micro content
	Formation of PDE	Form PDE by eliminating arbitrary constants.
5a. First order	Polination of FDE	Form PDE by eliminating arbitrary functions.
PDE	Solve First order	Solve first order linear PDE.
	PDE	Solve first order non linear PDE.
5b. Higher	Solve Second	Solve Second order linear PDE with constant
order PDE	8	coefficients with RHS terms
order PDE	order PDE.	e^{ax+by} , $\sin(ax+by)$, $\cos(ax+by)$, $x^m y^n$.

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										1
CO2	3	2										1
CO3	3	2										1
CO4	3	2										1
CO5	3	2										1

L T P C 3 0 0 3

APPLIED CHEMISTRY

Knowledge of basic concepts of chemistry for Engineering students will help them as professional engineers later in design and material selection as well as utilizing the available resources.

Learning Objectives:

- 1. Significance of various types of plastic materials in household appliances and composites (FRP) in aerospace and automotive industries.
- 2. Understand the basic concepts of electrochemistry, which are useful to construct the electrochemical cells, batteries and fuel cells.
 - Illustrate the theories and mechanism of corrosion and its prevention.
- 3. Importance of advanced materials and their engineering applications.
- 4. Make use of molecular machines in supramolecular chemistry and need of green chemistry.
- 5. Design and construction of advanced instrumental techniques and recall their importance.

UNIT-I: POLYMER TECHNOLOGY

14 HRS

Polymerisation: Introduction-Methods of polymerisation-(emulsion and suspension)-Physical and mechanical properties.

Plastics: Compounding-Fabrication (compression, injection, blown film, extrusion)-Preparation, properties and applications of PVC, ploycarbonates and Bakelite-Mention some examples of plastic materials used in electronic gadgets, recycling of e-plastic waste.

Elastomers: Natural rubber-Drawbacks-Vulcanization-Preparation-Properties and applications of synthetic rubbers (Buna S, thiokol and polyurethanes)

Composite Materials: Fiber reinforced plastics-CFRP and GFRP

Conducting polymers: Polyacetylene, doped conducting polymers -p-type and n-type doping.

Bio degradable polymers: Biopolymers and biomedical polymers.

UNIT-II: ELECTROCHEMICAL CELLS AND CORROSION

12 HRS

Single electrode potential-Electrochemical series and uses of series-Standard hydrogen electrode, calomel electrode, concentration cell, construction of glass electrode, Batteries: Dry cell, Ni-Cd cells, Ni-Metal hydride cells, Li-ion battery, Zinc air cells, Fuel cells-H₂ –O₂, CH₃OH-O₂, phosphoric acid, molten carbonate.

Corrosion: Definition-theories of corrosion (chemical and electrochemical)-galvanic corrosion, differential aeration corrosion, stress corrosion, water-line corrosion- passivity of metals-galvanic series-factors influencing rate of corrosion-corrosion control: (proper designing, cathodic protection)-protective coatings: cathodic and anodic coatings, electroplating, electroless plating (nickel), paints (constituents and its functions).

UNIT-III: MATERIAL CHEMISTRY

12 HRS

Non-elemental semiconducting materails: Stoichiometric, controlled valency & chalcogen photo/semiconductors-preparation of semiconductors (distillation, zone refining, Czochralski crystal pulling technique) – Semiconductor devices (p-n junction diode as rectifier, junction transistor)

Insulators, Ferro, Ferri Magnetic Materials, Hall Efect

Nano materials: Introduction, sol-gel method, characterization by BET, SEM and TEM methods, applications of graphene-carbon nanotubes and fullerenes: Types, preparation of carbon nanomaterials by carbon-arc, laser abalation methods.

Liquid crystals: Introduction-types-applications.

Superconductors: Meissner effect, type- I and type- II superconductors, characteristics and applications.

UNIT-IV: ADVANCED CONCEPTS AND GREEEN CHEMISTRY

10 HRS

Molecular switches and machines: Introduction to supramolecular chemistry, characteristics of molecular motors and machines. Rotaxanes and Catenanes as artificial molecular machines. Protypes

linear motions in Rotaxanes, and acid-base controlled molecular shuttle, a molecular elevator, an autonomous light –powered molecular motors, natural molecular motors and machine.

Green chemistry: Principles of green chemistry, green synthesis – aqueous phase, microwave assisted chemical reactions and phase transfer catalysis (PTC).

<u>UNIT-V</u>: SPECTROSCOPIC TECHNIQUES & NON-CONVENTIONAL ENERGY SOURCES 12 HRS

Spectroscopic Techniques: Electromagneticspectrum-types of molecular spectra and their absorption criteria.

UV-visible spectroscopy (electronic spectroscopy), Frank-Condon principle, Beer-Lambert's law and its limitations, chromophores and auxochromes – *applications of UV visible spectroscopy.

IR spectroscopy – functional group and finger print region – molecular vibrations – stretching and bending vibrations – *applications of IR.

NMR (Nuclear magnetic resonance): Working principle and instrumentation of NMR – chemical shift() – *applications of NMR.

(*only general applications – without any spectroscopic problems regarding quantitative and qualitative analysis.)

Non-conventional energy sources: Design, working, schematic diagram, advantages and disadvantages of photovoltaic cell, organic photo-voltaic, hydropower, geothermal power, tidal, ocean thermal energy conversion (OTEC) – open cycle OTEC, closed cycle OTEC and hybrid cycle OTEC.

REFERENCE BOOKS:

- 1. A text book of Engineering Chemistry by S.S. Dara, S. S. Umare; S. Chand & Co., Ltd., Latest Edition.
- 2. Engineering Chemistry by Shashi Chawla; Dhanpat Rai Publicating Co., Latest Edition.

TEXT BOOKS:

- 1. Engineering Chemistry by Jain & Jain; Dhanpat Rai Publicating Co., Latest Edition
- 2. Engineering Chemistry by Shikha Agarwal; Cambridge University Press, 2019 Edition.
- **3.** Engineering Chemistry by Prasanth Rath, B. Ramadevi, Ch. Venkata Ramana Reddy, Subendu Chakravarthy; Cengage Publications, 2019 Edition.

Course Outcomes:

At the end of the course, the students will be able to:

- 1. explain the preparation, properties and applications of thermoplastics, thermosettings, elastomers and conducting polymers.
- 2. know the importance of various materials and their uses in the construction of batteries and fuel cells.
- 3. know the applications of advanced materials in various industries.
- 4. apply the principles of supramolecular chemistry in the applications of molecular machines, need of green chemistry.
- 5. explain the principles of spectrometry such as UV, IR, and NMR.

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2					3					
CO2	2	2					2					
CO3	2	2					2					
CO4	2	2					3					
CO5	2	2					3					

DATA STRUCTURES

Course Objectives:

- 1) To solve problems using data structures such as linear lists, stacks, queues.
- 2) To explore advanced data structures such as balanced search trees.
- 3) To be familiar with Graphs and their applications.
- 4) To analyze various sorting techniques.

UNIT-I: Arrays (12 hrs)

Introduction to data structures – Definition, types of data structures. Introduction to lists – operations: insert, delete, Searching- Linear Search, Binary Search. Sorting - Selection sort, Insertion Sort, Quick Sort, Merge Sort, and Heap Sort.

UNIT-II: Stack & Oueue (10 hrs)

Introduction to Stack, Stack Applications- Evaluation of Expressions, Expression- Postfix Notation-Infix to Postfix, Decimal to binary conversion. Introduction to Queue and its operations – Enqueue, Dequeue. Circular queue operations, Applications.

Unit – III: Linked Lists (10 hrs)

Introduction to Single Linked List and its representation. Defining a Node in C – Implementation of operation: Insert, delete, search and sort. Circular Lists, Linked Stacks and Queues, Polynomials, Polynomial Representation- Adding Polynomials- Subtracting and multiplying two polynomials, Doubly Linked list – create, insert, delete, and view.

UNIT-IV: TREES (8 hrs)

Introduction, Terminology, Representation of Trees, Binary Trees, Properties of Binary Tress, Binary Tree Representations, Binary Tree Traversal, Introduction, Inorder Traversal Preorder Traversal, Postorder Traversal, Thread Binary Trees, Binary Search Trees, Definition, Searching a Binary Search Tree, Insertion into a Binary Search Tree.

UNIT-V: GRAPHS (12 hrs)

Introduction to Graphs, Definition, Graph Representation- adjacency matrix & adjacency list, Degree of vertex, Types of graphs, Elementary Graph Operation, Depth First Search, Breadth First Search, Spanning Trees - Minimum Cost Spanning Trees, Kruskal's Algorithm, Prims Algorithm and Warshall's algorithm.

TEXT BOOKS:

- 1. Data structures, Algorithms and Applications in C, S.Sahni, University Press (India) Pvt. Ltd, 2nd edition, Universities Press, Pvt. Ltd.
- 2. Data structures and Algorithm Analysis in C, Mark Allen Weiss, Pearson Education. Ltd, Second Edition.
- 3. Data Structures, Schaum's Outline, Seymour Lipschutz, Kindle Edition.

REFERENCE BOOKS:

- 1. Introduction to Algorithms, by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, MIT Press.
- 2. Classical Data Structures, Second Edition, Debasis Samanta, PHI

Course Outcomes: After completing this course, Students will be able to-

CO1: Implement various operations on linear lists.

CO2: Apply data structure strategies like stacks and queues for exploring complex data structures.

CO3: Analyze performance and trade-offs of static and dynamic data structures...

CO4: Incorporate data structures into the applications such as binary trees, binary search trees.

CO5: Identify appropriate data structure algorithms for graphs.

Micro-Syllabus of Data Structures

Unit-1: Introduction to Data Structures, Definition, Need & Types of Data Structures
Introduction to lists – operations: insert, delete, Searching- Linear Search, Binary Search. Sorting - Selection sort, Insertion Sort, Quick Sort, Merge Sort, and Heap Sort

Unit	Module	Micro content			
1- 1 4	Introduction to Date	Introduction to Data Structure			
1a. Introduction to Data Structures	Introduction to Data Structures	Types of Data Structures			
to Data Structures	Structures	Need of Data Structures			
		Introduction to Arrays			
1b. Linear lists	Introduction to Linear	Operations on Arrays			
(Arrays)	Lists	Searching-binary search and Fibonacci			
		Search			
		Insertion Sort			
1c.Sorting	Introduction to Corting	Quick Sort			
	Introduction to Sorting	Merge Sort			
		Radix Sort			

UNIT-2

Stack & Queue

Stacks: Introduction, Operations – push, pop, underflow, overflow, peek and implementation, Applications – Infix to Postfix Conversion, Postfix evaluation.

Queues: Introduction, Operations – enqueue, dequeue, underflow, overflow and implementation, Applications – Circular Queue (operations), FIFO, Hot Potato Problem Simulation.

Unit	Module	Micro content			
		Introduction			
		Operations-push,pop,underflow,overflow and			
		peak			
	Stack	Stack Implementation			
	Stack	Applications- Decimal to binary.			
		Infix to pre and postfix conversion, prefix to			
2.a Stack and		postfix conversion.			
		Post fix Evaluation			
queue		Introduction			
		Operations- en-queue, dequeue,			
		overflow,underflow			
	Queue	Implementation			
		Applications – Round robin Algorithm			
		Circular queue			
		Hot potato problem Simulation			

Unit-3: Linked Lists

Single Linked List: Introduction, Differences between arrays & linked lists. Representation, Operations – insert, delete, concat, count and search, Applications – Polynomial representation, addition, multiplication.

Circular Lists: Introduction, Representation and implementation.

Doubly Linked list: Representation, Operations – insert, delete and search.

Unit	Module Micro content		
		Introduction to Linked Lists	
		Differences Between Arrays and Linked Lists	
		Operations on Linked Lists	
		Implementation	
	Single Linked Lists	Polynomial Representation	
	Single Linked Lists	Addition	
		Multiplication	
		Linked List Using Stack	
		Linked List Using Queue	
3.a.Linked Lists		Sparse matrix representation.	
S.a.Difficu Dists	Double Linked List	Introduction	
		Differences Between Single Linked list and	
		Double Linked List	
		Operations	
		Implementation	
		Introduction	
		Comparison of Circular and non circular	
	Circular Linked List	Linked Lists	
		Operations and Implementation	
		Advantages and Disadvantages	

Unit-4: TREES

Trees: Introduction, Terminology, Representation of Trees

Binary Trees: Properties, Representations, Traversal – Inorder Traversal, Preorder Traversal, Postorder Traversal (Recursive and Non Recursive) Types of trees – complete binary tree, Full binary tree, Thread Binary Trees, Expression Tree.

Binary Search Trees: Definition, Operations – insertion, deletion and findmin, findmax, count, leaf and Searching.

Unit	Module	Micro content
4a. Trees	Tree Terminology	Introduction to Trees
4a. Trees	Tree Terminology	Representation and Terminologies
		Introduction
		Tree Representation and Properties
		Conversion of General to binary tree,
		Construction of a binary tree from the tree
	Binary Trees	traversals.
1h Ringry Troop	Billary Trees	Tree Traversal Recursive and non-Recursive
4b.Binary Trees		approaches
		Types of Trees-Complete Binary Tree, Full
		Binary Tree, Thread Binary Tree
		Expression Trees
	Binary Search Trees	Introduction and Definition
	Dinary Scarcii Tiees	Operations on Binary Search Trees – insert,

delete, height, count, counting leaf nodes,
search.
Advantages over Binary Trees
Binary Search Tree Implementation

Unit-5: GRAPHS

Graphs: Introduction to graphs, Definition, Types of graphs, Degree of vertex

Representation - Adjacency matrix & Adjacency list

Elementary Graph Operations – Add Vertex, Add Edge, Delete Vertex, Delete Edge, Find Vertex and Find Edge.

Graph Traversals - Depth First Search, Breadth First Search.

Spanning trees-Prim's algorithm, Kruskal's algorithm.

Unit Modulo Migro content						
Unit	Module	Micro content				
		Introduction				
		Types of Graphs				
	Introduction and	Graph Operations				
5. a. Graphs	Representation	Memory	rep	resentation-N	Aatrix	
	Traversal Techniques	Representation	and	Linked	list	
		Representation				
		Graph implementa	tion			
		Depth First Search	1			
5.b. Graph Traversal		Breadth First Search	ch			
	and Minimum Spanning	Prim's Algorithm				
	Trees	Krushkal's Algorit	thm			

CO – PO Mapping:

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	1	-	-	-	-	-	-	-	-	-	1	1
CO2	1	2	2	-	-	-	-	-	-	-	-	-	2	1
CO3	1	-	2	2	-	-	-	-	-	-	-	-	2	1
CO4	2	-	2	1	-	-	-	-	-	-	-	-	1	1
CO5	-	2	1	2	-	-	-	-	-	-	-	-	1	1

[1-Slight (low), 2-Moderate (Medium), 3-Substantial (High)]

BASIC CIRCUIT ANALYSIS

Pre-Requisites: Integrations,

Laplace transforms and Differential equations

Course objectives:

- To study the concepts of network elements and network reduction techniques.
- To understand the behavior of RLC networks for sinusoidal excitations.
- To study the performance of different circuits and to understand the concept of resonance.
- To understand the applications of network theorems.
- To study the concept of magnetic coupled circuits.

Unit No	Contents	Mapped CO
I	Introduction to Electrical Circuits	CO1
	Passive components and their V-I relations. Sources (dependent and	
	independent, Ideal and Practical) -Kirchhoff's laws, Network reduction	
	techniques, source transformation techniques, Nodal analysis and Mesh	
	analysis with DC excitation.	
II	Single Phase A.C Systems	CO2
	RMS, average value, form factor and Peak factor for Periodic waveforms,	
	Concept of phase, phase angle and phase difference, 'j' operator, waveforms	
	and phasor diagrams for lagging and leading networks. Concept of	
	Impedance and admittance- steady state analysis of R, L and C circuits with	
	sinusoidal excitation, real, reactive power, apparent power and power	
	triangle.	
III	Analysis of AC Networks	CO3
	Nodal and Mesh analysis with AC excitation, resonance and anti-resonance,	
	selectivity, band width and Quality factor, voltage and current magnification	
	factor, locus diagrams.	
IV	Network theorems (DC & AC Excitations)	CO4
	Superposition theorem, Thevenin's theorem, Norton's theorem, Maximum	
	Power Transfer theorem, Reciprocity theorem, Millman's theorem,	
	Compensation theorem and Telligen's theorem.	
V	Magnetic Circuit	CO5
	MMF, flux, reluctance, flux density, field intensity and its relations.	
	Analogy between electrical and magnetic circuits. Faraday's laws of	
	electromagnetic induction, Concept of self and mutual inductance, Dot	
	convention, coefficient of coupling and composite magnetic circuit.	

Course Outcomes: Upon successful completion of the course, the student will be able to analyse

- CO1 Various electrical networks in presence of active and passive elements. {Apply level, KL3}
- CO2 Any R, L, C network with sinusoidal excitation.. {Apply level, KL3&Analyse level, KL4}
- CO3 Any R, L, C network with variation of any one of the parameters i.e R, L, C. and f.{Apply level, KL3& Analyse level, KL4}
- CO4 Electrical networks by using principles of network theorems. {Apply level, KL3}
- CO5 Any magnetic circuit with various dot conventions. {Apply level, KL3}

Text Books:

- 1. "Fundamentals of Electric Circuits "Charles K.Alexander, Mathew N.O.Sadiku, Tata McGraw-Hill.
- 2. Engineering Circuit Analysis by William Hayt and Jack E.Kemmerley,Mc Graw Hill Company,6th edition
- 3. Network Analysis: Van Valkenburg; Prentice-Hall of India Private Ltd.
- 4. 3000 Solved Problems in Electrical Circuit by Schaum's solved problem series Tata McGraw- Hill.

Reference Books:

- 1. Circuits & Networks Analysis & Synthesis by A. Sudhakar and Shyammohan S Palli, Tata McGraw- Hill.
- 2. Network Analysis by N.C.Jagan, C.Lakshmi Narayana BS publications 2nd edition
- 3. Circuit Theory by A.Chakrabarti Danapat Rai & Co publisher.

e- Resources & other digital material:

- 1. https://www.youtube.com/watch?v=8gMuLr_0-TI&t=7s
- 2. https://www.youtube.com/watch?v=pO9qgzzRWaA&t=337s
- 3. https://www.youtube.com/watch?v=HcgDoL9YtMM&t=15s
- 4. https://www.youtube.com/watch?v=MdPLQFFeQ30&t=74s
- 5. https://www.youtube.com/watch?v=Q-qKhjXYFPQ

Micro-Syllabus of Basic Circuit Analysis

Unit	Unit	Module	Micro-Content
No.			

Unit: 1 Introduction to Electrical Circuits

Passive components and their V-I relations. Sources (dependent and independent, Ideal and Practical) -Kirchhoff's laws, Network reduction techniques, source transformation techniques, Nodal analysis and Mesh analysis with DC excitation.

			 Types of Network elements V- I relations
I	1a, 1b.	Introduction to Electrical Circuits	Types of sources and source transformation technique Kirchhoff 's Laws, numerical problems Series, parallel connection of elements, star and delta transformation, numerical problems

		6. Nodal Analysis with DC excitation, numerical
2a,2b	Network reduction techniques	problems (both dependant and Independent sources) 7. Mesh Analysis with DC excitation, numerical problems(both dependant and Independent sources)

UNIT 2: Single Phase A.C Systems

RMS, average value, form factor and Peak factor for Periodic waveforms, Concept of phase, phase angle and phase difference, 'j' operator, waveforms and phasor diagrams for lagging and leading networks. Concept of Impedance and admittance- steady state analysis of R, L and C circuits with sinusoidal excitation, real, reactive power, apparent power and power triangle.

П	3a,3b	Introduction to Single phase ac systems	 Introduction to single phase AC quantities different forms of representing periodic quantities. Basic definitions and Calculation of Average, RMS, peak and form factor using Integration method-numerical problems. Concept of phase, phase angle, phasor representation, phasor relation between quantities and j operator significance.
	4a,4b	Steady state analysis of RLC circuits with AC excitation	 4. Steady state analysis with AC excitation - Concept of impedence, admittance in RLC series and parallel networks - numerical problems. 5. Basic terms and definitions- real, reactive power, apparent power and power triangle numerical problems

Unit 3: Analysis of AC Networks

Nodal and Mesh analysis with AC excitation, resonance and anti-resonance, selectivity, band width and Quality factor, voltage and current magnification factor, locus diagrams.

	5a,5b	Analysis of circuit with AC excitation and resonance	 Nodal analysis with AC excitation - numerical problems (Independent sources only) Mesh analysis with AC excitation - numerical problems (Independent sources only)
III	6a,6b	Locus Diagrams of RLC networks	 Concept of resonance and anti-resonance Definition and derivations of selectivity, band width and Quality factor, voltage and current magnification factor-numerical problems RL and RC locus diagrams with individual parameter variation- simple numerical problems

Unit 4: Network theorems (DC & AC Excitations)

Superposition theorem, Thevenin's theorem, Norton's theorem, Maximum Power Transfer theorem, Reciprocity theorem, Millman's theorem, Compensation theorem and Telligen's

theore	em.		
	7a,7b	Analysis of electric circuits using network theorems	 Thevenin's theorem Superposition theorem
			3. Norton's theorem
IV			4. Maximum Power Transfer theorem
	8a,8b	Analysis of electric circuits using network theorems	5. Reciprocity theorem
			6. Millman's theorem
			7. Compensation theorem
			6. Telligen's theorem - All theorems with both DC and excitations - numerical problems

Unit 5: Magnetic Circuits

MMF, flux, reluctance, flux density, field intensity and its relations. Analogy between electrical and magnetic circuits. Faraday's laws of electromagnetic induction, Concept of self and mutual inductance, Dot convention, coefficient of coupling and composite magnetic circuit.

V	9a,9b	Introduction and analysis of magnetic circuits	 Basic Terms and definitions related to magnetic circuits-MMF, flux, reluctance, flux density, field intensity and its relations Analogy between electrical and magnetic circuits Types of Magnetic Circuits- series, parallel and composite circuits- numerical problems
	10a,10b	Calculation of Inductance of magnetic circuits	 4. Faraday's laws of electromagnetic induction 5. Concept of self, mutual inductance and coefficient of coupling - numerical problems 6. Dot convention- numerical problems

CO-PO Matrix:

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	3	2	2									
2	3	2	2	1		1						1
3	3	2	3	1								
4	3	2	1	1								
5	2	2	2	1		1						1
Average	2.8	2	2	1		1						1

CO-PSO Matrix:

Course	PSO1	PSO2	PSO3
CO 1	2		
CO 2	2	2	
CO 3	2	2	
CO 4	1	1	
CO 5	1		
Average	1.6	1.7	

[1-Slight (low), 2-Moderate (Medium), 3-Substantial (High)]

COMMUNICATIVE ENGLISH LAB - II

(Common to All Branches)

The main objective of the course is to adopt activity-based teaching-learning methods to ensure that learners would be engaged in use of language both in the classroom and laboratory sessions and appear confidently for competitive examinations for career development.

The specific objectives of the course are to

- 1. Facilitate effective listening skills for better comprehension of academic lectures and English spoken by native and non-native speakers
- 2. Focus on appropriate reading strategies for comprehension of various academic texts and authentic materials like newspapers, magazines, periodicals, journals, etc.
- 3. Help improve speaking skills through participation in activities such as role plays, discussions and structured talks/oral presentations
- 4. Impart effective strategies for good writing and demonstrate the same in summarizing, writing well organized essays, record and report useful information
- 5. Provide knowledge of grammatical structures and vocabulary and encourage their appropriate use in speech and writing

Course Outcomes

At the end of the course, the learners will be able to

- **CO1.** prioritize information from reading texts after selecting relevant and useful points and paraphrase short academic texts using suitable strategies and conventions (L3)
- **CO2.** make formal structured presentations on academic topics using PPT slides with relevant graphical elements (L3)
- CO3.participate in group discussions using appropriate conventions and language strategies (L3)

CO4. prepare a CV with a cover letter to seek internship/job (L2)

CO5. collaborate with a partner to make presentations and Project Reports (L2)

Detailed Syllabus

CALL based activity. English course books selected for classroom teaching will be used for practice in the computer-based language labs. Watching and listening to Video clips.

Listening Activity: Selected speeches of eminent personalities, audio texts, dialogues and discussions

Speaking: JAM, Oral Presentations, Group Discussions

Writing: Different types of reports

Project: Power point presentation of 5 min on a specific topic

Pair work, Role play, conversational practice and Individual speaking activities based on following essays from *University of Success*.

- 1. "How to Get Yourself Organized" by Michael LeBeouf
- 2. "How to Turn Your Desires into Gold" by Napoleon Hill
- 3. "How to Look Like a Winner How to Increase Your Value" by OgMandino
- 4. "How to Swap a Losing Strategy" by Auren Uris and Jack Tarrant
- 5. "How to Bounce Back from Failure" by OgMandino
- 6. "How to Prevent Your Success from Turning into Ashes" by Allan Fromme

- 7. "How to Have a Happy Life" by Louis Binstock
- 8. "How to Keep the Flame of Success Shining Brightly" by Howard Whitman

Any ten Supplementary Language Activities from UN Global Goals document

- 1. "Developing children's understanding of the Global Goals" by Carol Read
- 2. "End poverty in all its forms everywhere" by SylwiaZabor-Zakowska
- 3. "End hunger, achieve food security and improved nutrition and promote sustainable agriculture" by Linda Ruas.
- 4. 'Ensure healthy lives and promote well-being for all at all ages" by Carmen Flores
- 5. "Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all" by Daniel Xerri
- 6. "Achieve gender equality and empower all women and girls" by Jemma Prior and Tessa Woodward
- 7. "Ensure availability and sustainable management of water and sanitation for all" by Wei KeongToo
- 8. "Ensure access to affordable, reliable, sustainable and modern energy for all" by Phil Wade
- 9. "Promote sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all" by Nik Peachey
- 10. "Build resilient infrastructure, promote inclusive and sustainable industrialisation and foster innovation" by MaluSciamarelli
- 11. "Reduce inequality within and among countries" by Alan Maley
- 12. "Make cities and human settlements inclusive, safe, resilient and sustainable" by David Brennan
- 13. "Ensure sustainable consumption and production patterns" by Laszlo Katona and Nora Tartsay
- 14. "Take urgent action to combat climate change and its impacts" by Maria Theologidou
- 15. "Conserve and sustainably use the oceans, seas and marine resources for sustainable development" by Jill Hadfield and Charlie Hadfield
- 16. "Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss" by ChrysaPapalazarou
- 17. "Promote peaceful and inclusive societies for sustainable development, provide access to justice for all and build effective, accountable and inclusive institutions at all levels" by RebecaDuriga.
- 18. "Strengthen the means of implementation and revitalise the global partnership for sustainable development" by Jennifer Verschoor and Anna Maria Menezes
- 19. "Content and the Sustainable Development Goals: going beyond language learning" by AdrianTennant
- 20. "Using extensive reading creatively to raise awareness of issues of equality and justice" by SueLeather
- 21. "Storytelling for a better world" by David Heathfield
- 22. "Using the Sustainable Development Goals in the EAP classroom" by Averil Bolster and PeterLevrai

Text Books

1. Alan Maley and Nik Peachy. *Integrating global issues in the creative English Classroom:* Withreference to the United Nations Sustainable Development Goals. British Council Teaching English, 2018 (Public Domain UN Document)

2. University of Success by OgMandino, Jaico, 2015 (Reprint).

Reference Books

- 1. Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.
- 2. Chase, Becky Tarver. *Pathways: Listening, Speaking and Critical Thinking*. Heinley ELT; 2ndEdition, 2018.
- 3. Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- 4. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.
- 5. Chaturvedi, P. D. and ChaturvediMukesh. *The Art and Science of Business Communication: Skills, Concepts, Cases and Applications.* 4Ed. Pearson, 2017.

AICTE Recommended Books

- 1. Meenakshi Raman and Sangeeta Sharma. *Technical Communication*. Oxford University Press, 2018.
- 2. Pushplata and Sanjay Kumar. Communication Skills, Oxford University Press, 2018.
- 3. Kulbushan Kumar. Effective Communication Skills. Khanna Publishing House, Delhi

Sample Web Resources

Grammar / Listening / Writing 1-language.com http://www.5minuteenglish.com/ https://www.englishpractice.com/ Grammar/Vocabulary English Language Learning Online http://www.bbc.co.uk/learningenglish/ http://www.better-english.com/ http://www.nonstopenglish.com/ https://www.vocabulary.com/ BBC Vocabulary Games Free Rice Vocabulary Game	Reading https://www.usingenglish.com/comprehension/ https://www.englishclub.com/reading/short stories.htm https://www.english-online.at/ Listening https://learningenglish.voanews.com/z/3613 http://www.englishmedialab.com/listening.html Speaking https://www.talkenglish.com/ BBC Learning English – Pronunciation tips Merriam-Webster – Perfect pronunciation Exercises
All Skills https://www.englishclub.com/ http://www.world-english.org/ http://l	

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1									2	3		1
CO2									2	3		1
CO3									2	3		1
CO4									2	3		1
CO5									2	3		1

APPLIED CHEMISTRY LAB

Introduction to chemistry laboratory – Molarity, Normality, Primary, Secondary standard solutions, Volumetric titrations quantitative analysis .

- 1. Determination of HCl using standard Na₂CO₃ solution.
- 2. Determination of alkalinity of a sample containing Na₂CO₃ and NaOH.
- 3. Determination of Mn (II) using standard oxalic acid solution.
- 4. Determination of ferrous iron using standard K₂Cr₂O₇ solution.
- 5. Determination of Copper (II) using standard EDTA solution.
- 6. Determination of temporary and permanent hardness of water using standard EDTA solution.
- 7. Determination of Iron (III) by colorimetric method.
- 8. Determination of the concentration of acetic acid using sodium hydroxide (pH-metric method).
- 9. Determination of concentration of strong acid vs strong base (by conductometric method).
- 10. Determination of strong acid vs strong base (by potentiometric method).
- 11. Determination of Mg⁺² present in an antacid.
- 12. Determination of CaCO₃ presence in an egg shell.
- 13. Estimation of vitamin- C.
- 14. Determination of phosphoric content in soft drinks.
- 15. Adsorption of acetic acid by charcoal.
- 16. Prepatation of nylon-6, 6 and Bakelite (demonstration only)

Note: Choice of any 10 experiments from the above.

Course Outcomes: At the end of the course, the students will be able

- To estimate the amount of metal ions present in different solutions (L4 & L3)
- To analyze the quality parameters of water (L4)
- To determine the strength of different solutions by using different instrumentation techniques (L3)

Reference Books:

A Text Book of Quantitative Analysis, Arthur J. Vogel.

Learning Objectives:

- 1. To furnish the students with a solid foundation in Chemistry Laboratory required to solve the Engineering problems.
- 2. To expose the students in practical aspects of the theoritical concepts like pH, hardness of water etc.
- 3. To guide the students on how to handle the instruments like UV-visible spectrophotometer, potentiometer and conductometer.

Course Outcomes:

At the end of the course, the students will be able

- To estimate the amount of metal ions present in different solutions (L4 & L3)
- To analyze the quality parameters of water (L4)

• To determine the strength of different solutions by using different instrumentation techniques (L3)

CO-PO MAPPING

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3							2			
CO2	2	2							2			
CO3	2	3							2			

L T P C 0 0 3 1.5

DATA STRUCTURES LAB

Course Objectives:

- 1. To develop skills to design and analyze simple linear and nonlinear data structures.
- 2. To Strengthen the ability to identify and apply the suitable data structure for the given real world problem.
- 3. To Gain knowledge in practical applications of data structures.

List of Experiments:

Excercise-1: Implementation of Data Searching (Linear & Binary Search).

Excercise-2: Write C code for implementing sorting techniques: Selection & Insertion.

Excercise-3: Develop C code to demonstrate Merge Sort technique in C.

Excercise-4: Implementation of Quick Sort technique in C.

Excercise-5: Implement Stack operations using arrays –

i) push ii) pop iii) is Stack empty iv) is Stack full, v) peep vi) list.

Excercise-6: Implement Queue operations using arrays –

i) enqueue, ii) dequeue, iii) list, iv) is Queue empty, v) is Queue full

Excercise-7: Create a Circular Queue and its operations using arrays –

i) enqueue, ii) dequeue, iii) list, iv) is Queue empty, v) is Queue full

Excercise-8: Implement singly linked list and its operations:

i) insert, ii) delete, iii) search, iv) count.

Excercise-9: Create a Circular linked list and display the content.

Excercise-10: Implement doubly linked list and its operations:

i) Create ii) List iii) search.

Excercise-11: Develop C code for converting an Infix expression to postfix notation.

Excercise-12: Implementation of Binary Search trees operations: create, Inorder, Preorder, Postorder.

Excercise-13: Implementation of Heaps through C code.

Excercise-14: Develop C code to demonstrate Breadth First Search Techniques.

Excercise-15: Develop C code to demonstrate Depth First Search Techniques.

Course Outcomes: After completing this course, Students will be able to-

CO 1: Implement the data structures with the basic level knowledge.

CO 2: Design and analyze the time efficiency of the data structure.

CO 3: Design and analyze the Space efficiency of the data structure in the memory.

CO 4: Identifies the appropriate data structure for given problem.

CO 5: Compare and Contrast various data structures and design techniques in the area of Performance.

CO - PO Mapping:

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	1	-	-	-	-	-	-	-	-
CO2	2	2	1	1	-	-	-	-	-	-	-	-
CO3	2	2	1	1	-	-	-	-	-	-	-	-
CO4	2	2	1	1	-	-	-	-	-	-	-	1
CO5	2	2	1	1	-	-	-	-	-	-	-	1

[1-Slight (low), 2-Moderate (Medium), 3-Substantial (High)]

I Year - II Semester

L T P C 0 0 3 1.5

ENGINEERING WORK SHOP

Course Objective: To familiarize students with wood working, sheet metal operations, fitting and electrical house wiring skills

Wood Working:Familiarity with different types of woods and tools used in wood working and make following joints

- a) Half Lap joint
- b) Dovetail joint
- c) Bridle joint

Sheet Metal Working: Familiarity with different types of tools used in sheet metal working, Developments of following sheet metal job from GI sheets

a) Tapered tray b) Conical funnel c) Elbow pipe d) Brazing

Fitting:Familiarity with different types of tools used in fitting and do the following fitting exercises

a) V-fit b) Dovetail fit c) square fit d) Semi-circular e) Two Wheeler tyre puncture and change of two wheeler tyre

Electrical Wiring:Familiarities with different types of basic electrical circuits and make the following connections

- a) Parallel and series b) Two-way switch c) Godown lighting d) Tube light
- e) Three phase motor
- f) Soldering of wires

Course Outcomes: After completion of this lab the student will be able to

- 1. Apply wood working skills in real world applications. (L3)
- 2. Build different parts with metal sheets in real world applications. (L3)
- 3. Apply fitting operations in various applications. (L3)
- 4. Apply different types of basic electric circuit connections. (L3)
- 5. Demonstrate soldering and brazing. (L2)

CO-PO MATRIX:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	-	-	-	-	-	-	-	-	1
CO2	2	2	_	_	-	-	-	-	-	-	-	1
CO3	2	2	-	-	-	-	-	-	-	-	-	1
CO4	2	2	-	-	-	-	-	-	-	-	-	1
CO5	2	2	_	_	-	-	-	-	-	-	-	1

CO-PSO Matrix:

	PSO1	PSO2
CO1	2	2
CO2	2	2
CO3	2	2
CO4	2	2
CO5	2	2

ENVIRONMENTAL STUDIES (Common to CE, CSE & IT)

OBJECTIVE:

To make the students to get awareness on environment, to understand the importance of protecting natural resources, ecosystems for future generations and pollution causes due to the day-to-day activities of human life to save earth from the inventions by the engineers.

UNIT – I: MULTIDISCIPLINARY NATURE OF ENVIRONMENTAL STUDIES

Definition, Scope and Importance – Need for Public Awareness.

NATURAL RESOURCES: Renewable and non-renewable resources – Natural resources and associated problems – Forest resources – Use and over – exploitation, deforestation, case studies – Timber extraction – Mining, dams and other effects on forest and tribal people – Water resources – Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. – Energy resources:

LEARNING OUTCOMES

Students will be able to

- 1. articulate the basic structure, functions, and processes of key social systems affecting the environment.
- 2. explain how water resources should be used.
- 3. articulate basic understanding of effects of modern agriculture on environment.
- 4. explain how various paradigms or world views and their implicit and explicit assumptions and values shape the viewer's perception of environmental problems and solutions.

UNIT – II: Ecosystems, Biodiversity, and its Conservation

ECOSYSTEMS: Concept of an ecosystem. – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the following ecosystem:

- a. Forest ecosystem.
- b. Grassland ecosystem
- c. Desert ecosystem
- d. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

BIODIVERSITY AND ITS CONSERVATION: Definition: genetic, species and ecosystem diversity – Bio-geographical classification of India – Value of biodiversity: consumptive use, Productive use, social, ethical, aesthetic and option values – Biodiversity at global, National and local levels – India as a mega-diversity nation – Hot-sports of biodiversity – Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – Endangered and

endemic species of India – Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

LEARNING OUTCOMES

Students will be able to

- 1. get a clear picture of structure and functions of ecosystems.
- 2. explain why renewable and non-renewable energy resources are important.
- 3. get awareness about land degradation, soil erosion & desertification.
- 4. gain a rigorous foundation in various scientific disciplines as they apply to environmental science, such as ecology, evolutionary biology, hydrology, and human behaviour.

UNIT – III: Environmental Pollution and Solid Waste Management

ENVIRONMENTAL POLLUTION: Definition, Cause, effects and control measures of:

- a. Air Pollution.
- b. Water pollution
- c. Soil pollution
- d. Marine pollution
- e. Noise pollution
- f. Thermal pollution
- g. Nuclear hazards

SOLID WASTE MANAGEMENT: Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Pollution case studies – Disaster management: floods, earthquake, cyclone and landslides.

LEARNING OUTCOMES UNIT-3

Students will be able to

- 1. Demonstrate knowledge and understanding of theories in the field of Biodiversity and Systematics in the broad sense.
- 2. Conduct basic conservation biology research.
- 3. Explain endangered and endemic species of India.
- 4. Identify the threats to biodiversity.

UNIT - IV: Social Issues and the Environment

SOCIAL ISSUES AND THE ENVIRONMENT: From Unsustainable to Sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns. Case studies – Environmental ethics: Issues and possible solutions – Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case Studies – Wasteland reclamation. – Consumerism and waste products. – Environment Protection Act. – Air (Prevention and Control of Pollution) Act. – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – Issues involved in enforcement of environmental legislation – Public awareness.

LEARNING OUTCOMES:

Students will be able to

- 1. Understand Cause, effects and control measures of air pollution.
- 2. Understand soil, noise & water pollution.
- 3. Explain the enforcement of Environmental legislation

4. Understand solid waste management.

UNIT - V: Human Population and the Environment

HUMAN POPULATION AND THE ENVIRONMENT: Population growth, variation among nations. Population explosion – Family Welfare Programmed. – Environment and human health – Human Rights – Value Education – HIV/AIDS – Women and Child Welfare – Role of information Technology in Environment and human health – Case studies.

FIELD WORK: Visit to a local area to document environmental assets River/forest grassland/hill/mountain – Visit to a local polluted site-Urban/Rural/Industrial/Agricultural Study of common plants, insects, and birds – river, hill slopes, etc.

LEARNING OUTCOMES

Students will have

- 1. knowledge about watershed management and environmental ethics.
- 2. explain the reasons for global warming
- 3. explain principles and impact of disasters on environment.
- 4. explain disaster management cycle in India.

TEXT BOOKS:

- 1. Text book of Environmental Studies for Undergraduate Courses by ErachBharucha for University Grants Commission, Universities Press.
- 2. Environmental Studies by Palaniswamy Pearson education
- 3. Environmental Studies by Dr.S.AzeemUnnisa, Academic Publishing Company

REFERENCES:

- 1. Textbook of Environmental Science by Deeksha Dave and E.Sai Baba Reddy, Cengage Publications.
- 2. Text book of Environmental Sciences and Technology by M.Anji Reddy, BS Publication.
- 3. Comprehensive Environmental studies by J.P. Sharma, Laxmi publications.
- 4. Environmental sciences and engineering J. Glynn Henry and Gary W. Heinke Prentice hall of India Private limited.
- 5. A Text Book of Environmental Studies by G.R.Chatwal, Himalaya Publishing House
- 6. Introduction to Environmental engineering and science by Gilbert M. Masters and Wendell P. Ela Prentice hall of India Private limited.

Course Outcomes: At the end of the course, the student will be able to:

COURSE OUTCOMES

CO1	Able to Understand The concepts of the ecosystem
CO2	Able to Understand The natural resources and their importance
	Able to learn The biodiversity of India and the threats to biodiversity ,and Apply
CO3	conservation practices
CO4	Able to learn Various attributes of the pollution and their impacts
CO5	Able to Understand Social issues both rural and urban environment
CO6	Able to Understand About environmental Impact assessment and Evaluate the
	stages involved in EIA

L T P C 2 1 0 3

COMPLEX VARIABLES AND STATISTICAL METHODS

Pre-Requisites:

- 1. Calculus
- 2. Partial Differentiation
- 3. Multiple Integration
- 4. Set Theory

Course objectives: The student should be able to

- 1. Familiarize the complex variables.
- 2. Familiarize the students with the foundations of probability and statistical methods.
- 3. Equip the students to solve application problems in their disciplines.

Unit No	Contents	Mapped CO
I	Functions of complex variable and complex integration: (05 hrs) Introduction – Continuity – Differentiability – Analyticity – Properties – Cauchy-Riemann equations in Cartesian and polar coordinates – Harmonic and conjugate harmonic functions – Milne-Thompson method. Complex integration: (05 hrs) Line integral – Cauchy's integral theorem – Cauchy's integral formula. (all without proofs).	CO1
II	Series expansions and Residue Theorem: (05 hrs) Radius of convergence – Expansion in Taylor's series, Maclaurin's series - Laurent's series. Types of singularities: (05hrs) Isolated – pole of order m – Essential – Residues – Residue theorem (without proof)	CO2
Ш	Probability, Distributions and Sampling Theory: (07 hrs) Probability-Baye's theorem-Random variables-Discrete and Continuous random variables-Distribution function-Mathematical Expectation and Variance Application approach: (07 hrs) Binomial, Poisson and Normal distributions, Population and samples-Sampling distribution of Means -Point and Interval estimations, Applications: Maximum error of estimate – Bayesian estimate	CO3
IV	Test of Hypothesis: (14 hrs) Introduction—Hypothesis-Null and Alternative Hypothesis-Type I and Type II errors-Level of significance-One tail and two-tail tests-Tests concerning one mean and two means (Large and Small samples)-Tests on proportions. Applications: Chi-square test and F-test on small samples.	CO4
V	Curve fitting and Correlation: (12 hrs) Method of least squares-Straight line-Parabola-Exponential-Power curves- Correlation-Correlation coefficient-Rank correlation-Regression coefficient and properties-Regression lines.	CO5

Multiple regressions

Advanced topics in this course:

Unit-3: Maximum error of estimate – Bayesian estimate.

Unit-4: Chi-square test and F-test on small samples.

Unit-5: Multiple regressions.

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1: Cauchy-Riemann equations to complex function in order to determine whether a given continuous function is analytic (**Apply**)

CO2: The differentiation, integration of complex functions used in engineering problems and make use of Cauchy residue theorem to evaluate certain integrals (**Apply**)

CO3: Discrete and continuous probability distributions and design the components of a classical hypothesis test (**Apply & Create**)

CO4: The statistical inferential methods based on small and large sampling tests. (**Analyze**)

CO5: Interpret the association of characteristics and through correlation and regression tools. (Analyze)

Text books:

- 1. B.S. Grewal, Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
- 2. S. C. Gupta and V. K. Kapoor, Fundamentals of Mathematical Statistics, 11/e (Reprint) 2019, Sultan Chand & Sons Publications.

Reference books:

- 1. Miller and Freund's, Probability and Statistics for Engineers, 7/e, Pearson, 2008.
- 2. T. K. V. Iyenger, Probability and Statistics, S. Chand & Company Ltd, 2015.
- 3. Jay I. Devore, Probability and Statistics for Engineering and the Sciences, 8th Edition, Cengage.

e- Resources & other digital material:

- 1. https://www.youtube.com/watch?v=Mwpz1zjPlzI&list=PLbMVogVj5nJS_i8vfVWJG16mP coEKMuWT (For Complex Variables)
- 2. https://www.youtube.com/playlist?list=PLiUVvsKxTUr66oLF6Pzirc1EgSstMbRZR (For Complex Variables from 1-13)
- 3. https://www.youtube.com/watch?v=COI0BUmNHT8&list=PLyqSpQzTE6M_JcleDbrVyPnE0PixKs2JE (For Probability and Statistics)
- 4. https://www.youtube.com/watch?v=VVYLpmKRfQ8&list=PL6C92B335BD4238AB (For Probability and Statistics)
- 5. https://www.mathsisfun.com/data/standard-normal-distribution-table.html (Information about Normal distribution)
- 6. https://www.statisticshowto.com/tables/t-distribution-table/(Information about T-distribution)

Micro-Syllabus of Complex Variables and Statistical Methods

Unit-1: Functions of a complex variable and complex integration: Introduction – Continuity – Differentiability – Analyticity – Properties – Cauchy-Riemann equations in Cartesian and polar coordinates – Harmonic and conjugate harmonic functions – Milne-Thompson method. Complex integration: Line integral – Cauchy's integral theorem – Cauchy's integral formula. (all

without proofs).

Unit	Module	Micro content		
	Introduction of	Cauchy-Riemann equations in cartesian		
	Analytic function	Cauchy-Riemann equation in Polar form		
	Analytic function	Verify the given function is analytic or not.		
		Prove that real and imaginary parts of analytic		
	Harmonic function	function are harmonic.		
1a. Analytic	Harmonic function	Finding conjugate harmonic function for given part of		
functions		analytic function.		
Tunctions		Prove that real and imaginary parts of analytic		
	Orthogonal trajectory	function are Orthogonal.		
		Find orthogonal trajectory of given function		
	Finding analytic	Using Milen-Thomson method find analytic function		
	function	whose real or imaginary are known.		
	Introduction of	Evaluation of Complex Integration Using line integral		
	Complex integration	along the given curve.		
1b. Complex		Verification of Cauchy's Integral theorem		
integration		Evaluation of Complex integration using Cauchy's		
	Cauchy's Integration	integral theorem.		
		Evaluation of Complex integration using Cauchy's		
		integral formula.		

Unit-2: Series expansions and Residue Theorem: Radius of convergence – Expansion in Taylor's series, Maclaurin's series - Laurent's series.

 $Types\ of\ singularities:\ Isolated-pole\ of\ order\ m-Essential-Residues-Residue\ theorem\ (without\ proof)$

Unit	Module	Micro content		
	Taylor's Expansion	Expand given function as Taylor's series about $z = a$.		
		Expand given function as Taylor's series in powers		
2a) Series		of z.		
Expansion of Complex function	Laurent's Expansion	Expand given function as Laurent series about $z = a$.		
		Expand given function as Laurent series in powers of		
		Z.		
2 b) Residue	Evaluation of	Find poles and residue at each pole of f(z)		
theorem	integration using residue theorem	Evaluate integral of f(z) using residue theorem.		

Unit-3: Probability, Distributions and Sampling Theory: Probability-Baye's theorem-Random Variables-Discrete and Continuous random variables-Distribution Function-Mathematical Expectation and Variance-Binomial, Poisson and Normal distributions.

Population and samples-Sampling distribution of Means -Point and Interval estimations -Maximum error of estimate

Unit	Module	Micro content

	Probability	Find probability using Baye'e theorem Write probability distribution for given random
		variable. And find mean, variance and S.D. of random variable.
3. Probability,		Mean and variance of Binomial, Poisson and normal distributions.
Distributions and Sampling Theory	Probability distributions	Find probability of Binomial event.
Sumpress 2 minutes		Find probability of Poisson event.
		Find probability of Normal event.
		Write sampling distribution of sample mean. And
	Sampling theory	find mean of sampling distribution and S.D. of sampling distribution.

Unit 4: Test of Hypothesis:

Introduction–Hypothesis-Null and Alternative Hypothesis-Type I and Type II Errors-Level of significance-One tail and two-tail tests-Tests concerning one mean and two means (Large and Small samples)-Tests on proportions.

Unit		Module	Micro content			
4a. Test of		Test significance of large samples	Test significance of single mean or proportions.			
Hypothesis		samples	Test significance of two means or proportions.			
4b. Test	of	Test significance of small samples	Test significance of single mean			
hypothesis			Test significance of two means.			

Unit 5: Curve fitting and Correlation:

Method of least squares-Straight line -Parabola-Exponential-Power curves -Correlation-Correlation coefficient -Rank correlation -Regression coefficient and properties-Regression lines.

Unit	Module	Micro content		
		Fit the data in to line equation.		
	By least square	Fit the data into a second degree polynomial or		
5 a) Curve fitting	approximation method fit	parabola.		
, 8	the data in to given curve	Fit the data into power curve $y = a x^b$		
		Fit the data into power curve $y = a b^x$		
		Fit the data into power curve $y = a e^{bx}$		
	Correlation	Find correlation coefficient		
5 b) Correlation and regression	Correlation	Find Karl Pearson's coefficient of correlation.		
una regression	Regression	Find regression coefficient and lines.		

CO-PO mapping Table with Justification

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (**High: 3, Medium: 2, Low: 1**)

Mapping	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
C01		2												
C02		2												
C03	2	1												
C04	1	1												
C05	2	3												

L T P C 3 0 0 3

ELECTRICAL MACHINES-1

Pre-Requisites: Basic Electrical Circuits

Course objectives: The student should be able to

- 1. Understand the unifying principles of energy conversion and DC Generator.
- 2. Understand the significance of Back EMF and Production of Torque in DC Motor.
- 3. Learn the characteristics, performance, methods of speed control and testing methods of DC motors.
- 4. Predetermine the performance of single phase transformers with equivalent circuit models.
- 5. Understand the parallel operation of transformers and three-phase to two-phase Conversion.

Uint No	Contents	Mapped CO
Ι	Electromechanical Energy Conversion: Principles of electromechanical energy conversion – singly excited-concept of co-energy -Force and torque derivation - multi excited system(qualitative treatment) Introduction to DC Generator: Construction and principle of operation of DC machine – EMF equation— Classification of DC machines based on excitation – OCC of DC shunt generator- Determination of Critical resistance and critical speed- Armature reaction and commutation -Numerical problems. (10 hrs)	CO1
II	Performance of D.C. Motor: Torque and back-EMF equation of dc motor—characteristics of shunt, series and compound motors - losses and efficiency-applications of dc motors- Numerical problems. (10 hrs)	CO2
III	Starting, Speed Control of DC Motor: Necessity of starter –3 point and 4 point starters – Speed control of Shunt motor by armature voltage and field control. (04 hrs) Testing of D.C. Machines: Testing methods - Swinburne's Test –Hopkinson's Test -Brake Test on Shunt Motor–Load test on shunt generator-Numerical problems. (08 hrs)	CO3
IV	Single-phase Transformers: Principle of operation-Constructional details - EMF equation - operation on no load and on load - phasor diagrams. (04 hrs) Equivalent circuit and performance: Equivalent circuit –Voltage regulation – losses and efficiency –effect of variation of frequency and supply voltage on losses – All day efficiency-Numerical problems. (08 hrs)	CO4
V	Single phase Transformer Testing: Tests on single phase transformers – open circuit and short circuit tests – Sumpner's test -separation of losses – parallel operation with equal voltage ratios- Auto Transformer-comparison with two winding transformers-Numerical problems. (07 hrs)	CO5

Three Phase Transformers: Poly phase connections - Y/Y, Y/, /Y, / and open -Scott connection. (03 hrs)

Advanced Topics in this Subject: Load test on DC Shunt Generator, Internal and External characteristics of DC Shunt Generator.

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1: Understand the concepts of energy conversion and principle operation of DC Generator. (Understand)

CO2: Examine the significance of Back EMF and Production of Torque in DC Motor. (Apply)

CO3: Analyze the speed control methods and performance of DC Machine. (**Analyze**)

CO4: Quantify the performance of single phase transformers. (**Evaluate**)

CO5: Empathise parallel operation of transformers and three-phase to two-phase Conversion. (**Understand**)

Text books:

- 1. Theory & Performance of Electrical Machines by J.B.Guptha. S.K.Kataria& Sons
- 2. Electrical Machines P.S. Bhimbra, Khanna Publishers

Reference books:

- 1. Electrical Machines by D. P.Kothari, I.J. Nagarth, McGrawHill Publications, 4th edition
- 2. Electrical Machinery by Abijith Chakrabarthi and Sudhipta Debnath, McGraw Hill education 2015
- 3. Electrical Machinery Fundamentals by Stephen J Chapman McGraw Hill education 2010
- 4. Electric Machinery by A.E. Fitzgerald, Charleskingsley, Stephen D.Umans, TMH.

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/108/105/108105017/
- 2. https://nptel.ac.in/courses/103/102/108102146/
- 3. www.nptelvideos.in/2012/11/electrical-machines-i.html
- 4. https://nptel.ac.in/courses/108/105/108105017/

Micro-Syllabus

Unit-1: Electromechanical Energy Conversion and introduction to DC machines

Principles of electromechanical energy conversion – singly excited system – concept of coenergy- force and torque derivation- multi excited system (qualitative treatment).

Construction and principle of operation of DC machine – EMF equation for generator – Classification of DC machines based on excitation – OCC of DC shunt generator- Determination of Critical resistance and critical speed- Armature reaction and commutation -Numerical problems.

Unit	Module	Micro content			
	Principles of	Principles of energy conversion			
	electromechanical	Block diagram representations			
	energy conversion	Power flow diagrams for dc machine			
1a.Electromechanical		Definition of single excited system			
Energy Conversion		Representation with figure.			
Energy Conversion	singly excited	Co-energy concept in linear system			
	system	Derivation of force and torque in non linear			
		and linear systems.			

	Multi excited system	Definition and representation of multi excited system.
1b. Construction and principle of operation of DC machine	DC generator And classification	Principle operation of single loop dc generator Construction of dc generator and Emf equation derivation-numerical problems. Types of dc generators- based on excitation-separately excited –self excited-shunt-series- compound(long and short shunt cumulative and differential)-Numerical problems on self excited (only on shunt and series). – OCC characteristics of DC shunt generator by experimental procedure-Determination of Critical resistance and critical speed from OCC- Armature reaction and commutation.

Unit-2: Performance of D.C. Machines

Torque and back-EMF equation of dc motor— characteristics of shunt, series and compound motors - losses and efficiency- applications of dc motors- Numerical problems.

Unit	Module	Micro content
	Torque and back-	Motor principle operation-significance of
	EMF equation of	back EMF-Derivation of Torque -
	dc motor	Numerical problems on torque
		Characteristics of shunt, series and
1. Performance of D.C.		compound motors -applications of dc
Machines	Characteristics,	motors.
	losses and	power flow diagrams of generator and
	efficiency	motor- losses and efficiency -Numerical
		problems .

Unit-3: Starting, Speed Control and Testing of D.C. Machines

Necessity of starter -3 point and 4 point starters - Speed control of Shunt motor by armature voltage and field control.

Testing of D.C. Machines: Testing methods - Swinburne's Test – Hopkinson's Test -Brake Test on Shunt Motor–Load test on shunt generator-Numerical problems.

Unit	Module	Micro content
		Necessity of starter – Starting by 3 point and
3. Starting, Speed	Starters	4 point starters construction and operation
Control and Testing of		(only elementary treatment)
D.C. Machines	Speed control of	armature voltage and field control methods
	Shunt motor	for shunt motor

Testing of D.C. Machines	brake test, Swinburne's method – principle of regenerative or Hopkinson's method - Load test on dc shunt generator procedure-Numerical problem on brake test, Swinburne's test.
---------------------------	---

Unit-4: Single-phase Transformers

Principle of operation- Constructional details - EMF equation - operation on no load and on load - phasor diagrams.

Equivalent Circuit and Performance:

Equivalent circuit –Voltage regulation – losses and efficiency – effect of variation of frequency and supply voltage on losses – All day efficiency-Numerical problems.

Unit	Module	Micro content				
	Principle of	principle of operation -Types(core, shell types) and constructional details -				
4a. Single-phase Transformers	operation	emf equation –Numerical problems				
		operation on no load and on load – lagging,				
	Operation of single	leading and unity power factors loads -				
	phase Transformer	phasor diagrams of transformers –				
		Numerical problems.				
4b. Equivalent Circuit & Performance:	Equivalent circuit & Voltage regulation	Equivalent circuit –secondary is referred to primary and vice versa-Numerical problems on equivalent circuit parameters- derivation of voltage regulation for lagging and leading loads.				
1 ci ioi mance.	Performance	Losses and efficiency – Numerical problems-effect of variation of frequency and supply voltage on losses – All day efficiency-Numerical problems.				

Unit-5: Transformers Testing and Three Phase Transformers

Single phase Transformer Testing: Tests on single phase transformers – open circuit and short circuit tests – Sumpner's test -separation of losses – parallel operation with equal voltage ratios- Auto Transformer- comparison with two winding transformers-Numerical problems.

Three Phase Transformers: Poly phase connections - Y/Y, Y/, /Y, / and open -Scott connection.

Unit	Module	Micro content
		open circuit and short circuit tests
5. Transformers Testing and Three Phase Transformers		Sumpner's test
	Tests on single	separation of losses test
	phase transformers	Conditions for parallel operation-Parallel
		operation with equal voltage ratios
		derivation- Numerical problem.

	auto transformer operation(only theory)– comparison with two winding transformer
Three Phase Transformers	Poly phase connections - Y/Y, Y/, /Y, / and open -Scott connection (only elementary treatment).

CO-PO mapping Table with justification:

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (High: 3, Medium: 2, Low: 1)

00/														
CO/	DO1	DO2	DO3	DO4	DO5	DO6	DO7	DΩ	DO0	PO10	DO11	DO12	DSO 1	DSO 2
PO	101	102	103	104	103	100	107	1 00	109	1010	1011	1012	1 30-1	130-2
CO1	2	2	1	2	-	1	1	1	1	1	-	2	-	1
CO2	2	2	1	2	-	-	-	-	-	-	-	-	-	-
CO3	2	2	-	2	-	ı	ı	ı	ı	ı	-	2	-	1
CO4	2	2	1	2	-	ı	ı	ı	ı	-	1	2	-	1
CO5	1	1	-	2	-	-	-	-	-	-	-	-	-	-

L T P C 2 0 0 2

PYTHON PROGRAMMING

Pre-Requisites: Nil

Course objectives: The student should be able to

- 1. To introduce the concepts of Python programming and build scripts using python language constructs, and control structures.
- 2. To impart knowledge of data structures in python and their application in real-time scenarios.
- 3. To introduce the concept of reusability using functions.
- 4. To introduce the concepts of OOPs in python programming.
- 5. To develop the concepts of interfacing hardware modules and building real-time systems using python and Raspberry Pi.

Unit No	Contents	Mapped CO
Ι	Introduction to Python (16hrs)	
	Introduction : History of Python, Need of Python Programming, Introduction to	
	Object-oriented Programming, Comparison with Modular Programming, Python	
	Programming Basics, Sample programs, Data types and operators, Strings and	
	Characters, Control statements, Expressions and order of evaluation, Arrays	
II	OOPS &Data Structures (12hrs)	CO2
	OOPS: Introduction, OOPs principles, Classes, Objects, Functions, Arguments &	
	their types. Self variables and static keyword, Constructor Overloading, Lambda	
	functions.	
	Data Structures : Lists - Operations, Slicing, Methods; Tuples. Sets, Dictionaries,	
	Sequences, Comprehensions	
III	Inheritance, Exceptions & Modules (14hrs)	CO3
	Inheritance: Introduction, Types of Inheritance, Overriding, Access modifiers,	
	Abstract Classes, Interfaces.	
	Exception Handling: Error Vs Exception, Exception handling in python,	
	Exception Hierarchy, usage of try, catch, throw. User Defined Exceptions.	
	Modules: Creating modules, import statement, from. Import statement, name	
	spacing, Using Python Packages like OS, Math, Date time, Regular Expressions.	
IV	Data & File Handling (10hrs)	CO4
	Data Handling: Math, Numpy Library, scipy and Matplotlib - Loading the library	
	and importing the data, How Mat plot lib works, modifying the appearance of a	
	plot, Plotting multiple plots, Modifying the tick marks, Scatter plots, Bar plots.	
	File Input Output: Introduction to files, File I/O handling – File Operations,	
	Random Access file.	
\mathbf{V}	Interfacing with Raspberry Pi (14hrs)	CO5
	Python programming on Raspberry Pi :: Basic features, Raspberry Pi2B,	
	Raspberry Pi3B, Raspberry Pi3B+ and Raspberry Pi4B, System setup and booting	
	- Steps involved in making the raspberry pi board ready for use. Introduction to	
	Raspbian Operating system, basic commands - Creating, deleting files,	

directories, listing files and directories, Python IDE on Raspberry Pi, Accessing the board, Basic I/O – Reading analog, digital inputs.

Interfacing with Raspberry Pi: Purpose of datasheets, Interfacing – LED, 7-segment display, Ultrasonic sensor, Passive Infrared (PIR) sensor, interfacing a camera module with Raspberry Pi. (Programming using Python)

Course Outcomes: Upon successful completion of the course, the student will be able to

- CO1: Identify the basic python constructs with a view of using them in problem solving.(Remember, Understand, and Apply)
- CO2: Apply control structures and use python lists in examples of problem solving.(Understand, Apply, Analyze and Evaluate)
- CO3: Explore the utility of functions in modular programming using python. (Apply, Analyze, valuate, and create)
- CO4: Apply the concepts of Object Oriented Programming to solve the real-time problems. (Understand, Apply, Analyze)
- CO5: Interface hardware components with Raspberry Pi using Python APIs. (Understand, Apply, Analyze and create)

Text books:

- 1. R. Nageswara Rao, "Core python programming", 2nd Edition, Dreamtech, 2017.
- 2. Python Programming using problem solving Approach by Reema Thareja, 1st Edition, Oxford University Higher Education, 2017
- 3. Povel Solin, Martin Novak, "Introduction to Python Programming", NC Lab Public Computing, 2013.
- 4. Programming the Raspberry Pi: Getting Started with Python, 2nd Edition, Simon Monk, 2015.

Reference books:

- 1. Jacob Fredslund, "Introduction to Python Programming" 2007.
- 2. Y. Daniel Liang, "Introduction to programming using python", 1st Edition Pearson, 2017.
- 3. Bill Lubanovic, "Introducing Python "Modern Computing in Simple Packages", 1st Edition, O'ReillyPublication, 2015.
- 4. Mark Summerfield, "Programming in Python 3" 2nd Edition, Pearson Education, 2010.
- 5. Magnus Lie Hetland, "Beginning Python –From Novice to Professional", APress Publication, 2017.

e- Resources & other digital material:

The official Raspberry Pi Beginner's Guide How to use your new computer, Gareth Halfacree. Available Online: https://www.raspberrypi.org/magpi-issues/Beginners Guide v1.pdf.

MICRO-SYLLABUS

Introduction to Python

Introduction: History of Python, Need of Python Programming, Introduction to Object-oriented Programming, Comparison with Modular Programming,

Python Programming Basics, Sample programs, Data types and operators, Strings and Characters, Control statements, Expressions and order of evaluation, Arrays

		History of Python, Need of Python
	Introduction to	Programming, Introduction to Object-oriented
	Python	Programming, Comparison with Modular
IntroductiontoPython		Programming,
	Python	Sample programs, Data types and operators,
	Programming	Strings and Characters, Control statements,
	Basics	Expressions and order of evaluation, Arrays

OOPS & Data Structures

OOPS: Introduction, OOPs principles, Classes, Objects, Functions, Arguments & their types. Self variables and static keyword, Constructor Overloading, Lambda functions.

Data Structures: Lists - Operations, Slicing, Methods; Tuples. Sets, Dictionaries, Sequences, Comprehensions

		Introduction, OOPs principles, Classes, Objects,			
	OOPS	Functions, Arguments & their types.Self			
HOODS & Data	OOFS	variables and static keyword, Constructor			
HOOPS & Data Structures		Overloading, Lambda functions.			
	Data Structures	Lists - Operations, Slicing, Methods;			
		Tuples. Sets, Dictionaries, Sequences,			
		Comprehensions			

Inheritance, Exceptional Modules

Inheritance: Introduction, types of Inheritance, Overriding, Access modifiers, Abstract Classes, Interfaces.

Exception Handling: Error Vs Exception, Exception handling in python, Exception Hierarchy, usage of try, catch, throw. User Defined Exceptions.

Modules: Creating modules, import statement, from. Import statement, name spacing, Using Python Packages like OS, Math, Date time, Regular Expressions.

		Introduction, Types of Inheritance,		
	Inheritance	Overriding, Access modifiers, Abstract		
		Classes, Interfaces.		
	Exception Handling	Error Vs Exception, Exception handling in		
Inheritance,	Exception Handing	python, Exception Hierarchy, usage of try,		
Exceptional Modules		catch, throw. User Defined Exceptions.		
		Creating modules, import statement, from.		
	Modules	Import statement, name spacing, Using		
	iviouules	Python Packages like OS, Math, Date time,		
		Regular Expressions.		

Data & File Handling

Data Handling: Math, Numpy Library, scipy and Matplotlib - Loading the library and importing the data, How Mat plot lib works, modifying the appearance of a plot, Plotting multiple plots, Modifying the tick marks, Scatter plots, Bar plots.

File Input Output: Introduction to files, File I/O handling — File Operations, Random Access file.

Data & File		Math, Numpy Library, scipy and Matplotlib –
Handling	Data Handling	Loading the library and importing the data,
		How Mat plot lib works, modifying the

		appearance of a plot, Plotting multiple plots, Modifying the tick marks, Scatter plots, Bar
		plots.
	File Input Output	Introduction to files, File I/O handling – File
		Operations, Random Access file.

Interfacing with Raspberry Pi

Python programming on Raspberry Pi:

Basic features, Raspberry Pi2B, Raspberry Pi3B, Raspberry Pi3B+ and Raspberry Pi4B, System setup and booting – Steps involved in making the raspberry pi board ready for use. Introduction to Raspbian Operating system, basic commands – Creating, deleting files, directories, listing files and directories, Python IDE on Raspberry Pi, Accessing the board, Basic I/O – Reading analog, digital inputs.

Interfacing with Raspberry Pi: Purpose of datasheets, Interfacing – LED, 7-segment display, Ultrasonic sensor, Passive Infrared (PIR) sensor, interfacing a camera module with Raspberry Pi. (Programming using Python)

		Basic features, Raspberry Pi2B, Raspberry
		Pi3B, Raspberry Pi3B+ and Raspberry Pi4B,
		System setup and booting –
		Steps involved in making the raspberry pi
	Python	board ready for use.
	programming on	Introduction to Raspbian Operating system,
	Raspberry Pi	basic commands - Creating, deleting files,
Interfacing with		directories, listing files and directories,
Raspberry Pi		Python IDE on Raspberry Pi,
		Accessing the board,
		Basic I/O – Reading analog, digital inputs.
		Purpose of datasheets, Interfacing – LED, 7-
Interfacin	Intoufo sin a with	segment display, Ultrasonic sensor, Passive
		Infrared (PIR) sensor, Interfacing a camera
	Raspberry Pi	module with Raspberry Pi. (Programming
		using Python)

CO-PO mapping Table with Justification:

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (High: 3, Medium: 2, Low: 1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1	3	2	1	-	3	-	-	-	-	-	-	2	3	1
CO2	3	2	1	-	3	-	-	-	-	-	-	2	3	1
CO3	3	2	1	-	3	-	-	-	-	-	-	2	3	1
CO4	3	2	3	-	3	-	2	-	-	-	1	2	3	1
CO5	3	2	3	3	3	-	2	-	-	-	-	2	3	1

L T P C 2 0 0 2

ELECTRICAL CIRCUIT ANALYSIS

Prerequisites: Basic Circuit Analysis,

Integrations,

Laplace transforms and Differential equations

Course Objectives:

1. To study the concepts of balanced and unbalanced three-phase systems.

- 2. To study the transient behaviour of electrical circuits with DC excitation
- 3. To study the transient behavior of electrical circuits with AC excitation.
- 4. To study the analysis of two port network
- 5. To understand the concept of Network synthesis.

Unit No	Contents				
	Three Phase Systems				
I	Types of three phase systems - Phase sequence- relation between line and phase	CO1			
	voltages and currents - analysis of balanced three phase systems - Analysis of three phase unbalanced systems: Loop method – Milliman's method.				
	Transient Analysis in DC circuits				
II	Transient response of R-L, R-C, R-L-C circuits for DC excitation, Solution using	CO2			
	differential equations and Laplace transforms				
III	Transient Analysis in AC circuits				
	Transient response of R-L, R-C, R-L-C circuits for pulse and AC excitations,				
	Solution using differential equations and Laplace transforms.				
IV	Two port Networks	G 0 4			
	Two port network parameters – Z, Y, ABCD and Hybrid parameters and their	CO4			
	relations, Cascaded networks				
	Network Synthesis				
V	Positive real function - basic synthesis procedure - LC immittance functions -	CO5			
	RC impedance functions and RL admittance function - RL impedance function and RC admittance function - Foster and Cauer methods				
	and Ne admittance function - Poster and Cader methods				

Advanced Topics in this Subject: Most widely used application of network synthesis in the design of signal processing filters, Radio tuning Medical Electronic Systems, Transient study of power system plays vital role in security and reliability aspects.

Course Outcomes: Upon successful completion of the course, the student will be able to analyze

CO1: Various electrical three phase networks under balanced and unbalanced loads with different methods

CO2: Transient response of various electrical networks with DC excitation.

CO3: Transient response of electrical networks with AC excitation.

CO4: Various Two port network parameters and their mutual relations

CO5: Synthesis procedure for drawing equivalent electrical network for a given transfer functions.

Text books:

- 1. Circuits & Networks Analysis & Synthesis by A. Sudhakar and Shyammohan S Palli, Tata McGraw- Hill.
- 2. Circuit Theory by A.Chakrabarti Danapat Rai & Co publisher.

Reference books:

- 1. "Fundamentals of Electric Circuits" Charles K.Alexander, Mathew N.O.Sadiku, Tata McGraw-Hill.
- 2. Engineering Circuit Analysis by William Hayt and Jack E.Kemmerley,Mc Graw Hill Company,6th edition
- 3. Network synthesis: Van Valkenburg; Prentice-Hall of India Private Ltd
- 4. 3000 Solved Problems in Electrical Circuit by Schaum's solved problem series Tata McGraw- Hill.
- 5. Network Analysis by N.C.Jagan, C.Lakshmi Narayana BS publications 2nd edition e- Resources & other digital material
 - 1. https://www.youtube.com/watch?v=MHwM1C1zUz4
 - 2. https://www.youtube.com/watch?v=xaeob9lTXS0
 - 3. https://www.youtube.com/watch?v=GasWAlIvvD8&list=PL16EE39765482C57F
 - 4. https://www.youtube.com/watch?v=2D_eGLGcUXQ&list=PL16EE39765482C57F&index=5
 - 5. https://www.youtube.com/watch?v=UltkCsoh6Bw&list=PL16EE39765482C57F&index=7

Micro-Syllabus of Electrical Circuit Analysis

Unit-1: Balanced Three phase circuits

Types of three phase systems, Introduction to star and delta connected systems, Phase sequence, Relation between line and phase voltages and currents of star and delta connected circuits, Analysis of balanced three phase star connected systems, Analysis of balanced three phase delta connected systems, Analysis of three phase unbalanced delta systems Analysis of three phase unbalanced star connected systems using Loop method, Milliman's method.

Unit	Module	Micro content
1a. Three phase balanced Systems	Analysis of three phase balanced Systems	Types of three phase systems Introduction to star and delta connected systems Phase sequence Relation between line and phase voltages and currents of star and delta connected circuits. Analysis of balanced three phase star connected systems. Analysis of balanced three phase delta connected systems.
	Analysis of three phase unbalanced Systems	Analysis of three phase unbalanced delta systems

1b. Three phase	Analysis of three phase unbalanced star
Unbalanced Systems	connected systems using Loop method.
	Loop and Milliman's method

Unit-2: Transient Analysis in DC circuits

Transient response of R-L Circuit, Transient response of R-C Circuit, Transient response of R-L-C circuits for DC excitations, Solution of R-L,R-C,R-L-C circuits using differential equations Solution of R-L,R-C,R-L-C circuits using Laplace transforms.

Unit	Module	Micro content			
		Transient response of R-L Circuit			
	Transient response of	Transient response of R-C Circuit			
2a. DC Transient	RL, RC Circuits	Transient response of R-L-C circuits for			
response		DC excitations.			
2b. DC Transient	Transient response of RL, RC, RLC Circuits	Solution of R-L, R-C,R-L-C circuits using differential equations			
response	KL, KC, KLC Circuits	Solution of R-L,R-C,R-L-C circuits using Laplace transforms			

Unit-3: Transient Analysis in AC circuits

Transient response of R-L Circuit, Transient response of R-C Circuit, Transient response of R-L-C circuits for AC excitations, Solution of R-L,R-C,R-L-C circuits using differential equations Solution of R-L,R-C,R-L-C circuits using Laplace transforms.

	Module	Micro content			
		Transient response of R-L Circuit			
3a. AC Transient	Transient response of	Transient response of R-C Circuit			
response	RL, RC Circuits	Transient response of R-L-C circuits for			
response		DC excitations.			
		Solution of R-L, R-C,R-L-C circuits			
	Transient response of	using differential equations			
3b. AC Transient response	RL, RC, RLC Circuits				
	KL, KC, KLC Circuits	Solution of R-L,R-C,R-L-C circuits using			
		DC excitations. Solution of R-L, R-C,R-L-C circuits using differential equations			

Unit-4: Two Port Networks

Two port network parameters, Z parameters, Y parameters, ABCD parameters, Hybrid parameters and their relations, Cascaded networks, Poles and zeros of network functions.

Module	Micro content
Z,Y, ABCD, H	Introduction Two port network parameters
Parameters	1
	Z parameters

		Y parameters
		ABCD parameters
		Hybrid parameters
4b. Cascaded networks	Cascaded networks & Poles and zeros	Parameters and their relations
		Cascaded networks
		Poles and zeros of network functions.

Unit-5: Network synthesis

Introduction to Positive real function, Basic synthesis procedure, Synthesis of LC immittance functions, Synthesis of RC impedance functions, Synthesis of RL admittance function, Synthesis of RL impedance function, Synthesis of RC admittance function - Foster and Cauer methods.

	Module	Micro content	
5b. Network Synthesis		Introduction to Positive real function	
	Synthesis procedure	Basic synthesis procedure	
	~ j===================================	Synthesis of LC immittance functions	
		Synthesis of RC impedance functions	
5b. Synthesis methods		Synthesis of RL admittance function	
	Foster and Cauer	Synthesis of RL impedance function	
	methods	Synthesis of RC admittance function	
		Foster and Cauer methods.	

CO-PO Mapping:

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (High: 3, Medium: 2, Low: 1)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	-	-	-	-	-	-	-	-	2
CO2	1	2	-	-	-	-	-	-	-	-	-	1
CO3	2	2	-	-	-	-	-	-	-	-	-	1
CO4	2	2	-	-	-	-	-	-	-	-	-	2
CO5	2	1	-	-	-	-	-	-	-	-	-	1

CO-PSO Mapping

Course	PSO1	PSO2
CO1	2	1
CO2	2	1
CO3	2	1
CO4	2	1
CO5	1	1

BASIC ELECTRONIC DEVICES AND CIRCUITS

Pre-Requisites: Engineering Physics

Course objectives:

- 1. To Understand the Diode operation and switching characteristics,
- 2. To understand the implementation of various diode applications
- 3. To Understand the Operation of BJT, FET, MOSFET metal semiconductor rectifying and ohmic contacts.
- 4. To learn the various biasing methods and small-signal models of Transistors
- 5. To learn the feedback topology of amplifier and applications of transistors.

Unit No	Contents	Mapped CO
I	Junction Diode Characteristics Review of semiconductor Physics, P-N Junction Diode Qualitative Theory of P-N Junction, P-N Junction as a Diode, Diode Equation, Volt-Ampere Characteristics, Temperature dependence of VI characteristic, Ideal versus Practical — Resistance levels (Static and Dynamic), Transition and Diffusion Capacitances, Diode Equivalent Circuits, Load Line Analysis, Breakdown Mechanisms in Semiconductor Diodes. Special Diodes Zener Diode Characteristics, Principle of Operation and Characteristics of Tunnel Diode (with the help of Energy Band Diagram), Varactor Diode, LED	CO1
II	and Photo Diode. Diode Applications (10 Hrs) Half wave rectifier, ripple factor, full wave rectifier, Harmonic components in a rectifier circuit, Inductor filter, Capacitor filter, L - section filter, Pi - section filter, Multiple L and pi - section and filter, and comparison of various filter circuits in terms of ripple factors, Simple circuit of a regulator using zener diode, Series and Shunt voltage regulators, Applications of rectifiers and voltage regulators.	CO2
III	Bi-polar Junction Transistors(BJT) (06 Hrs) Formation of N-P-N and P-N-P transistors, Transistor current components, Operation of BJT, BJT characteristics (CE, CB, CC configurations), Early effect, Current equations, Relation between Alpha and Beta, typical transistor junction voltage values and Limits of Operation, Transistor as an amplifier. Junction Field Effect Transistors(JFET) (03 Hrs) Junction Field Effect Transistor (JFET) structure, Drain and Transfer Characteristics, Significance of Pinch-Off Voltage, JFET as an amplifier and switch, Comparison of BJT and JFET. Metal-Oxide-Semiconductor Field Effect Transistors (MOSFET) (03 Hrs) Structure of Depletion-MOSFET and Enhancement-MOSFETs, V-I Characteristics of MOSFET, Significance of threshold voltage.	CO3

IV	Biasing and Stabilisation (06 Hrs)	CO4
	Need for Proper Biasing, Q-point stability, Fixed, Collector to Base bias and	
	Voltage Divider biasing for BJT, Emitter Degeneration, Design of Self	
	Biasing circuit, Thermal Stability considerations. Fixed, Voltage Divider	
	biasing for JFET and MOSFETs.	
	Small Signal Low frequency analysis of BJT and FET amplifiers	
	(06 Hrs)	
	Small signal low frequency h-parameter model of BJT. Approximate model,	
	Analysis of BJT amplifiers using Approximate model for CB, CE and CC	
	configurations, Analysis of JFET Amplifiers, Analysis of CS, CD JFET	
	Amplifiers.	
V	Feedback Amplifiers (05 Hrs)	CO5
	Concept of feedback, Classification of feedback amplifiers, General	
	characteristics of negative feedback amplifiers, Effect of Feedback on input	
	and output characteristics, Voltage series, voltage shunt, current series, and	
	current shunt feedback amplifiers with discrete components and their analysis	
	Oscillators (05 Hrs)	
	Condition for oscillations. RC-phase shift oscillators with Transistor and FET,	
	Hartley and Colpitts oscillators, Wein bridge oscillator, Crystal oscillators,	
	Frequency and amplitude stability of oscillators.	

Advanced Topics in this Subject: The historical background of MOS *devices* and their fabrication will be briefly reviewed, as well as the basic MOS structure for accumulation, depletion and inversion. *Advanced* issues such as work function, trapped charge, interface traps, non-equilibrium operation and re-equilibration processes will be covered.

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1: Develop through basic knowledge on the behavior and the characteristics of semiconductor junction. (**Understand**)

CO2: Demonstrate the usage of diodes in various applications (**Apply**)

CO3: Acquire knowledge on the operations of BJT, FET, and MOSFET. (**Understand**)

CO4: Learn the art of biasing of BJTs and FETs, small signal low frequency models of BJTs and FETS in amplifier analysis (Apply, Analyze)

CO5: Learn the feedback topology of amplifier and applications of transistors (Apply, Analyze)
Text books:

- 1. Jacob Millman and Halkias, 'Integrated Electronics', Tata-Mcgraw Hill International 1991.
- 2. Donald A. Neaman,"Semiconductor Physics and Devices", Times Mirror High Education Group, Chicago, 1997.

Reference books:

- 1. Robert L.Boylestead and Louis Nashelsky,"Electronic Devices and Circuit Theory",Pearson Education Inc.Eleventh Edition 2013
- 2. Adel S. Sedra and Kenneth C. Smith, "Microelectronic Circuits", Oxford University Press, 2004 Edition.
- 3. D. Chattopadhyay and P.C. Rakshit Electronics: Fundamentals and Applications.

e- Resources & other digital material:

- 1. https://nptel.ac.in/courses/117/102/117102061/
- 2. https://nptel.ac.in/courses/117/106/117106091/

3. https://nptel.ac.in/courses/108/107/108107142/

Micro Syllabus

UNIT-1: Junction Diode Characteristics
Review of semiconductor Physics, P-N Junction Diode Qualitative Theory of P-N Junction, P-N
Junction as a Diode, Diode Equation, Volt-Ampere Characteristics, Temperature dependence of VI
characteristic, Ideal versus Practical – Resistance levels (Static and Dynamic), Transition and
Diffusion Capacitances, Diode Equivalent Circuits, Load Line Analysis, Breakdown Mechanisms
in Semiconductor Diodes.

Special Diodes

Zener Diode Characteristics, Principle of Operation and Characteristics of Tunnel Diode (with the help of Energy Band Diagram), Varactor Diode, LED and Photo Diode.

Unit	Module	Micro content				
		P-N Junction Diode Qualitative Theory of P-N				
	PN Junction Diode	Junction, P-N Junction as a Diode, Diode Equation				
1a.or 2a. Junction	r 2a. Junction Characteristics	Volt-Ampere Characteristics, Temperature				
Diode		dependence of VI characteristic, Ideal versus Practical				
Characteristics		Resistance levels (Static and Dynamic)				
	Diode Resistance and	Transition and Diffusion Capacitances, Diode				
		Equivalent Circuits, Load Line Analysis, Breakdown				
	Capacitance	Mechanisms in Semiconductor Diodes.				
1b.or 2b.	Zener Diode	Breakdown Mechanism, Zener Diode Characteristics				
Special Diodes	Operation and Characteristics	Tunnel Diode (with the help of Energy Band Diagram), Varactor Diode, LED and Photo Diode.				

UNIT-2: Diode Applications

Half wave rectifier, ripple factor, full wave rectifier, Harmonic components in a rectifier circuit, Inductor filter, Capacitor filter, L - section filter, Pi - section filter, Multiple L and pi - section and filter, and comparison of various filter circuits in terms of ripple factors, Simple circuit of a regulator using zener diode, Series and Shunt voltage regulators, Applications of rectifiers and voltage regulators.

Unit	Module	Micro content
	Working of Rectifiers	HWR, FWCR and FWBR
3a.or 4a.	Characteristics	RMS Output, DC output, Ripple Factor,
Rectifiers	Characteristics	Efficiency, PIV, Percentage Regulation, TUF
	Working of Rectifiers	rking of FWR with series inductorfilter
3b.or 4b.	with Filters	andcapacitor filter, L-section and Pi-sectionfilters
Filters	Voltage Deculator	ulator using zener diode, Series and Shuntvoltage
	Voltage Regulator	regulators

UNIT-3: Bi-polar Junction Transistors (BJT)

Formation of N-P-N and P-N-P transistors, Transistor current components, Operation of BJT, BJT characteristics (CE, CB, CC configurations), Early effect, Current equations, Relation between Alpha and Beta, typical transistor junction voltage values and Limits of Operation, Transistor as an amplifier.

Junction Field Effect Transistors(JFET)

Junction Field Effect Transistor (JFET) structure, Drain and Transfer Characteristics, Significance of Pinch-Off Voltage, JFET as an amplifier and switch, Comparison of BJT and JFET.

Metal-Oxide-Semiconductor Field Effect Transistors (MOSFET)

Structure of Depletion-MOSFET and Enhancement-MOSFETs, V-I Characteristics of MOSFET, Significance of threshold voltage.

Unit	Module	Micro content
5a.or 6a. Bi-polar Junction Transistors	Construction, Operation and Characteristics	Formation of N-P-N and P-N-P transistors, Transistor current components, Operation of BJT, BJT characteristics (CE, CB, CC configurations), Transistor as an amplifier.
5b.or 6b.JFET&MOSF ET	Construction, Operation and Characteristics	JFET structure, Drain and Transfer Characteristics, Significance of Pinch-Off Voltage Structure of Depletion-MOSFET and Enhancement-MOSFETs, V-I Characteristics of MOSFET

UNIT-4: Biasing and Stabilisation

Need for Proper Biasing, Q-point stability, Fixed, Collector to Base bias and Voltage Divider biasing for BJT,Emitter Degeneration, Design of Self Biasing circuit, Thermal Stability considerations. Fixed, Voltage Divider biasing for JFET and MOSFETs.

Small Signal Low frequency analysis of BJT and FET amplifiers

Small signal low frequency h-parameter model of BJT. Approximate model, Analysis of BJT amplifiers using Approximate model for CB, CE and CC configurations, Analysis of JFET Amplifiers, Analysis of CS, CD JFET Amplifiers.

Unit	Module	Micro content
7a.or 8a. Biasing and Stabilisation	Transistor Biasing and Stabilisation	Fixed, Collector to Base bias and Voltage Divider biasing for BJT, Emitter Degeneration, Design of Self Biasing circuit
	JFET and MOSFET Biasing	Fixed, Voltage Divider biasing for JFET and MOSFETs
7b. or 8b. Small Signal Low frequency analysis of BJT and FET amplifiers	h-parameters of BJT and JFET	Analysis of BJT amplifiers using Approximate model for CB, CE and CC configurations, Analysis of JFET Amplifiers, Analysis of CS, CD JFET Amplifiers

UNIT-5: Feedback Amplifiers

Concept of feedback, Classification of feedback amplifiers, General characteristics of negative feedback amplifiers, Effect of Feedback on input and output characteristics, Voltage series, voltage shunt, current series, and current shunt feedback amplifiers with discrete components and their analysis

Oscillators

Condition for oscillations. RC-phase shift oscillators with Transistor and FET, Hartley and Colpitts oscillators, Wein bridge oscillator, Crystal oscillators, Frequency and amplitude stability of oscillators.

Unit	Module	Micro content								
9a.or 10a.	Circuit Analysis	General	characteristics	of	negative	feedback				
Feedback Amplifiers	Circuit Analysis	amplifier	s, Effect of Feed	lback	on input	and output				

		characteristics, Voltage series, voltage shunt, current series, and current shunt feedback amplifiers with discrete components and their analysis
9b.or 10b. Oscillators	Working Principle	RC-phase shift oscillators with Transistor and FET, Hartley and Colpitts oscillators, Wein bridge oscillator, Crystal oscillators, Frequency and amplitude stability of oscillators

CO-PO mapping Table with Justification:

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (High: 3, Medium: 2, Low: 1)

CO/PO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
C01		3												2
C02	2	2												2
C03		3												3
C04		3												2
C05	2		2											2

L T P C 2 1 0 3

ELECTROMAGNETIC FIELDS

Pre-Requisites:

- 1. Complex numbers
- 2. Vector Analysis
- 3. Co-ordinate Geometry
- 4. Basic circuit Analysis

Course objectives: The student should be able to

- 1. Study the electric field and potentials due to different configurations of static charge and Maxwell's first equation
- 2. Study the behavior of conductors and dielectrics, evaluation of capacitance for different configurations.
- 3. Study the Biot Savart's Law, Ampere Circuital Law and applications
- 4. Study the Lorentz force equation
- 5. Understand the concept inductance and time varying fields

Unit	Contents	Mapped
No		CO
I	Electrostatic Fields: Coulomb's Law ,Electric Field Intensity (EFI) ,EFI due to a line, surface and volume charge, Work done in moving a point charge in an electrostatic field, Electric Potential , Properties of potential function, Potential gradient, Gauss's law, Application of Gauss's Law, Maxwell's first law, Laplace's and Poison's equations, Solution of Laplace's equation in one variable. (10 hr)	CO1
II	Dielectrics and Capacitance: Electric dipole, Dipole moment, Potential and EFI due to an electric dipole, Torque on an Electric dipole in an electric field, Behavior of conductors in an electric field, Electric field inside a dielectric material, Polarization, Dielectric – Conductor and Dielectric – Dielectric boundary conditions, Capacitance, Capacitance of parallel plate and spherical and co-axial capacitors with composite dielectrics, Energy stored and energy density in a static electric field, Current density, Conduction and Convection current densities, Ohm's law in point form – Equation of continuity. (10 hrs)	CO2
III	Static magnetic fields: Biot-Savart's law, Magnetic field intensity (MFI), MFI due to a straight current carrying filament, MFI due to circular, rectangular, square and solenoid current Carrying wire, Maxwell's second Equation, Ampere's circuital law and its applications, MFI due to an infinite sheet of current and a long current carrying filament, Differential form of Ampere's circuital law (Maxwell's third equation). (10 hrs)	CO3
IV	Force in Magnetic fields: Magnetic force on Moving charges in a Magnetic field, Lorentz force equation, Force on a current element in a magnetic field, Force on a straight and a long current carrying conductor in a magnetic field,	CO4

	Force between two straight long and parallel current carrying conductors,									
	Magnetic dipole and dipole moment, A differential current loop as a magnetic									
	dipole, Torque on a current loop placed in a magnetic field.									
	(10 hrs)									
	Inductance: Self and Mutual inductance, Determination of self-inductance of a									
	solenoid and toroid, Mutual inductance between a straight long wire and a									
	square loop wire in the same plane, Energy stored and density in a magnetic									
	field. (05 hrs)									
V	Time varying fields: Faraday's laws of electromagnetic induction, Integral and	CO5								
	point forms, Maxwell's fourth equation, Statically and dynamically induced									
	EMFs, Modification of Maxwell's equations for time varying fields,									
	Displacement current, Poynting Theorem and Poynting vector.									
	(05 hrs)									

Advanced Topics in this Subject: List of industrial applications of electrostatics, Concept of Magnetic Levitation, List of applications of electromagnetics in communication systems.

Course Outcomes: Upon successful completion of the course

CO1: The student will be able to calculate the electric field and potentials using Gauss's law and Laplace equation

CO2: The student will be able to evaluate capacitance for different configurations

CO3: The student will be able to find magnetic field intensity of different configurations using Biot-Savart's law and Ampere's law

CO4: The student will be able to calculate magnetic forces and torque produced by currents in magnetic fields

CO4: The student will be able to quantify inductance and evaluation of induced EMF in time varying fields

Text books:

- 1. "Elements of Electro Magnetics" by Matthew N.O.Sadiku, Oxford Publications, 7th edition
- 2. "Engineering Electro Magnetics" by William H. Hayt & John. A. Buck Mc. Graw-Hill Companies, 7th Editon.2006.

Reference books:

- 1. "Electro Magnetic Fields" by Dr.Y.Mallikarjuna Reddy, Universities Press.
- 2. "Introduction to Electro Dynamics" by D J Griffiths, PHI Pvt. Ltd, 2nd editon.
- 3. "Electro Magnetics" by J. D Kraus Mc Graw-Hill Inc. 4th edition 1992.
- 4. "Electro Magnetic Theory" by U.A. Bakshi and A.V.Bakshi, Technical Publications

e- Resources & other digital material

- 1. https://www.sciencedirect.com/topics/medicine-and-dentistry/electromagnetic-field
- 2. https://phys.libretexts.org/
- 3. https://nptel.ac.in/courses/108/106/108106073/
- 4. https://nptel.ac.in/courses/117/103/117103065/
- 5. https://nptel.ac.in/courses/108/104/108104087/
- 6. https://nptel.ac.in/courses/115/101/115101005/

Micro-Syllabus

Unit-1: Electrostatic Fields

Coulomb's Law ,Electric Field Intensity (EFI) ,EFI due to a line, surface and volume charge, Work done in moving a point charge in an electrostatic field, Electric Potential , Properties of potential function, Potential gradient, Gauss's law, Application of Gauss's Law, Maxwell's first law, Laplace's and Poison's equations, Solution of Laplace's equation in one variable.

Unit	Module	Micro content				
	Coulomb's Law	Statement, explanation, Force due to				
		number of charges				
		Problems - Finding force between				
		two point charges, charges located a				
		the corners of a triangle and square				
	Electric Field Intensity (EFI)	Definition, expression and \vec{E} due to number of charges.				
	EFI due to a line, surface and	\vec{E} due to finite length of line charge,				
	volume charge	infinite line charge, circular ring,				
	-	circular disc, infinite sheet				
	Work done in moving a point charge in an electrostatic field	$W = -Q \int_A^B \vec{E} \cdot \vec{d}$				
	Electric Potential	Definition and potential due to point				
		charge, line charge of finite length				
1. Electrostatic		and circular disc.				
Fields	Properties of potential function	Properties only				
	Potential gradient	Derivation for $E = -grad(V)$				
	Gauss's law	Electric flux, flux density, relation				
		between \overrightarrow{D} and \overrightarrow{E} , statement and				
		proof for Gauss law				
	Application of Gauss's Law	To find \vec{E} due to infinite line, sheet,				
		co-axial cables, concentric spherical				
		shells and spheres				
	Maxwell's first law,	Divergence theorem, proof for div				
	div (D) =ρv	$(D) = \rho_v$				
	Laplace's and Poison's equations	Statements and proofs.				
	Solution of Laplace's equation in	Applications to find potential, flux				
	one variable	density or field intensity due to				
		concentric spheres, coaxial cables				
		and coaxial cones				

Unit-2: Dielectrics and Capacitance: Electric dipole, Dipole moment, Potential and EFI due to an electric dipole, Torque on an Electric dipole in an electric field, Behavior of conductors in an electric field, Electric field inside a dielectric material, Polarization, Dielectric – Conductor and Dielectric – Dielectric boundary conditions, Capacitance, Capacitance of parallel plate and spherical and co-axial capacitors with composite dielectrics, Energy stored and energy density in a static electric field, Current density, Conduction and Convection current densities, Ohm's law in point form – Equation of continuity.

Unit	Module	Micro content			
	Electric dipole	Definition, representation, difference between physical and pure dipoles			
	Dipole moment	Definition and expression			
	Potential and EFI due to an electric dipole	Derivations and problems			
2. (A).	Torque on an Electric dipole in an electric field	Derivations and problems			
Dielectrics	Behavior of conductors in an electric field	Explanation with properties			
	Polarization	Definition and expression			
	Electric field inside a dielectric material	Derivation			
	Dielectric – Conductor and Dielectric – Dielectric boundary conditions	Derivations and problems			
	Capacitance, Capacitance of parallel plate capacitor with composite dielectrics	Definition, expression, derivations			
	Capacitance of spherical and co-axial capacitors	Derivations			
2. (B). Capacitance	Energy stored and energy density in a static electric field	Definitions and derivations			
_	Current density, Conduction and Convection current densities,	Definitions			
	Ohm's law in point form	Proof			
	Equation of continuity	Statement and proof			

Unit-3: Static magnetic fields: Biot-Savart's law, Magnetic field intensity (MFI), MFI due to a straight current carrying filament, MFI due to circular, rectangular, square and solenoid current Carrying wire, Maxwell's second Equation, Ampere's circuital law and its applications, MFI due to an infinite sheet of current and a long current carrying filament, Differential form of Ampere's circuital law (Maxwell's third equation).

Unit	Module	Micro content
3. Static Magnetic	Magnetic field intensity (MFI)	Concepts and definitions

fields	Biot-Savart's law	Statement and proof					
	MFI due to a straight current	For finite and infinite length					
	carrying filament	filaments- derivation and problems					
	MFI due to circular, square and	Derivations, numericals and MFI					
	solenoid current Carrying wire	due to Polygon of n sides.					
	Maxwell's second Equation,	Statement and proof					
	div(B)=0						
	Ampere's circuital law	Statement and proof – Integral form					
	Ampere's law applications, MFI	Derivation and numerical examples,					
	due to an infinite sheet of current	MFI due to solenoid, toroid					
	and a long current carrying						
	filament						
	Differential form of Ampere's	Statement and proof, Numerical					
	circuital law	examples					
	(Maxwell's third equation, Curl						
	(H) =Jc,)						

Unit-4: Force in Magnetic fields: Magnetic force on Moving charges in a Magnetic field, Lorentz force equation, Force on a current element in a magnetic field, Force on a straight and a long current carrying conductor in a magnetic field, Force between two straight long and parallel current carrying conductors, Magnetic dipole and dipole moment, A differential current loop as a magnetic dipole, Torque on a current loop placed in a magnetic field.

Unit	Module	Micro content
	Magnetic force on moving charges in a Magnetic field	Concepts and derivation
	Lorentz force equation	Derivation and numericals
	Force on a current element in a magnetic field	Derivation and numericals
4. Force in	Force on a straight and a long current carrying conductor in a magnetic field	Derivation and numericals
Magnetic	Force between two straight long	Derivation and nature of force and
fields	and parallel current carrying conductors	numericals
	Magnetic dipole and dipole moment	Definitions expressions
	A differential current loop as a magnetic dipole	Explanation
	Torque on a current loop placed in a magnetic field.	Derivation and numericals

Unit-5: Electromagnetic Induction

Inductance: Self and Mutual inductance, Determination of self-inductance of a solenoid and toroid, Mutual inductance between a straight long wire and a square loop wire in the same plane, Energy stored and density in a magnetic field.

Time varying fields: Faraday's laws of electromagnetic induction, Integral and point forms, Maxwell's fourth equation, Statically and dynamically induced EMFs, Modification of Maxwell's equations for time varying fields, Displacement current, Poynting theorem and Poynting vector.

Unit	Module	Micro content				
	Self and Mutual inductance	Definitions and expressions,				
		Coefficient of coupling				
	Determination of self-inductance	Derivations and problems				
5. (A).	of a solenoid and toroid					
Inductance	Mutual inductance between a	Derivation				
muuctanee	straight long wire and a square					
	loop wire in the same plane					
	Energy stored and density in a	Definitions, derivations and				
	magnetic field.	problems				
	Faraday's laws of electromagnetic	Statement				
	induction					
	Integral and point forms,	Derivations - Curl (E) = - $\partial B/\partial t$				
	Maxwell's fourth equation					
	Statically and dynamically	Expressions, derivations and				
1. (B). Time	induced EMFs	problems				
varying fields	Modification of Maxwell's	Modified Ampere's law, time and				
	equations for time varying fields	frequency varying fields				
	Displacement current	Definition, significance and				
		problems				
	Poynting Theorem and Poynting	Statement and proof only				
	vector					

CO-PO mapping Table with Justification:Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (High: 3, Medium: 2, Low: 1)

CO/	PO1	DO2	DO2	DO4	DO5	DO6	DO7	DOS	DOO	PO10	DO11	DO12	PSO-	PSO-
PO	POI	POZ	PO3	PO4	POS	PO6	PO7	PU	PO9	POIU	POH	PO12	1	2
CO1	2	2	3										3	
CO2	3	2	2	2		1						1	3	2
CO3	3	2	3	2		1						1	2	3
CO4	2	2	2	2	1	1						1	2	2
CO5	2	2	1	1			1						1	1

PYTHON PROGRAMMING LAB

Prerequisites: Knowledge of any programming language

Course Objectives:

- 1. Experiment with scripting language
- 2. Evaluate expression evaluation, control statements
- 3. Use Data structures
- 4. Model Functions, Modules and packages
- 5. Outline OOP through Python and Exception Handling
- 6. Select required Python Standard Library for GUI

Course Outcomes:

- **CO-1:** Demonstrates the use of an interpreted language for problem solving through control statements including loops and conditionals.
- **CO-2:** Practice with data structures for quick programming solutions.
- CO-3: Demonstrates software building for real needs through OOPS approach.
- **CO-4:** Comprehend functions and modules & exception handling.
- **CO-5:** Use of python standard libraries to handle IOT based applications.

LIST OF EXPERIMENTS

PART - A: SOFTWARE

(Students must perform Any 15 experiments from the following list)

- 1. Write a program to compute distance between two points taking input from the user (Using Pythagorean Theorem)
- 2. Write a program add.py that takes 2 numbers as command line arguments and prints its sum.
- 3. Write a Program for checking whether the given number is a even number or not.
- 4. Write a program to identify the quadrant of a given angle using elif control statement.
- 5. Write a Program to set the password considering string length not less than six characters using for loop within a chance of limit given as 5.
- 6. Write a program using a while loop that asks the user for a number, and prints a countdown from that number to zero.
- 7. Find the sum of all the primes below two million.
- 8. Considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.
- 9. Write a program to count the numbers of characters in the string and store them in a dictionary data structure
- 10. Write a program to use split and join methods in the string and trace a birthday with a dictionary data structure.
- 11. Write a program to print each line of a file in reverse order.
- 12. Write a program to compute the number of characters, words and lines in a file.
- 13. Find mean, median, mode for the given set of numbers in a list.
- 14. Write a function dups to find all duplicates in the list.
- 15. Write a function unique to find all the unique elements of a list.

- 16. Write a function cumulative_product to compute cumulative product of a list of numbers.
- 17. Write a function reverse to reverse a list. Without using the reverse function.
- 18. Implement Bank account of a customer with data members: acno, account holder name, account type, balance. Implement necessary methods like set(), get(), withdraw() and deposit().
- 19. Implement addition, subtraction operations on a complex number using Python classes.
- 20. Implement a simple program to demonstrate Exceptions in python.

PART – B: HARDWARE

(Students must perform Any 5 experiments from the following list)

- 1. Design and implement a system that measures the distance between an object and current position using Raspberry Pi 4B.
- 2. Design and implement a system that can detect and alert movement of an object/person using Raspberry Pi 4B.
- 3. Design and implement a system that measures the temperature of the room using Raspberry Pi 4B.
- 4. Interface an LED and a 7-Segment display to a Raspberry Pi 4B board.
- 5. Interface a relay switch to Raspberry Pi board and demonstrate its operation.
- 6. Interface a camera module and store an image/video in a specific location on Raspberry Pi 4B board.

CO-PO Mapping Matrix:

CO/ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12
CO1	-	2	2	1	_	-	-	-	-	-	-	-
CO2	-	2	2	2	2	-	-	-	-	-	-	-
CO3	1	2	2	2	2	-	-	-	-	-	-	-
CO4	1	2	2	2	2	-	-	-	-	-	-	-
CO5	1	2	2	2	2	-	-	-	-	-	-	-
CO6	1	2	2	2	2	-	-	-	-	-	-	-

CO-PSO Mapping matrix:

CO/ PSO	PSO-1	PSO-2
CO1	1	1
CO2	2	2
CO3	2	2
CO4	2	2
CO5	2	2

II Year I Semester

L T P C 0 0 3 1.5

ELECTRICAL CIRCUIT ANALYSIS LAB

Prerequisites: Basic Circuit Analysis, Electrical Circuit Analysis

Course Objectives:

- 1. To analyze different circuits using network theorems.
- 2. To analyse two port network parameters.
- 3. To understand the resonance condition of AC circuits
- 4. To determine the self and mutual inductance of coupled circuit.
- 5. To acquire skills of electrical circuit studies using MATLAB.

LIST OF EXPERIMENTS

Any ten experiments from the following

- 1. Verification of Thevenin's and Norton's Theorems.
- 2. Verification of Superposition theorem and Reciprocity theorem
- 3. Verification of Maximum Power Transfer Theorem.
- 4. Verification of Compensation Theorem.
- 5. Verification of Millmann's Theorem.
- 6. Verification of series Resonance of AC circuit.
- 7. Determination of Choke coil parameters
- 8. Determination of Z and Y Parameters of a network
- 9. Determination of Transmission and hybrid parameters of a network
- 10. Determination of self inductance and mutual inductance of coupled circuit
- 11. Simulation of mesh analysis of electrical network.
- 12. Simulation of nodal analysis of electrical network.
- 13. Simulation of determining form factor, peak factor of sinusoidal wave, square wave.
- 14. Simulation of parallel resonance of AC circuit.
- 15. Simulation of Verification of Kirchhoff's current law and voltage law

Course Outcomes:

Students are able to

- 1. Understand network theorems for different circuits.
- 2. Evaluate the two port network parameters
- 3. Examine the resonance condition of AC circuits
- 4. Determine the self and mutual inductance of coupled circuits.
- 5. Analyse electrical circuits using software.

CO-PO mapping Table with justification

CO/ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	2		2	1					1	2	1
CO2	2	1	1	1		2	1					1	2	1
CO3	2	2	1	1		1	1					1	2	1
CO4	2	2	2	1		2	2					2	2	1
CO5	2	1	2	1		1	1					2	2	1

L T P C 0 0 3 1.5

BASIC ELECTRONIC DEVICES AND CIRCUITS LAB

Course Objectives:

- 1. To study basic electronic components
- 2. To observe characteristics of electronic devices

Learning Outcomes: At the end of the course the students can able to

- 1. Measure voltage, frequency and phase of any waveform using CRO.
- 2. Generate sine, square and triangular waveforms with required frequency and amplitude using function generator.
- 3. Analyze the characteristics of different electronic devices such as diodes, transistors etc.
- 4. Analyze and design simple circuits like rectifiers, power supplies and amplifiers etc.,

Electronic Workshop Practice:

- 1. Identification, Specifications and Testing of active devices, Diodes, BJTs, JFETs, LEDs, LCDs, SCR, UJT.
- 2. Soldering Practice- Simple circuits using active and passive components.
- 3. Study and operation of Ammeters, Voltmeters, Transformers, Analog and Digital Millimeter, Function
- 4. Regulated Power Supply and CRO.

List of Experiments

Any 10 of the following experiments are to be conducted

- 1. P.N Junction Diode Characteristics
 - Part A: Germanium Diode (Forward bias& Reverse bias)
 - Part B: Silicon Diode (Forward Bias only)
- 2. Zener Diode Characteristics
 - Part A: V-I Characteristic
 - Part B: Zener Diode as Voltage Regulator
- 3. Rectifiers (without and with c-filter)
 - Part A: Half-wave Rectifier
 - Part B: Full-wave Rectifier
- 4. BJT Characteristics (CE Configuration)
 - Part A: Input Characteristics
 - Part B: output Characteristics
- 5. FET Characteristics
 - Part A: Drain Characteristics
 - Part B: Transfer Characteristics
- 6. SCR Characteristics
- 7. UJT Characteristics
- 8. Transistor Biasing
- 9. CRO Operation and its Measurement
- 10. BJT-CE Amplifier
- 11. Emitter Follower –CC Amplifier
- 12. Design any oscillator and measure frequency (RC PHASE SHIFT, WEIN BRIDGE, HARTLEY, and COLPITT'S)

13. Design of variable DC power supply (application).

CO-PO mapping Table with Justification:

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (High: 3, Medium: 2,Low: 1)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1	3	2												2
CO2	3	2												2
CO3	3	2												2
CO4	3	3												3
CO5	3	3												2

L T P C 2 0 0 0

ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE

Pre-Requisites: Nil

Course objectives: To facilitate the students with the concepts of Indian traditional knowledge and to make them understand the Importance of roots of knowledge system.

- 1. The course aim of the importing basic principle of third process reasoning and inference sustainability is at the course of Indian traditional knowledge system
- 2. To understand the legal framework and traditional knowledge and biological diversity act 2002 and geographical indication act 2003.
- 3. The courses focus on traditional knowledge and intellectual property mechanism of traditional knowledge and protection.
- 4. To know the student traditional knowledge in different sector.

Unit No	Contents	Mapped CO
I	Introduction to traditional knowledge: Define traditional knowledge, nature and	CO1
	characteristics, scope and importance, kinds of traditional knowledge, the physical	
	and social contexts in which traditional knowledge develop, the historical impact	
	of social change on traditional knowledge systems. Indigenous Knowledge (IK),	
	characteristics, traditional knowledge vis-à-vis indigenous knowledge, traditional	
	knowledge Vs western knowledge traditional knowledge vis-à-vis formal	
	knowledge	
II	Protection of traditional knowledge: the need for protecting traditional knowledge	CO2
	Significance of TK Protection, value of TK in global economy, Role of	
	Government to harness TK.	
III	Legal framework and TK: A: The Scheduled Tribes and Other Traditional Forest	CO3
	Dwellers (Recognition of Forest Rights) Act, 2006, Plant Varieties Protection and	
	Farmers Rights Act, 2001 (PPVFR Act); B:The Biological Diversity Act 2002 and	
	Rules 2004, the protection of traditional knowledge bill, 2016. Geographical	
	indications act 2003.	
IV	Traditional knowledge and intellectual property: Systems of traditional knowledge	CO4
	protection, Legal concepts for the protection of traditional knowledge, Certain non	
	IPR mechanisms of traditional knowledge protection, Patents and traditional	
	knowledge, Strategies to increase protection of traditional knowledge, global legal	
	FORA for increasing protection of Indian Traditional Knowledge.	
V	Traditional knowledge in different sectors: Traditional knowledge and	CO5
	engineering, Traditional medicine system, TK and biotechnology, TK in	
	agriculture, Traditional societies depend on it for their food and healthcare needs,	
	Importance of conservation and sustainable development of environment,	
	Management of biodiversity, Food security of the country and protection of TK.	

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1: understand the concept of Traditional knowledge and its importance

CO2: Know the need and importance of protecting traditional knowledge.

CO3: Understand legal framework of TK, Contrast and compare the ST and other traditional forest dwellers

CO4: Know the various enactments related to the protection of traditional knowledge.

CO5: Understand the concepts of Intellectual property to protect the traditional knowledge

Text books:

- 1. Traditional Knowledge System in India, by Amit Jha, 2009
- 2. Traditional Knowledge System and Technology in India by Basanta Kumar Mohanta and Vipin Kumar Singh, Pratibha Prakashan 2012.
- 3. Traditional Knowledge System in India by Amit Jha Atlantic publishers, 2002
- 4. "Knowledge Traditions and Practices of India" Kapil Kapoor, Michel Danino

e- Resources & other digital material:

- 1. https://www.youtube.com/watch?v=LZP1StpYEPM
- 2. http://nptel.ac.in/courses/121106003/

LINEAR IC APPLICATIONS

PRE-REQUISITES: Basics of Electronic Devices, KCL, KVL& Network Theorems

Course objectives:

- To understand the basic operation and performance parameters of differential amplifier and operational amplifier.
- To learn the linear and non-linear applications of operational amplifier.
- To understand the analysis & design of different types of active filters using Op-Amps.
- To learn the internal structure, operation and applications of different IC's.
- To understand the various types of Digital to Analog and Analog to Digital converters

	Syllabus	
Unit No	Contents	Mapped CO
I	Differential Amplifier and Operational Amplifier Characteristics: [13 hours] Analysis of Differential Amplifier using BJTs: DC & AC analysis of all the four configurations, Types of Integrated circuits: packages, temperature ranges and power supplies. Basic block diagram of Operational Amplifier, Symbol of operational amplifier, operational amplifier ideal characteristics and specifications of IC 741, DC&AC characteristics of operational Amplifier: input bias current, input offset current, input offset voltage, Drift, Slew rate, CMRR, PSRR; pin diagram of IC 741, equivalent diagram of operational amplifier.	
II	Linear and Non-Linear applications of Operational Amplifier: [13 hours] Inverting and Non-inverting amplifier, Integrator and differentiator, Difference amplifier, Instrumentation amplifier, AC amplifier, V to I, I to V converters, Log and Anti log Amplifiers, Precision rectifiers. Comparators, Multivibrators, Triangular and Square wave generators.	CO2
III	Active Filters, AnalogMultipliers and Modulators: Design & Analysis of Butter worth active filters –1 st order, 2 nd order LPF, HPF filters. Band pass, Band reject and all pass filters. Four Quadrant Multiplier, IC 1496, Sample & Hold circuits.	CO3
IV	Timers & Phase Locked Loops: Introduction to 555 timer, functional diagram, Monostable and Astable operations and applications, Schmitt Trigger. PLL- introduction, block schematic, Principles and description of individual blocks,565 PLL, Applications of PLL-Frequency Multiplication, frequency translation, Applications of VCO (566).	
V	Data Converters and Applications: Introduction, basic DAC techniques, weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC, and IC 1408 DAC, Sample and Hold circuit, Different types of ADCs - parallel comparator type ADC, counter type ADC, successive	(1)5

approximation ADC and dual slope ADC. DAC and ADC Specifications, illustrative problems on resolution of ADC and DAC.

Course Outcomes

Upon successful completion of the course, the student will be able to

CO1: Explain the DC and AC analysis of Differential Amplifier, and performance parameters of OP-Amp{Understand level, KL2}

CO2: Demonstrate the usage of operational amplifier in various applications {Apply level, KL3}

CO3: Explain the working principles of Active filters, Multipliers and Modulators using Op-Amp.{Understand level, KL2}

CO4: Learn the internal structure, pin diagrams and operations of different IC's {Apply level, KL3}

CO5: Learn the circuits of data converters and Compare among them in terms of Parameters{ Apply level, KL3Analyze level, KL4}

Learning Resources

Text books:

- 1. Linear Integrated Circuits D. Roy Choudhury, New Age International (p) Ltd, 2nd Edition,2003.
- 2. Op-Amps & Linear ICs Ramakanth A. Gayakwad, PHI,1987.
- 3. Linear Integrated Circuits by Salivahan-3rd-Edition, McGrawHill,2018

Reference books

- 1. Operational Amplifiers & Linear Integrated Circuits –Sanjay Sharma;SKKataria&Sons;2nd Edition,2010
- 2. Design with Operational Amplifiers & Analog Integrated Circuits Sergio Franco, McGraw Hill, 1988.
- 3. Operational Amplifiers & Linear ICs David A Bell, Oxford Uni. Press, 3rd Edition, 2011.
- 4. J. V. Wait, L. P. Huelsman and G. A. Korn, "Introduction to Operational Amplifier theory and applications", McGraw Hill U. S., 1992

Micro-Syllabus

Unit – **1:** Differential Amplifier and Operational Amplifier Characteristics: Analysis of Differential Amplifier using BJTs: DC & AC analysis of all the four configurations, Types of Integrated circuits: packages, temperature ranges and power supplies.

Basic block diagram of Operational Amplifier, Symbol of operational amplifier, operational amplifier ideal characteristics and specifications of IC 741, DC & AC characteristics of operational Amplifier: input bias current, input offset current, input offset voltage, Drift, Slew rate, CMRR, PSRR; pin diagram of IC 741, equivalent diagram of operational amplifier.

Unit	Module	Micro content			
		Terms and definitions of Differential Amplifier			
1a	Differential Amplifier	Modes of Operation and Types of Differential			
		Amplifiers, DC & AC analysis of all the four			
		configurations.			
1h	Integrated circuits	Classification of Integrated circuits –based on			
1b	integrated circuits	inputs, power supply, Temperature range, IC			

		package type and no of active devices.					
		Basic block diagram of Operational Amplifier.					
2a	Operational Amplifier	Ideal and practical Op-amp, Voltage transfers Characteristics.					
		DC Characteristics of Op Amp (input bias current,					
	DC & AC	input offset current, input offset voltage, Thermal					
	characteristics of	Drift)					
2b	operational Amplifier	AC Characteristics of Op Amp (Slew Rate) –Simple					
20		Numerical problems					
	IC 741	Pin diagram of IC 741& its specifications					
	IC /41	Equivalent diagram of operational amplifier.					

Unit-2: Linear and Non-Linear applications of Operational Amplifier:

Inverting and Non-inverting amplifier, Integrator and differentiator, Difference amplifier, Instrumentation amplifier, AC amplifier, V to I, I to V converters, Log and Anti log Amplifiers, Precision rectifiers. Comparators, Multivibrators, Triangular and Square wave generators.

Unit	Module	Micro content				
3a.	Linear and Non-linear applications of Op-amp	Inverting and Non-inverting amplifier-Simple numerical problems Voltage Follower, Summing Amplifier, Difference Amplifier, Simple Numerical problems.				
3b	Linear and Non-linear applications of Op-amp	Ideal, Practical Integrator and ideal, partial Differentiator, Simple Numerical problems.				
4a	Linear and Non-linear applications of Op-amp	Instrumentation amplifier AC amplifier V to I, I to V converters, Log and Anti log Amplifiers Precision rectifiers				
4b	Comparators, wave Generators	Multivibrators – Monostable, Astable Multivibrator Triangular and Square wave generators Inverting Comparators, Non-inverting comparator, Schmitt Trigger				

Unit-3: Active Filters, Analog Multipliers and Modulators:

Design & Analysis of Butter worth active filters –1storder, 2ndorder LPF, HPF filters. Band pass, Band reject and all pass filters. Four Quadrant Multiplier, IC 1496, Sample & Hold circuits.

Unit	Module	Micro content			
5a.		Classifications of Filters			
Ja.	Active Filters	Design procedure for 1 st order and 2nd order LPF			
		and HPF, simple numerical problems			
5b	Active Filters	Design procedure for Band Pass (WBP, NBP) and			
30	Active Filters	Band Reject (WBR,NBR) filters - simple numerical			

		problems				
		Design of All pass filters				
6a	Analog Multipliers and	Sample & Hold circuits Analysis				
0a	Modulators	Performance parameters of Sample & Hold circuits,				
	Wiodulators	Modulators(IC 1496).				
6h	Analog Multipliers and	Analog voltage Multiplier, Analog voltage Divider				
6b	Modulators	Circuits analysis, Four Quadrant Multiplier.				

Unit-4:Timers & Phase Locked Loops:

Introduction to 555 timer, functional diagram, Monostable and Astable operations and applications, Schmitt Trigger. PLL- introduction, block schematic, Principles and description of individual blocks,565 PLL, Applications of PLL-Frequency Multiplication, frequency translation, Applications of VCO (566).

Unit	Module	Micro content					
7a.		Introduction to 555 timer, functional diagram					
/a.	Timers	Monostable multi vibrator using 555 timer and					
		applications.					
7b	Timers	Astable multi vibrator using 555 timer and applications.					
, , ,		Schmitt trigger using 555 timer and applications					
		Block diagram and operation of PLL					
8a.	Phase Locked Loops	Terms and Derivation of Lock range, Capture Range related to PLL					
		Applications of PLL(Frequency multiplier,					
		Frequency translator)					
		Operation of Monolithic PLL(IC 565)					
8b	Phase Locked Loops	Operation of Voltage controlled Oscillator(IC 566)					
		Analog and Digital Phase detectors					

Unit-5: Data Converters and Applications:

Introduction, basic DAC techniques, weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC, and IC 1408 DAC, Sample and Hold circuit, Different types of ADCs - parallel comparator type ADC, counter type ADC, successive approximation ADC and dual slope ADC. DAC and ADC Specifications, illustrative problems on resolution of ADC and DAC.

Unit	Module	Micro content			
0.0		Introduction ,Basic DAC techniques			
9a	DAC techniques	Weighted resistor DAC,			
		R-2R ladder DAC,			
O.I.	ADC tachniques	Parallel comparator type ADC			
9b	ADC techniques	Successive approximation ADC			
10a.	DAC to sharious	Inverted R-2R DAC,			
	DAC techniques	Counter type ADC,			

10b	ADC tachniques	IC 1408 DAC,
100	ADC techniques	Dual slope ADC

CO-PO mapping Table with Justification

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (**High: 3, Medium: 2, Low: 1**)

Mapping	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
C01	3	2											3	
C02		3		2									2	2
C03	2	3											2	
C04	2			3									3	2
C05	2				2								2	2

L T P C 2 1 0 3

ELECTRICAL MACHINES - II

PRE-REQUISITES: 1) Electrical Machines-I

Course objectives: The student should be able to

- Understand the principle of operation and performance of 3-phase induction motor.
- Quantify the starting and speed control of induction motor.
- Study the mechanism of torque producing and starting methods of a single-phase Induction Motor.
- Understand the Principle, Voltage Regulation and Parallel operation of synchronous generator.
- Understand the operation, performance and starting methods of synchronous motor.

	Syllabus	/
Unit No	Contents	Mapped CO
I	3-phase Induction Motors: Constructional details of cage and wound rotor machines - production of rotating magnetic field - principle of operation - rotor emf and rotor frequency - rotor current and pf at standstill and during running conditions - rotor power input, rotor copper loss and mechanical power developed and their interrelationship - equivalent circuit - phasor diagram-Numerical Problems. (10 hrs)	CO1
п	Characteristics of Induction Motors: Torque equation -expressions for maximum torque and starting torque - torque slip characteristics - crawling and cogging. (04 hrs) Starting and Testing methods of Induction Motors: No load and blocked rotor tests - circle diagram for predetermination of performance—Numerical Problems-Methods of starting (Auto-Transformer and DOL Starters) - Speed control using V/f method. (10 hrs)	CO2
Ш	Single Phase Motors: Single phase induction motors— Constructional features -Problem of starting—Double revolving field theory—Equivalent circuit. (04 hrs) Starting methods of single phase Induction motor - shaded pole motors-A.C Series Motor. (04 hrs)	CO3
IV	Synchronous generator: Constructional features of non-salient and salient pole type-E.M.F equation—Voltage regulation by synchronous impedance method— MMF method and Potier triangle method— phasor diagrams— Two reaction analysis of salient pole machines and phasor diagram. (08 hrs) Parallel operation of synchronous Generators: Parallel operation with	CO4

	infinite bus and other alternators-Synchronizing po	wer – Load sharing-								
	Numerical problems. (05 hrs)									
	Synchronous motor operation, starting and performance:									
	Principle operation – Phasor diagram – Variation of current and power factor									
\mathbf{V}	with excitation –Methods of starting -Hunting and its	suppression methods- CO5								
	Synchronous condenser-Applications- Nun	nerical problems.								
	(08 hrs)									

Advanced topics in this course:

- 1. Time constants (transient and sub transient) of synchronous machines.
- 2. Static and dynamic characteristics of synchronous machines.

Course Outcomes

Upon successful completion of the course, the student will be able to

CO1: Explain the operation and performance of three phase induction motor.{Knowledge level, KL1}

CO2: Analyse the torque-speed relation, starting and speed control of induction motor. {Analyze level, KL4}

CO3: Describe the torque production and starting methods of single-Phase induction motor. **Knowledge level, KL1**}

CO4: Empathise the Principle, Voltage Regulation and Parallel operation of synchronous generator. **{Understand level, KL2}**

CO5: Realize the operation, performance and starting methods of synchronous motor. {Analyze level, KL4}

Learning Resources

Text books:

- 1. Theory & Performance of Electrical Machines by J.B.Guptha. S.K.Kataria& Sons
- 2. Electrical Machines P.S. Bhimbra, Khanna Publishers .

Reference books:

- 1. Electrical Machines by D. P.Kothari, I.J. Nagarth, McGrawHill Publications, 4th edition.
- 2. Electrical Machinery by AbijithChakrabarthi and SudhiptaDebnath,McGraw Hill education 2015.
- 3. Electrical Machinery Fundamentals by Stephen J Chapman McGraw Hill education 2010.
- 4. Electric Machinery by A.E.Fitzgerald, Charleskingsley, Stephen D. Umans, TMH.

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/108/105/108105131/
- 2. https://nptel.ac.in/courses/108/106/108106072/
- 3. www.nptelvideos.in/2012/11/electrical-machines-ii.html
- 4. https://nptel.ac.in/courses/108/106/108106023/

Micro-Syllabus

Unit-1:3-phase Induction Motors:

Constructional details of cage and wound rotor machines- production of rotating magnetic field - principle of operation -rotor emf and rotor frequency - rotor current and pf at standstill and during running conditions - rotor power input, rotor copper loss and mechanical power developed and their interrelationship — equivalent circuit — phasor diagram- Numerical Problems.

Unit	Module	Micro content								
1a.or 2a. 3-phase Induction	Construction of 3- phase induction motor	Constructional details of cage and wound rotor machines-								
Motors construction and principle operation	Principle operation	Production of rotating magnetic field -principle of operation -rotor emf and rotor frequency- rotor current and pf at standstill and during running conditions								
1b.or 2b. Losses and equivalent	Rotor power input and losses	Rotor power input, rotor copper loss and mechanical power developed and their interrelationship								
circuitof 3-phase Induction Motors	Equivalent circuit	Equivalent circuit – phasor diagram- Numerical Problems								

Unit-2: Characteristics of Induction Motors: Torque equation -expressions for maximum torque and starting torque - torque slip characteristics - crawling and cogging.

Starting and Testing methods of Induction Motors:

No load and blocked rotor tests - circle diagram for predetermination of performance—Numerical Problems-Methods of starting (Auto-Transformer and DOL Starters)-Speed control using V/f method.

Unit	Module	Micro content							
3a.or 4a. Characteristics	Torque equation	Torque equation -expressions for maximum torque and starting torque							
of Induction	Characteristics	Torque slip characteristics							
Motors	Crawling and Cogging	Crawling and Cogging							
3b.or 4b.	Tests	No load and blocked rotor tests							
Starting and	Predetermination of	Circle diagram for predetermination of							
Testing methods	performance	performance–Numerical Problems							
of Induction Motors:	Methods of starting	Auto-Transformer and DOL Starters- Speed control using V/f method.							

Unit-3:Single Phase Motors:

Single phase induction motors—Constructional features-Problem of starting—Double revolving field theory—Equivalent circuit.

Starting methods of single phase Induction motor – shaded pole motors-A.C Series Motor.

	• •	•
Unit	Module	Micro content
5a.or 6a.	Constructional	Constructional features- Problem of starting–
Single phase	features & Problem of	Double revolving field theory–Equivalent circuit.
induction motors	starting	Double revolving field theory—Equivalent circuit.
5b.or 6b.	Starting methods of	
Starting methods	single phase Induction	Starting methods of single phase Induction motor
of single phase	0 1	 shaded pole motors-A.C Series Motor.
Induction motor	motor	

Unit-4:Synchronous generator:

Constructional features of non-salient and salient pole type-E.M.F equation—Voltage regulation by synchronous impedance method—MMF method and Potier triangle method—phasor diagrams—Two reaction analysis of salient pole machines and phasor diagram.

Parallel operation of synchronous Generators: Parallel operation with infinite bus and other alternators-Synchronizing power—Load sharing-Numerical problems.

Unit	Module	Micro content
	Constructional features	Constructional features of non–salient and salient pole type– E.M.F equation
7a.or 8a. Synchronous generator	Voltage regulation	Voltage regulation by synchronous impedance method– MMF method and Potier triangle method-phasor diagrams
	Two reaction analysis	Two reaction analysis of salient pole machines and phasor diagram.
7b. or 8b. Parallel operation of synchronous Generators:	Parallel operation& Load sharing	Parallel operation with infinite bus and other alternators -Synchronizing power – Load sharing-Numerical problems.

Unit-5:Synchronous motor operation, starting and performance:

Principle operation—Phasor diagram —Variation of current and power factor with excitation — Methods of starting —Hunting and its suppression methods-Synchronous condenser-Applications-Numerical problems.

Unit	Module	Micro content					
9a.or 10a.	Principle of operation	Principle operation—Phasor diagram –Variation					
Synchronous motor	Finiciple of operation	of current and power factor with excitation					
9b.or 10b.Methods of startingSynchronou s motor	Methods of starting	Methods of starting –Hunting and its suppression methods-Synchronous condenser-Applications-Numerical problems.					

CO-PO mapping Table with justification

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of													
	correlations (High: 3, Medium: 2,Low: 1)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-	PSO-
													1	2
CO1	2	2	-	-	1	-	-	-	-	-	-	1	2	2
CO2	2	3	-	-	1	-	-	-	-	-	-	-	2	-
CO3	3	1	-	-	1	-	-	-	-	-	-	1	1	2
CO4	2	3	-	-		-	-	-	-	-	-	-	2	1
CO5	2	1	-	-	1	-	-	-	-	-	-	-	1	_

L T P C 2 1 0 3

CONTROL SYSTEMS

Prerequisites: Laplace Transforms, Differential equations, Matrix Algebra, Basic Circuit Analysis

Course Objectives:

- 1. To learn the mathematical modeling of electrical and mechanical systems
- 2. To analyze the time response of first and second order systems
- 3. To investigate the stability using Routh's stability criterion and Root locus.
- 4. To investigate the stability using Bode plot and Nyquist criterion.
- 5. To formulate state models and the concepts of Controllability and Observability

Unit No	Contents							
		CO						
I	Mathematical Modeling of Control Systems: Introduction to control systems, Classifications - Open Loop and closed loop, transfer function, Mathematical Modelingof electrical networks, Translational and Rotational systems, analogous systems, Transfer Function of DC & AC Servo motor-Synchros, -Block diagram algebra – Signal flow graph - Mason's gain formula. (15 Hrs)	CO1						
II	Time Response Analysis: Standard test signals - Time response of first and second order systems - Time domain specifications - Steady state errors and error constants –Effects of Feed-Back-Dominant Closed loop poles- PD - PI- PID controllers . (10Hrs)	CO2						
III	Stability and Root locus Technique: The concept of stability – Routh's stability criterion Procedure and problems –limitations of Routh's stability – Root locus concept - construction of root loci –Effect of Adding open loop poles and Zeros on Root Loci . (10Hrs)	CO3						
IV	Frequency Response Analysis: Introduction - Frequency domain specifications-Bode diagrams- transfer function from the Bode Diagram-Polar Plots, Nyquist Stability criterion- relative stability analysis- Phase margin and Gain margin- Characteristics of Lag, Lead and Lag-Lead compensators. (15 Hrs)	CO4						
V	State Space Analysis: Concepts of state, state variables, state equation and state model, state space modeling of control systems, Solution of the state equation- State Transition Matrix and it's Properties - Transfer function from state model (10Hrs)	CO5						

Advanced topics in this course:

- 1. Dominant Closed loop poles,
- 2. Effect of Adding open loop poles and Zeros on Root Loci
- 3. Solution of the state equation
- 4. Transfer function from state model
- 5. Concepts of Controllability and Observability

Course Outcomes

The students are able to

CO1: Derive the transfer function using block diagram algebra and signal flow graph. **(Apply level, KL3)**

CO2: Determine time response specifications of second order systems and Error constants.{Apply level, KL3}

CO3: Analyze stability using Routh's stability criterion and the root locus method. { Analyze level, KL4}

CO4: Analyze the stability using Bode plot and Nyquist criterion. { Analyze level, KL4}

CO5: Obtain state models and understanding the concepts of Controllability and Observability. {Apply level, KL3& Understand level, KL2}

Learning Resources

Text books:

- 1. ControlSystems Engineering I.J.Nagarath and M.Gopal, Newage International Publications, 5th Edition.
- 2. Automatic control systems Benjamin C.Kuo, Prentice Hall of India, 2nd Edition.

Reference books:

- 1. Control Systems principles and design-M.Gopal, Tata McGraw Hill education Pvt Ltd., 4thEdition.
- 2. Modern Control Engineering- Kotsuhiko Ogata, Prentice Hall of India.
- 3. Control Systems ManikDhanesh N, Cengage publications.
- 4. Control Systems Engineering S.Palani, TataMcGraw Hill Publications.
 - e- Resources & other digital material
- 1. https://nptel.ac.in/noc/courses/noc20/SEM2/noc20-ee84/
- 2. https://nptel.ac.in/noc/courses/noc18/SEM2/noc18-ee25/
- 3. https://nptel.ac.in/noc/courses/noc19/SEM2/noc19-ee45/

Micro-Syllabus of Control Systems

Unit-1: Mathematical Modelling of Control Systems

Introduction to control systems, Classifications - Open Loop and closed loop, transfer function, Effects of Feed-Back, Mathematical Modelling of electrical networks, Translational and Rotational systems, analogous systems, Transfer Function of DC & AC Servo motor- Synchros, -Block diagram algebra – Signal flow graph - Mason's gain formula

Unit	Module	Micro content
Mathematical Modelling of Control Systems	Introduction to control systems, classifications - Open Loop and closed loop	Concept of system, control system Classification as Open loop and closed loop Different examples of control systems

	Effectsof Feed-Back	Effect of feedback on				
		sensitivity, gain, band width,				
		noise, time constant and				
		speed of response				
		Differential equations of				
		simple RLC electrical				
	Mathematical Modelling	networks				
	Widelie in a control of the control	Translational and Rotational				
		mechanical systems –				
		analogous systems -				
		problems				
	Transfer Function of DC	(armature controlled and				
	Servo motor - AC Servo	field controlled -AC Servo				
	motor- Synchro transmitter	motor – Synchros-				
	and Receiver	derivations				
		Block diagram reduction				
	Block diagram algebra	techniques and problems				
		techniques and problems				
	Dommas antation by Signal	Representation by Signal				
	Representation by Signal	flow graph - Reduction using				
	flow graph - Reduction using	Mason's gain formula -				
	Mason's gain formula	problems				

Unit-2: Time Response Analysis: Standard test signals - Time response of first and second order systems - Time domain specifications - Steady state errors and error constants –Dominant Closed loop poles- P-PD - PI- PID controllers

Unit	Module	Micro content			
	Standard test signals	Impulse, step, ramp and			
		parabolic signals			
	Time response of first	derivations			
	and second order systems				
	Time domain	Definitions and derivations -			
2. Time Response	specifications	problems			
Analysis	Steady state errors and Definitions – derivation				
	error constants	problems			
	Dominant Closed loop	Explanation on location of			
	poles-	closed loop poles			
	P- PD - PI- PID	Effects of controllers on time			
	controllers	response			

Unit-3: Stability and Root locus Technique:

The concept of stability - Routh's stability criterion Procedure and problems – limitations of Routh's stability –Root locus concept - construction of root loci – Effect of Adding open loop poles and Zeros on Root Loci .

Unit	Module	Micro content	
3. Stability and Root	The concept of stability	Explanation of BIBC)

locus Technique		stability
	Routh's stability	Procedure and problems
	criterion	limitations of Routh's
		stability
	Root locus	concept - construction of
		root loci – problems-
		Effect of Adding open
		loop poles and Zeros on
		Root Loci

Unit-4: Frequency Response Analysis:

Introduction - Frequency domain specifications- Bode diagrams- transfer function from the Bode Diagram-Polar Plots, Nyquist Stability criterion- relative stability analysis- Phase margin and Gain margin- Characteristics of Lag, Lead and Lag-Lead compensators.

Unit	Module	Micro content
	Introduction	Introduction to frequency
		varying signals
	Frequency domain	Definitions and derivations -
	specifications	problems
	Bode diagrams	Procedure - problems
		transfer function from
4. Frequency Response		the Bode Diagram
Analysis	Polar Plots	Procedure - problems
	Nyquist Stability	Procedure – problems –
	criterion	Phase margin and Gain
		margin
		Relative stability analysis
	Lag, Lead and Lag-	Characteristics with
	Lead compensators.	derivations of transfer
		functions only

Unit-5: State Space Analysis: Concepts of state, state variables, state equation and state model, state space modeling of control systems, Solution of the state equation- State Transition Matrix and it's Properties - Transfer function from state model.

Unit	Module	Micro content
	state, state variables, state equation and state model	Concepts, definitions
5. State Space Analysis		Problems on finding state model from the given
		transfer function and
		electrical circuits

Solution of the state equation	Derivation - problems
State TransitionMatrix	Derivation – problems - properties
Transfer function from state model	Derivation - problems
Concepts of Controllability and	Problems only
Observability	

CO-PO mapping Table with Justification

Conti	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of													
				corre	lations	s (Hig	h: 3, N	Aediu	m: 2,I	Low: 1)				
Mapping	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
C01	3	2	1			1							1	
C02	3	3	2			1							1	
C03	3	2	1			1							1	
C04	2	2	3			1							1	
C05	3	2	3			1							1	

POWER SYSTEMS-1

PRE-REQUISITES: 1) Basic Circuit Analysis

Course objectives: The student should be able to

- 1. study the principle of operation of hydro and thermal power stations.
- 2. study the principle of operation of nuclear, gas, diesel power stations and non-conventional energy sources.
- 3. compute transmission line parameters and understand the concepts of GMD/GMR.
- 4. know the working of substation equipment and to calculate voltage and power loss in distribution systems.
- 5. study different types of load curves and tariffs applicable to consumers.

	Syllabus	
Unit No	Contents	Mapped CO
I	Hydel and Thermal Power Plants Hydro Electric Power Station: Principle of operation, Schematic arrangement & its components, Selection of site, Advantages and Disadvantages. (05 hrs) Thermal Power Station (Steam): Principle of operation, Schematic arrangement & its components, Selection of site, Efficiency, Advantages and Disadvantages. (06 hrs)	CO1
II	Nuclear, Gas, Diesel Power Plants and Non-conventional Energy Sources Nuclear Power Station: Principle of operation, Schematic arrangement & its components, Selection of site, working of BWR, PWR, FBR. (07 hrs) Gas and Diesel Power Stations: Principle of operation and Equipment (Block diagram approach only). (02 hrs) Non-conventional Energy Sources: Working principle of solar, wind, geo thermal and tidal power stations (Elementary treatment only). (04 hrs)	CO2
Ш	Transmission Line Parameters Types of conductors, calculation of resistance, inductance and capacitance of single phase and three phase lines with symmetrical and unsymmetrical spacing, transposition, bundled conductors, concept of GMD and GMR, effect of earth on capacitance, skin and proximity effects, Numerical Problems. (12 hrs)	CO3
IV	Substations and Distribution Systems Substations: Classification, Equipment and its location, Layout of 33/11 kV substation. (06 hrs) Distribution Systems: Classification, Design features, Voltage drop and power loss calculations, Comparison between DC and AC distribution systems, Numerical Problems. (06 hrs)	CO4
V	Economics aspects of Power Generation and Tariff Economic aspects of Power Generation: Load curve, load duration, integrated load duration curves and mass curve, connected load, maximum demand, demand factor, load factor, diversity factor, plant capacity factor, plant use factor, utilization factor, base and peak load plants, Numerical problems. (06)	CO5

hrs)	
,	

Tariff: Costs of generation and its division, objectives, characteristics, classification, Numerical problems. (**06 hrs**)

Advanced topics in this course:

Powering A Generation: Generating Electricity using Fossil-fuelled plants, Cogeneration, Combined-cycle and Biomass plants, Geothermal plants, and Decentralized generation. (Elementary treatment only)

Advanced Transmission Technologies: High-temperature super conducting technology, Advanced composite conductors. (Elementary treatment only)

New Technologies for Electric power Distribution Systems: Concept of Intelligent Substations (Elementary treatment only).

Tariff structure design process: Identification of tariff structures, tariff constraints (Elementary treatment only)

Cours	Course Outcomes				
Upon successful completion of the course, the student will be able to					
CO1	Understand the working of hydro and thermal power plants {Understand level, KL2}				
CO2	Explain the working of nuclear, gas, diesel power plants and non-conventional energy				
	sources. {Apply level, KL3}				
CO3	Analyze transmission lines parameters {Analyze level, KL4}				
CO4	Evaluate the performance of AC and DC distribution systems. {Evaluate level, KL5}				
CO5	Analyze the different load curves and tariff methods. {Apply level, KL4}				

Learning Resources

Text books:

- 1. A text book on Power System Engineering by M.L. Soni, P.V.Gupta, U.S. Bhatnagar and A. Chakrabarti, Dhanpat Rai & Co Pvt. Ltd.
- **2.** Generation, Distribution and Utilization of Electric Energy by C.L.Wadhawa, New Age International Private Limited.

Reference books

- 1. Electrical power systems by C.L.Wadhwa, New Age International (P) Ltd, Publishers, 1998.
- 2. Electrical Power Distribution Systems by V. Kamaraju, TMH.
- 3. Elements of Electrical Power Station Design by M.V. Deshpande, PHI.
- 4. Modern Power System Analysis by I.J.Nagarath and D.P.Kothari, Tata McGraw Hill, 2ndEdition

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/108/102/108102047/
- 2. https://www.coursera.org/learn/electric-power-systems
- 3. https://www.classcentral.com/course/electric-power-systems-12053#
- 4. https://pdhonline.com/courses/e104a/e104a_new.htm
- 5. https://emp.lbl.gov/sites/all/files/advanced-transmission-technologies.pdf
- 6. https://www.hitachi.com/rev/pdf/2002/r2002_04_106.pdf
- **7.** http://regulationbodyofknowledge.org/wp-content/uploads/2013/03/NERA_Electricity_Tariff_Structure.pdf

Micro-Syllabus

Unit – 1: Hydel and Thermal Power Plants

Hydro Electric Power Station: Principle of operation, Schematic arrangement & its components, Selection of site, Advantages and Disadvantages. **(05 hrs)**

Thermal Power Station (Steam): Principle of operation, Schematic arrangement & its components, Selection of site, Efficiency, Advantages and Disadvantages. **(06 hrs)**

Unit	Module	Micro content
	Hydro Electric Power Station	Principle of operation (Working),
1a.or 2a.		Schematic arrangement (Diagram),
Hydro Electric		Factors to be considered for selection of site,
Power Station		Equipment used and its operation,
		Advantages and Disadvantages.
1b.or 2b. Thermal Power Station (Steam)		Principle of operation (Working),
		Schematic arrangement (Diagram),
	Thermal Power	Factors to be considered for selection of site,
	Station (Steam)	Efficiency (Formula orientation),
		Equipment used and its operation,
		Advantages and Disadvantages.

Unit-2: Nuclear, Gas, Diesel Power Plants and Non-conventional Energy Sources

Nuclear Power Station: Principle of operation, Schematic arrangement & its components, Selection of site, working of BWR, PWR, FBR. **(07 hrs)**

Gas and Diesel Power Stations: Principle of operation and Equipment (Block diagram approach only). (02 hrs)

Non-conventional Energy Sources: Working principle of solar, wind, geo thermal and tidal power stations (Elementary treatment only). **(04 hrs)**

Unit	Module	Micro content
3a.or 4a. Nuclear Power Station	Nuclear Power Station	Principle of operation (Working),
		Schematic arrangement (Diagram),
		Factors to be considered for selection of site,
		Equipment used and its operation,
		Working of BWR (Diagram and its operation,
		Advantages and Disadvantages)
		Working of PWR (Diagram and its operation,
		Advantages and Disadvantages)
		Working of FBR (Diagram and its operation,
		Advantages and Disadvantages)
3b.or 4b.	~	Principle of operation (Working),
Gas and Diesel	Gas and Diesel Power	Equipment used and its operation (Block diagram
Power Stations, Stations		approach only).
Non-conventional	Non-conventional	Working principle of solar, wind, geo thermal and
Energy Sources	Energy Sources	tidal power stations (Elementary treatment only).

Unit-3:Transmission Line Parameters

Types of conductors, calculation of resistance, inductance and capacitance of single phase and three phase lines with symmetrical and unsymmetrical spacing, transposition, bundled conductors, concept of GMD and GMR, effect of earth on capacitance, skin and proximity effects, Numerical Problems. (12 hrs)

Unit	Module	Micro content
	Transmission Line	Types of conductors,
		calculation of resistance,
5a.or 6a.		Line Inductance& Capacitance
Transmission		Magnetic Field Intensity due to a Long Current
Line Parameters	Parameters (Theory &	Carrying Conductor
(Theory &	Derivation)	Inductance of Two-Wire Transmission Line
Derivation)	Derivation)	Flux Linkages of One Conductor in a Group of
Delivation)		Conductors
		Inductance of 3- Unsymmetrically Spaced
		Transmission Line
	Transmission Line	Composite Conductors
		Inductance of Composite Conductors
		Inductance of Double Circuit 3- Line
5b.or 6b.		Concept of GMD & GMR
Transmission		Bundled Conductors
Line Parameters	Parameters	Skin and Proximity Effect
(Calculations &	(Calculations & Problems)	Two Infinite Lines of Charge
Problems)		Capacitance of a 1- Transmission Line
110bicins)		Capacitance of a 3-phase, unsymmetrical spaced
		transmission line
		Capacitance of a Double Circuit Line
		Effect of Earth on the Capacitance of Conductors

Unit-4:Substations and Distribution Systems

Substations: Classification, Equipment and its location, Layout of 33/11 kV substation. (**06 hrs**) **Distribution Systems:** Classification, Design features, Voltage drop and power loss calculations, Comparison between DC and AC distribution systems, Numerical Problems. (**06 hrs**)

Unit	Module	Micro content
	Factors & Classification	Factors to be considered for selection of site,
		Classification based on service requirement
7a.or 8a. Substations		Transformer substations
		Switching substations
		Synchronous substations
		Frequency change substations
		Converting substations
		Industrial substations

		Classification based on design Indoor substations Outdoor substations Underground substations Pole mounted and plinth mounted substations
	Equipment and Layout	Equipment used and its operation only Bus-bars Insulators Isolating switches Circuit breakers Power transformers Instrument transformers Protective relays Metering and indicating instruments Other auxiliary equipment Layout of 33/11 kV substation (Diagram and
7b. or 8b. Distribution Systems	Distribution Systems	Classification based on type of current, type of construction, type of service, number of wires, scheme of connection. Design features, AC distribution (i.e. primary and secondary distribution systems) DC distribution (Elementary treatment only) Explanation about Radial, Ring main and Interconnected systems (Layout, Working, Advantages, Disadvantages) Voltage drop and power loss calculations in a distributor for the following cases (Derivation and numerical problems for AC and DC systems) > feeding from one end > feeding from both ends (Equal and Unequal voltages) > feeding from center > ring mains Comparison between DC and AC distribution systems.

Unit-5:Economics aspects of Power Generation and Tariff

Economic aspects of Power Generation: Loadcurve, load duration, integrated load duration curves and mass curve, connected load, maximum demand, demand factor, load factor, diversity factor, plant capacity factor, plant use factor, utilization factor, base and peak load plants, Numerical problems. **(06 hrs)**

Tariff: Costs of generation and its division, objectives, characteristics, classification, Numerical

Unit	Module	Micro content
		Loadcurve,
		Load duration curve,
		Integrated load duration curves
		Mass curve
		Explanation and numerical problems on
9a.or 10a.		connected load,
Economic aspects	Economic aspects of	maximum demand,
of Power	Power Generation	demand factor,
Generation		load factor,
		diversity factor,
		plant capacity factor,
		plant use factor,
		utilization factor,
		base and peak load plants
	Tariff	Costs of generation and its division (i.e. Fixed
		Semi-fixed and Variable costs)
		Objectives of tariff,
		Characteristics,
		Classification
		Simple tariff
9b.or 10b.		> Flat rate tariff
Tariff		Block rate tariff
Taliii		Two part tariff
		Maximum demand tariff
		Power factor tariff
		 KVA maximum demand tariff
		 Sliding scale tariff
		 KW and KVAr tariff
		> Three part tariff

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Understand the working of hydro and thermal power plants {Understand
	level, KL2}
CO2	Explain the working of nuclear, gas, diesel power plants and non-
	conventional energy sources.{Apply level, KL3}
CO3	Analyze transmission lines parameters {Analyze level, KL4}
CO4	Evaluate the performance of AC and DC distribution systems. {Evaluate
	level, KL5}
CO5	Analyze the different load curves and tariff methods. {Apply level, KL4}

Text books:

1. A text book on Power System Engineering by M.L. Soni, P.V.Gupta, U.S. Bhatnagar and A. Chakrabarti, Dhanpat Rai & Co Pvt. Ltd.

2. Generation, Distribution and Utilization of Electric Energy by C.L.Wadhawa, New Age International Private Limited.

Reference books

- 1. Electrical power systems by C.L.Wadhwa, New Age International (P) Ltd, Publishers, 1998.
- 2. Electrical Power Distribution Systems by V. Kamaraju, TMH.
- 3. Elements of Electrical Power Station Design by M.V. Deshpande, PHI.
- 4. Modern Power System Analysis by I.J.Nagarath and D.P.Kothari, Tata McGraw Hill, 2ndEdition

CO-PO mapping Table with Justification

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (High: 3, Medium: 2, Low: 1) PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 PO₁ PO2 PO12 PSO-PSO-1 CO₁ CO₂ 3 1 2 CO₃ 1 CO4 2 2 1 1 3 CO₅ 1 1

L \mathbf{C} 2 3

DIGITAL ELECTRONICS

Pre-Requisites: Nil

Course objectives: The student should be able to

- 1. To understand common forms of number representation in digital circuits and Boolean algebra.
- 2. To learn basic techniques for the design of digital circuits and fundamental concepts used in the design of digital systems and simplify logic expressions using basic theorems, K-map and Tabular methods.
- 3. To understand the concept of Combinational logic design and realize logic expressions using MUX and Decoder
- 4. Illustrate the concept of sequential logic design; analyze the operation of flip-flop and conversion from one flip-flop to another, and application of flip-flop.
- 5. To impart to student the concepts of sequential machines of digital system.

Unit No	Contents	Mapped CO
I	Number Systems and Boolean Algebra Number systems: Introduction to different number system and their conversions, Complement of number system and subtraction using complement method, Floating-Point Representation, Weighted and Non-weighted codes and its Properties, Error detection and correction codes, Boolean Algebra: Boolean algebra and logic gates, Basic theorems and properties	CO1
	of Boolean Algebra, Boolean functions, canonical and standard forms, Universal Gates.	
II	Minimization Methods of Boolean functions Minimization of logic expressions by algebraic method, Sum of Products (SOP), Product of Sums (POS), K-Map Method, Don't Care Combinations, Multilevel NAND/NOR realizations, Prime and essential Prime Implicants, Tabular Method, Prime Implicants Chart, Simplification Rules.	CO2
III	Combinational Circuits Design procedure, Half/full adders, Half / full substractors, Carry look ahead adder, BCD adder, Multiplexer/De-Multiplexer, Encoder/Decoder, Priority encoders, Implementation of Higher-Order Device Using Lower Order devices, Implementation of combinational logic using MUX/Decoder, Magnitude Comparator, Programmable logic devices.	CO3
IV	Sequential Circuits Sequential Circuits Fundamentals: Basic Architectural Distinctions between Combinational and Sequential circuits, SR Latch, Flip Flops: SR, JK, JK Master Slave, D and T Type Flip Flops, Excitation Table of all Flip Flops, Timing and Triggering Consideration, Conversion from one type of Flip-Flop to another. Registers and Counters: Shift Registers Left, Right and Bidirectional Shift Registers, Applications of Shift Registers, Design and Operation of Ring and Twisted Ring Counter, Operation of Asynchronous and Synchronous Counters.	CO4

\mathbf{V}	Sequential Machines 8 Hours	CO5
	Finite State Machines, Synthesis of Synchronous Sequential Circuits, Mealy	and
	Moore models, Serial Binary Adder, Sequence Detector, Parity-bit Gener	ator
	Synchronous Modulo N – Counters, Finite state machine capabilities	and
	limitations.	
Course	Outcomes: Upon successful completion of the course, the student will be able to)
CO1:	Distinguish the analog and digital systems, apply positional notations, n	umber systems,
	computer codes in digital systems. (Remember, Understand, and Apply)	
CO2:	Uunderstand the Boolean Algebra theorems, simplify and design logic circuit	s. (Understand,
	Apply, Analyze and valuate)	
CO3 :	Implement combinational logic circuit design and modular combinationa	l circuits using
	encoders, decoders, multiplexers and demultiplexers. (Apply, Analyze, valuate	<u> </u>
CO4:	Understand the basic elements of sequential logic circuits. (Understand, Apply	y, Analyze)
CO5:	Design and analyze sequential circuits. (Apply, Analyze and create)	
Text bo	ooks:	
1.	Digital Design by Mano, PHI	
2.	Modern Digital Electronics by RP Jain, TMH	
3.	Switching Theory and Logic Design by A. Anand Kumar, PHI.	
4.	Switching and Finite Automata Theory- Zvi Kohavi & Niraj K. Jha, Cambrid	ge.
Referen	nce books:	
1.	Switching Theory and Logic Design by Hill and Peterson Mc-Graw Hill TMH	edition
2.	Fundamentals of Logic Design by Charles H. Roth Jr, Jaico Publishers	
e- Reso	urces & other digital material:	
1.	https://nptel.ac.in/courses/117/106/117106086/	
2.	https://nptel.ac.in/courses/108/105/108105113/	
3.	https://www.coursera.org/learn/digital-systems	
4.	https://swayam.gov.in/nd1_noc20_ee70/preview	

Micro Syllabus

Unit-1: Number Systems and Boolean Algebra

Number systems: Introduction to different number system and their conversions, Complement of number system and subtraction using complement method, Floating-Point Representation, Weighted and Non-weighted codes and its Properties, Error detection and correction codes,

Boolean Algebra: Boolean algebra and logic gates, Basic theorems and properties of Boolean Algebra, Boolean functions, canonical and standard forms, Universal Gates.

Unit	Module	Micro content
1a.or 2a. Number systems	different number	Imporatance of radix or base and numericals
	system and their	Different number systems:binary,decimal,octal&hexa
	conversions	decimal.
	Signed numbers&	Binary addition, subtraction, multiplication
	Binary arthimetic	2's complement arithmetic & 1's complement

		arithmetic
		Floating-Point Representation
	Classification of Binary codes	Weighted and Non-weighted codes and self
		complementing, cyclic codes
1b.or 2b.binary		Error detection and correction codes
codes & Boolean	Axioms and laws of	Basic theorems and properties of Boolean Algebra,
algebra	Boolean algebra	Boolean functions, canonical and standard forms
	Logio Cotos	Realization of expressions using logic gates;
	Logic Gates	universal Gates

Unit-2:Minimization Methods of Boolean functions

Minimization of logic expressions by algebraic method, Sum of Products (SOP), Product of Sums (POS), K-Map Method, Don't Care Combinations, Multilevel NAND/NOR realizations, Prime and essential Prime Implicants, Tabular Method, Prime Implicants Chart, Simplification Rules.

Unit	Module	Micro content
3a.or 4a. Minimization of	expressions by algebraic method method	Sum of Products (SOP)), Product of Sums (POS)
logic expressions by algebraic method & K-Map		2-variable,3- variable & 4- variable K-maps Don't cares
Method		5-variable K-map
3b.or 4b. prime	Quine McCluskey	Prime implicants and Essential prime implicants
implicant chart	method	prime implicant chart

Unit-3:Combinational Circuits

Design procedure, Half/full adders, Half / full subtractors, Carry look ahead adder, BCD adder, Multiplexer/De-Multiplexer, Encoder/Decoder, Priority encoders, Implementation of HigherOrder Device Using Lower Order devices, Implementation of combinational logic using MUX/Decoder, Magnitude Comparator, Programmable logic devices.

Unit	Module	Micro content
5a.or	Adders/subtractors	Half/full adders, Half / full subtractors, Carry
6a.Combinational	Adders/subtractors	look ahead adder, BCD adder
Circuits		
fundamentals	Mux/Demux	Multiplexer/De-Multiplexers & Encoder/Decoders
5b.or		Magnitude Comparator, Programmable logic
6b. Implementation		devices.
of combinational	Applications of	
logic using	Mux/Demux	Implementation of HigherOrder Device Using
MUX/Decoder		Lower Order devices

Unit-4:Sequential Circuits

Sequential Circuits Fundamentals: Basic Architectural Distinctions between Combinational and Sequential circuits, SR Latch, Flip Flops: SR, JK, JK Master Slave, D and T Type Flip Flops, Excitation Table of all Flip Flops, Timing and Triggering Consideration, Conversion from one type of Flip-Flop to another.

Registers and Counters: Shift Registers Left, Right and Bidirectional Shift Registers, Applications of Shift Registers, Design and Operation of Ring and Twisted Ring Counter, Operation of Asynchronous and Synchronous Counters.

Unit	Module	Micro content
7a.or		Distinctions between Combinational and
8a.Sequential		Sequential circuits; types of triggering, types of
Circuits	Flip Flops	flip flops,
Fundamentals		Excitation Table of all Flip Flops ;Conversion
		from one type of Flip-Flop to another.
5 1	Registers and Counters	Shift Registers Left, Right and Bidirectional Shift
7b. or		Registers, Applications of Shift Registers
8b.Registers and Counters		Synchronous and asynchronous counters and also
Counters		their design
		Operation of Ring and Twisted Ring Counter

Unit-5:Sequential Machines

Finite State Machines, Synthesis of Synchronous Sequential Circuits, Mealy and Moore models, Serial Binary Adder, Sequence Detector, Parity-bit Generator Synchronous Modulo N – Counters, Finite state machine capabilities and limitations.

Unit	Module	Micro content
9a.or 10a.		Finite State Machines, Synthesis of Synchronous
Fundamentals of	Fundamentals of FSM	Sequential Circuits, Mealy and Moore models
FSM		Finite state machine capabilities and limitations.
9b.or 10b.	State Models and	Serial Binary Adder, Sequence Detector, Parity-
	diagrams	bit Generator Synchronous Modulo N – Counters.

CO-PO mapping Table with Justification

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (**High: 3, Medium: 2, Low: 1**)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1	3	2	2							1				3
CO2	3	2	2							1				3
CO3	3	2	2							1				3
CO4	3	2	2							1				3
CO5	3	2	2							1				3

L T P C 2 1 0 3

THERMAL AND HYDRO PRIME MOVERS

Prerequisites: Engineering Mathematics, Engineering Physics, Engineering Thermodynamics Course Objectives: The student should be able to

- 1. Identify the unique vocabulary associated with thermodynamics through the precise definition of basic concepts and also apply the laws of thermodynamics to cycles, cyclic devices.
- 2. Familiarize with the various I.C.Engine systems along with their function and necessity, also performance analysis of I.C. Engines and Gas turbine Power plants.
- 3. Provide the basic knowledge of components being used in steam power plant cycles and to analyze the energy transfers and transformations in steam turbine.
- 4. Describe briefly the concepts of different fluid properties, present numerous examples related to variation of pressure in a fluid and measurement of pressure and flow rate.
- 5. Illustrate briefly impact of jets, hydraulic pumps and also evaluate the performance of hydraulic turbines.

	Syllabus			
Unit No	Contents	Mapped CO		
I	BASIC CONCEPTS OF THERMODYNAMICS: Thermodynamic System, Surrounding, Boundary, Universe, Control Volume, Control Surface, Classes of Systems, State, Thermodynamic Properties, Process and Cycles, Thermodynamic Equilibrium, Reversibility, Quasi static Process. ZEROTH LAW OF THERMODYNAMICS: Equality of temperature. FIRST OF THERMODYNAMICS: Statement, Internal energy, Flow work, The Steady Flow Process-Steady Flow Energy Equation, simple Problems. SECOND LAW OF THERMODYNAMICS: Kelvin-Planck & Clausius Statements of Second law of Thermodynamics, Differences between reversible and Irreversible Process, Carnot Cycle and its specialties.	CO1		
Ш	AIR STANDARD CYCLES: Otto, Diesel and Dual cycles, its comparisons, Brayton Cycle. I. C. ENGINES: Classification, Working principles, Valve and Port Timing			
III	STEAM TURBINES: Working Principle, Classification, Simple Impulse Turbine, Vector diagrams of velocities, Combined Velocity diagram, Work done on the blade, Axial Thrust, Blade efficiency, stage efficiency, overall efficiency, Effect of blade friction on velocity diagram, simple problems on Impulse turbine, Compounding of Impulse Turbine, Reaction Turbine, Velocity Diagram for Reaction Turbine, Degree of Reaction (only theory Part on reaction Turbines).	CO3		
IV	FUNDAMENTALS OF FLUID MECHANICS: Definition of fluid,	CO4		

	difference between a cities of fluid physical property of fluid. Design					
	differences between a solid and fluid, physical properties of fluids- Density,					
	Specific Weight, Specific gravity, viscosity, Types of Fluids and Fluid flows,					
	Continuity and Bernoulli's equations.					
	MEASUREMENT OF PRESSURE AND FLOW: Pascal's law for pressure					
	at a point, pressure variation in a fluid at rest, Absolute, gauge, Atmospheric					
	and vacuum pressures.					
	IMPACT OF JETS: Impulse momentum equation, Impact of Jet on stationary					
	and moving vanes (flat and curved).					
	HYDRAULIC TURBINES: Essential elements of a hydroelectric power plant,					
	head and efficiencies of hydraulic turbines, Classification of turbines, Working					
\mathbf{V}	principle, Efficiency calculation and Design principles for Pelton Wheel, Francis	CO ₅				
	and for Kaplan turbines.					
	PUMPS: Types of pumps, main components and working principle of					
	centrifugal and reciprocating type pumps (theory part only), Submersible pump					
	working.					

Advanced topics in this course: Applications of gas turbine, Simple Manometers- Piezometer, U-tube and Differential manometers, Venture meter and Orifice meter, Submersible pump working.

Course O	Course Outcomes				
Upon succ	essful completion of the course, the student will be able to				
CO1	Explain the fundamental concepts of Thermodynamics and also apply the laws of				
	thermodynamics to cycles, cyclic devices. {Apply level, KL3}				
CO2	Understand about the working of IC engines and gas turbine plants including its				
	performance evaluation. {Apply level, KL3}				
CO3	Analyze the energy transfers and transformations while steam is flowing through the				
	blades of steam turbine. {Analyze level, KL4}				
CO4	Understand about fluid properties and also apply the Bernoulli's theorem for flowing				
	fluids. {Apply level, KL3}				
CO5	Compute the performance of hydraulic turbines and also understand working of the				
	hydraulic pumps. {Apply level, KL3}				

Learning Resources

Text books:

- 1. Thermal Engineering by Mahesh Rathore, McGraw-Hill,2010
- 2. Hydraulics and Fluid mechanics including Hydraulic machinery by MODI and SETH, Standard Book House Publications, 2019.

Reference books

- 1. I.C. Engines by V. Ganesan, McGraw-Hill,4th edition.
- 2. Thermal Engineering by RK Rajput, Lakshmi Publications, 2010.
- 3. Fluid Mechanics and Hydraulic Machines by R.K.Rajput, Lakshmi Publications, Sixth Edition
- 4. "Fluid Mechanics" by Victor. L. Streeter & E.Benjamin Wylie, McGraw-Hill, Indian edition.

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/112/105/112105171/
- 2. https://nptel.ac.in/courses/112/105/112105183/
- 3. https://nptel.ac.in/courses/105/101/105101082/
- 4. https://nptel.ac.in/courses/105/103/105103095/
- 5. http://nptel.ac.in/courses/112105123/

6. http://nptel.ac.in/courses/112108148/

Micro Syllabus

Unit-1:BASIC CONCEPTS OF THERMODYNAMICS: Thermodynamic System, Surrounding, Boundary, Universe, Control Volume, Control Surface, Classes of Systems, State, Thermodynamic Properties, Process and Cycles, Thermodynamic Equilibrium, Reversibility, Quasi static Process.

ZEROTH LAW OF THERMODYNAMICS: Equality of temperature.

FIRST LAW OF THERMODYNAMICS: Statement, Internal energy, Flow work, The Steady Flow Process-Steady Flow Energy Equation, simple Problems.

SECOND LAW OF THERMODYNAMICS: Kelvin-Planck & Clausius Statements of Second law of Thermodynamics, Differences between reversible and Irreversible Process, Carnot Cycle and its specialties.

Unit	Module	Micro content
1a.or 2a. Basic Concepts of Thermodynamics & Zeroth Law of Thermodynamics	Basic Concepts of Thermodynamics	Thermodynamic System, Surrounding, Boundary, Universe, Control Volume, Control Surface, Classes of Systems. State, Thermodynamic Properties, Process and Cycles. Thermodynamic Equilibrium, Reversibility, Quasi static Process.
Thermodynamics	Zeroth Law of Thermodynamics	Zeroth Law of Thermodynamics-Statement with Examples.
1b.or 2b. First Law of Thermodynamics	First Law of Thermodynamics	Statement, Internal energy, Simple Problems on Internal energy. Flow work, The Steady Flow Process-Steady Flow Energy Equation. Simple Problems on Steady Flow Energy Equation
Second Law of Thermodynamics	Second Law of Thermodynamics	Kelvin-Planck & Clausius Statements. Differences between reversible and Irreversible Process. Carnot Cycle and its specialties.

Unit-2:AIR STANDARD CYCLES: Otto, Diesel and Dual cycles, its comparisons, Brayton Cycle. **I. C. ENGINES:** Classification, Working principles, Valve and Port Timing Diagrams, Engine systems- fuel injection, carburetion, ignition, cooling and lubrication – Parameters of performance, Determination of Frictional Power & Indicated Power, Engine performance evaluation.

GAS TURBINES: Simple gas turbine plant, Classification, Analysis of closed and open cycle plants, Applications, Performance parameters, Basic Problems.

Unit	Module	Micro content
		Otto, Diesel and Dual cycles.
3a.or 4a. Air Standard	Air Standard Cycles	Comparisons of Otto, Diesel and Dual cycles
		Brayton Cycle
Cycles		Classification, Working principles
& I. C. Engines	I. C. Engines	Valve and Port Timing Diagrams
		Engine systems- carburetion, fuel injection, ignition, cooling and lubrication.

3b. or 4b. I. C. Engines & Gas Turbines		Parameters of performance, Determination of Frictional Power & Indicated Power.
	I. C. Engines	Engine performance evaluation.
		Simple problems on performance of IC Engines.
		Simple gas turbine plant, Classification.
	Gas Turbines	Analysis of closed and open cycle plants, Applications
		Performance parameters, Simple Problems on
		open cycle.

Unit-3:STEAM TURBINES: Working Principle, Classification, Simple Impulse Turbine, Vector diagrams of velocities, Combined Velocity diagram, Work done on the blade, Axial Thrust, Blade efficiency, stage efficiency, overall efficiency, Effect of blade friction on velocity diagram, simple problems on Impulse turbine, Compounding of Impulse Turbine, Reaction Turbine, Velocity Diagram for Reaction Turbine, Degree of Reaction (only theory Part on reaction Turbines).

Unit	Module	Micro content
		Working Principle, Classification, Simple Impulse
		Turbine.
•		Vector diagrams of velocities, Combined Velocity
5a. or 6a.	Steam Turbines	diagram.
Steam Turbines		Work done on the blade, Axial Thrust.
		Blade efficiency, stage efficiency, overall
		efficiency.
	Steam Turbines	Effect of blade friction on velocity diagram.
		Simple problems on Impulse turbine.
5b. or 6b.		Compounding of Impulse Turbine.
Steam Turbines		Reaction Turbine, Velocity Diagram for Reaction
Steam Turbines		Turbine.
		Degree of Reaction. (Only theory on Reaction
		Turbines)

Unit-4:

FUNDAMENTALS OF FLUID MECHANICS: Definition of fluid, differences between a solid and fluid, physical properties of fluids- Density, Specific Weight, Specific gravity, viscosity, Types of Fluids and Fluid flows, Continuity and Bernoulli's equations.

MEASUREMENT OF PRESSURE AND FLOW: Pascal's law for pressure at a point, pressure variation in a fluid at rest, Absolute, gauge, Atmospheric and vacuum pressures, Simple Manometers- Piezometer, U-tube and Differential manometers, Venture meter and Orifice meter.

Unit	Module	Micro content
7a. or 8a. Fundamentals of Fluid Mechanics	Fundamentals of Fluid Mechanics	Definition of fluid, Differences between a solid and fluid. Physical properties of fluids- Density, Specific Weight, Specific gravity, viscosity, Simple Problems. Types of Fluids and Fluid flows.

		Continuity and Bernoulli's equations, Simple							
		Problems							
		Pascal's law for pressure at a point, Pressure							
		variation in a fluid at rest, Simple problems							
7b. or 8b.		Absolute, gauge, Atmospheric and vacuum							
Measurement of	Measurement of Pressure pressures, Simple Problems.								
Pressure and	and Flow	Simple Manometers- Piezometer, U-tube and							
Flow		Differential manometers, Simple Problems.							
		Venture meter and Orifice meter, Simple							
		Problems.							

Unit-5:

IMPACT OF JETS: Impulse momentum equation, Impact of Jet on stationary and moving vanes (flat and curved).

HYDRAULIC TURBINES: Essential elements of a hydroelectric power plant, head and efficiencies of hydraulic turbines, Classification of turbines, Working principle, Efficiency calculation and Design principles for Pelton Wheel, Francis and for Kaplan turbines.

Unit	Module	Micro content				
9a.or 10a.	T	Impulse momentum equation.				
Impact of Jets	Impact of Jets	Impact of Jet on stationary and moving vanes (flat				
		and curved), Simple problems.				
9b.or 10b.		Essential elements of a hydroelectric power plant				
		Head and efficiencies of hydraulic turbines				
Hydraulic	Hydraulic Turbines	Classification of turbines, Working principles.				
Turbines		Efficiency calculation and Design principles for				
		Pelton Wheel, Francis and for Kaplan turbines.				

CO-PO mapping Table with justification

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of													
	correlations (High: 3, Medium: 2,Low: 1)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-	PSO-
													1	2
CO1	3	3	1	-	-	2	-	-	-	-	-	1	2	2
CO2	3	3	1	-	-	2	1	-	-	-	-	1	2	2
CO3	3	3	1	-	-	2	-	-	-	-	-	1	2	2
CO4	3	3	1	-	-	2	-	-	-	-	_	1	2	2
CO5	3	3	1	-	-	2	-	1	-	-	-	1	2	2

II Year II Semester

L T P C 0 0 3 1.5

CONTROL SYSTEMS LAB

Learning Objectives:

- To impart hands on experience to understand the performance of basic control system components such as magnetic amplifiers, D.C. servo motors, A.C. Servo motors and Synchros.
- To understand time and frequency responses of control system with and without controllers and compensators.

Any 10 of the following experiments are to be conducted:

- 1. Time response of Second order system
- 2. Characteristics of Synchros
- 3. Effect of P, PD, PI, PID Controller on a second order systems
- 4. Study of characteristics of Lag and lead compensators Magnitude and phase plot
- 5. Obtaining the Transfer function of DC motor
- 6. Bode Plot, Root locus, Nyquist Plots for the transfer functions of systems up to 5^{th} order using Simulation software.
- 7. Controllability and Observability Test using Simulation software.
- 8. Temperature controller using PID
- 9. Characteristics of magnetic amplifiers
- 10. Characteristics of AC servo motor
- 11. Characteristics of DC servo motor
- 12. Block Diagram Representation of Field Controlled DC servo Motor Using Simulink.

Course Outcomes:

After the completion of the course the student should be:

CO1: Able to analyze the time response of a second order system.

CO2: Able to analyze the effect of P, PI, PD, PID controllers and Lag, Lead compensators.

CO3:Analyze the performance and working of magnetic amplifier, DC, AC servomotors and synchros.

CO4: Able to judge the stability in time and frequency domain.

CO5: Able to test the controllability and observability.

CO-PO mapping Table with justification

oo i o mapping i war with Jaconian or														
Mapping	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
C01	2	1	-	1	1	-	-	1	-	-	-	1	2	1
C02	2	1	1	1	1	-	-	1	-	-	1	1	1	1
C03	1	-	-	-	1	-	-	-	-	-	-	1	2	1
C04	1	1	-	-	1	-	-	-	-	-	-	1	2	2
C05	1	1	-	-	1	-	-	-	-	-	-	-	2	2

II Year II Semester

L T P C 0 0 3 1.5

ELECTRICAL MACHINES-1 LAB

Course Objectives:

- 1. To plot the magnetizing characteristics and understand the load characteristics of DC shunt generator.
- 2. Learn the methods of speed control of DC shunt motors.
- 3. Determine the performance of DC machines by direct and indirect loading methods.
- 4. Predetermine the efficiency and regulation of single-phase transformer and assess their performance.
- 5. Study the conversion of three phase to two-phase by Scott connection.

LIST OF EXPERIMENTS

Any 10 of the following experiments are to be conducted:

- 1. Magnetization characteristics of DC shunt generator-critical Resistance and critical speed.
- 2. Load test on DC shunt generator.
- 3. Load test on DC series generator.
- 4. Load test on DC Compound generator.
- 5. Brake test on DC Shunt motor.
- 6. Brake test on DC compound motor.
- 7. Hopkinson's test on DC shunt machines. Predetermination of efficiency.
- 8. Swinburne's test on DC shunt motor.
- 9. Speed control of DC shunt motor.
- 10. OC& SC test on single phase transformer.
- 11. Sumpner's test on single phase transformers.
- 12. Scott connection of transformers
- 13. Separation of core losses of a single-phase transformer.

Course Outcomes:

Students able to

- CO1: Analyze the characteristics and performance of DC generator.
- CO2: Investigate the speed control and testing methods of DC motors.
- CO3: Determine the performance of DC machines by direct and indirect loading methods.
- CO4: Perform various types of tests on transformers for assessing losses.
- CO5: Achieve three-phase to two phase transformation.

CO-PO mapping Table with justification

	John Strang Company													
Mapping	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
C01	2	2	1	1	_	-	1	1	-	-	-	1	-	1
C02	2	2	1	1	_	-	1	1	-	-	-	1	-	-
C03	2	2	1	1	-	-	ı	ı	-	-	-	1	-	1
C04	2	2	1	1	-	-	ı	ı	-	-	-	1	-	1
C05	2	2	1	-	_	_	1	-	-	-	-	-	-	-

II Year II Semester

L T P C 0 0 3 1.5

THERMAL AND HYDRO PRIME MOVERS LAB

Prerequisite: -Nil-

COURSE OBJECTIVE: To impart practical knowledge on the performance evaluation methods of various internal combustion engines, flow measuring equipment and hydraulic turbines and pumps.

Note: To Conduct A Minimum Of 10 Experiments By Conducting A Minimum Of Five From Each Section.

LIST OF EXPERIMENTS:

SECTION A - THERMAL ENGINEERING LAB

- 1. I.C. Engines valve / port timing diagrams.
- 2. I.C. Engines performance test on 4 -stroke Diesel engine.
- 3. I.C. Engines performance test on 2-stroke petrol engine.
- 4. Evaluation of engine friction by conducting Morse test on 4-stroke multi cylinder petrol engine
- 5. Determination of FHP by retardation and motoring test on IC engine.
- 6. I.C. Engines heat balance on petrol / Diesel engines.
- 7. Study of boilers.

SECTION B - HYDRAULIC MACHINES LAB

- 1. Calibration of Venturimeter.
- 2. Calibration of Orifice meter.
- 3. Impact of jets on Vanes.
- 4. Performance Test on Pelton Wheel.
- 5. Performance Test on Francis Turbine.
- 6. Performance Test on Centrifugal Pump.
- 7. Performance Test on Reciprocating Pump.

COURSE OUTCOMES: After completion of the course, students are able to:

CO1: Compute the performance of the IC Engines for a given conditions and also draw the valve and port timing diagrams. (Apply Level)

CO2: Determine the frictional power by using the Morse test, retardation test and motoring test. (**Apply Level**)

CO3: Calibrate discharge measuring devices and finding discharge through the venture meter and the orifice meter. (Apply Level)

CO4: Analyze the performance of hydraulic machines. (Analyze Level)

CO-PO mapping Table with Justification

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1	3	3	-	2	-	2	-	-	3	-	-	-	2	1
CO2	3	3	-	2	-	2	-	_	3	-	-	-	2	1
CO3	3	3	-	2	-	2	-	-	3	-	-	-	2	1
CO4	3	3	-	2	-	2	-	-	3	-	-	-	2	1

SOCIAL RELEVANT PROJECT

Course Objectives:

To enable the student

- Acquire the requisite skills and to apply the same to a given problem in the relevant technical area.
- Independently analyze and discuss complex inquiries/problems within the given constraints and handle larger problems at an advanced level within the technical area.
- Reflect on, evaluate, and critically assess one's own results and correlate it with other scientific results.
- Document and present one's own work for a given target group, with strict requirements on structure, format and language usage.
- Identify one's need for updating skills and knowledge and to continuously develop one's own competencies

Syllabus:

A number of social relevant research projects, e.g., in sectors of defense, medicine environment, energy, health, infrastructure, etc.Some representative activities in these areas are briefly mentioned below.

• Environment

In the area of environment, the projects like development of a zero discharge toilet, climate models, development of air quality standards which have been accepted by the Govt. of Indiadevelopment of an air quality index for dissemination of information to the people and for policy making etc

• Energy

In the area of energy, development of photovoltaics, solar-hydrogen generation, connection of solar cells to the grid in a smart manner, grid stability are some of the activities.

Defense

In the area of defense, the projects like autonomous vehicles and helicopter, unmanned combat aircraft, materials development for defense applications, technologies for remediation of NBC threats and sensors for detecting explosives, activities with the ordinance factories, networking and communication systems.

• Healthcare

In the area of healthcare, the projects like helping devices for specially abled people, neurodegenerative disorders, cancer and bone degeneration etc

• Other

Few more socially relevant research projects to solve agricultural related projects like Agriculture Knowledge management systems on the cloud, advisory/alert delivery to the farmers over phones, automatic tagging for agriculture documents.

Course Outcomes:

After completion of the course the student will - be able to

CO1: Acquire the requisite skills and to apply the same to a given problem in the relevant technical area.

CO2: Independently analyze and discuss complex inquiries/problems within the given constraints and handle larger problems at an advanced level within the technical area.

CO3: Reflect on, evaluate, and critically assess one's own results and correlate it with other scientific results.

CO4: Document and present one's own work for a given target group, with strict requirements on structure, format and language usage.

CO5: Identify one's need for updating skills and knowledge and to continuously develop one's own competencies

Text Books:

• Any technical paper publications

References:

• https://csie.iitm.ac.in/SocialProjectsIITM.html

CO-PO mapping Table with justification

Mapping	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
C01	3				3								2	
C02		3					2						2	3
C03														
C04									2	2				
C05												3		

1-LOW 2-MODERATE 3-HIGH

POWER SYSTEMS-II

PRE-REQUISITES: 1) Basic Circuit Analysis, Power Systems-I

Course objectives: The student should be able to

- 1. Study the short, medium and long length transmission lines, their models and performance.
- 2. Study the effect of travelling waves on transmission lines.
- 3. Study the factors affecting the performance of transmission lines and power factor improvement methods.
- 4. Discuss sag and tension computation of transmission lines as well as to study the performance of overhead insulators.
- 5. discuss computation of Z_{bus} and Y_{bus} of power system

	Syllabus	
Unit No	Contents	Mapped CO
I	Performance of Transmission Lines (15 hrs) Classification of Transmission Lines – Short, medium, long line and their model representations –Nominal-T–Nominal-Pie and A, B, C, D Constants for symmetrical and Asymmetrical Networks– Numerical Problems– Mathematical Solutions to estimate regulation and efficiency of all types of lines – Numerical Problems. (10hrs) Performance of Long Transmission Lines–Rigorous Solution – Evaluation of A,B,C,D Constants– Interpretation of the Long Line Equations, regulation and efficiency– Representation of Long Lines – Equivalent-T and Equivalent Pie network models (Numerical Problems). (5hrs)	CO1
п	Travelling waves and Power Systems transients (15 hrs) Travelling waves Incident, Reflected and Refracted Waves –Surge Impedance and SIL of Long Lines–Wave Length and Velocity of Propagation of Waves. (8hrs) Power system Transients Types of System Transients – Travelling or Propagation of Surges – Attenuation–Distortion– Reflection and Refraction Coefficients – Termination of lines with different types of conditions – Open Circuited Line–Short Circuited Line – T-Junction– Lumped Reactive Junctions.(7hrs)	CO2
Ш	Various Factors governing the Performance of Transmission line (12hrs) Skin and Proximity effects – Description and effect on Resistance of Solid Conductors – Ferranti effect – Charging Current – Shunt Compensation – Corona – Description of the phenomenon–Factors affecting corona–Critical voltages and power loss – Radio Interference.	CO3
IV	Sag and Tension Calculations and Overhead Line Insulators (12hrs) Sag and Tension calculations with equal and unequal heights of towers–Effect of	CO4

	Wind and Ice on weight of Conductor–Numerical Problems – Stringing chart and							
	sag template and its applications-Types of Insulators - String efficiency and							
	Methods for improvement- Numerical Problems - Voltage distribution-							
	Calculation of string efficiency–Capacitance grading and Static Shielding.							
	Bus Admittance Matrix & Bus Impedance Matrix (12hrs)							
	Bus Admittance Matrix (Ybus):							
	Per Unit quantities, Single line diagram, Impedance diagram of a power							
\mathbf{v}	system, Primitive network representation, Formation of Ybus matrix by direct	CO5						
v	inspection method. Numerical Problems. (6hrs)	COS						
	Bus Impedance Matrix (Zbus):							
	Formation of Zbus matrix by building algorithm, Modification of Zbus for the							
	changes in network, Numerical Problems (3 bus system only). (6hrs)							

Content Beyond the syllabus:

Power transmission system design: Introduction to deregulated power systems, Transmission loss calculation, Power transmission loss allocation, Power transmission cost allocation, Available transfer capability (Elementary treatment only)

Advanced Transmission Technologies: High-temperature super conducting technology, Advanced composite conductors.(Elementary treatment only)

	Course Outcomes							
Upon	Upon successful completion of the course, the student will be able to							
CO1	Evaluate the performance of transmission lines. {Evaluate level, KL5}							
CO2	Understand the Power systems transients, travelling waves {Understand level, KL2}							
CO3	Evaluate the various factors governing the performance of transmission line. {Evaluate							
	level, KL5}							
CO4	Analyze the sag and tension calculations and overhead line insulators. {Apply level,							
	KL4}							
CO5	Evaluate the bus admittance matrix & bus impedance matrix. {Evaluate level, KL5}							

Learning Resources

Text books:

- 1. Electrical power systems by C.L.Wadhwa, New Age International (P) Ltd, Publishers, 1998.
- 2. Modern Power System Analysis, I.J.Nagarath and D.P.Kothari, Tata McGraw Hill, 2nd Edition
- 3. A Text Book on Power System Engineering, M.L.Soni, P.V.Gupta, U.S.Bhatnagar A.Chakrabarthy, DhanpatRai& Co Pvt. Ltd.

Reference books:

- 1. Power system Analysis–by John J Grainger William D Stevenson, TMC Companies, 4thedition
- 2. Modern Power System Analysis by I.J.Nagarath and D.P.Kothari, Tata McGraw Hill, 2nd Edition

Micro-Syllabus

Unit – 1: Performance of Transmission Lines

Classification of Transmission Lines – Short, medium, long line and their model representations –Nominal-T–Nominal-Pie and A, B, C, D Constants for symmetrical and Asymmetrical Networks– Numerical Problems– Rigorous Solution (for long transmission lines) –Interpretation of the Long Line Equations- Mathematical Solutions to estimate regulation and efficiency of all types of lines – Numerical Problems. (15 Hrs)

Unit No	Module	Micro content
		Classification of transmission lines
		Representation of transmission lines
	Short, Medium	Nominal-T, Nominal pie representations of
Performance of	and Long	medium and long transmission lines
Transmission lines	transmission	Regulation, efficiency and ABCD constants of
	lines	short, medium and long transmission line
		Rigorous solution for long transmission line
		Numerical problems

Unit-2:Travelling waves

Incident, Reflected and Refracted Waves –Surge Impedance and SIL of Long Lines–Wave Length and Velocity of Propagation of Waves (8 Hrs)

Power system Transients

Types of System Transients – Travelling or Propagation of Surges – Attenuation–Distortion–Reflection and Refraction Coefficients – Termination of lines with different types of conditions – Open Circuited Line–Short Circuited Line – T-Junction– Lumped Reactive Junctions. (7 Hrs)

Unit No	Module	Micro content				
		Incident, Reflected and Refracted voltage and				
		current waves coefficients				
2 (a) Travelling waves	Travelling waves	Surge Impedance Loading				
2 (a) Havening waves		Wave length and velocity of propagation of				
		waves				
		Numerical problems				
		Types of system transients				
		Travelling or Propagation of surges				
		Attenuation–Distortion Reflection and				
		Refraction Coefficients (elementary treatment				
		only)				
2(h) Dayyan Systam	Dayyon Cyatam	Termination of lines with different types of				
2(b) Power System	Power System transients	conditions				
transients	transients	Open circuit				
		Short circuit				
		T junction				
		Lumped reactive junctions				
		Mathematical calculation				
		Numerical problems				

Unit-3: Various Factors governing the Performance of Transmission line

Skin and Proximity effects – Description and effect on Resistance of Solid Conductors – Ferranti effect – Charging Current –Shunt Compensation –Corona – Description of the phenomenon–Factors affecting corona–Critical voltages and power loss – Radio Interference. (12 hrs)

Unit No	Module	Micro content
Various Factors governing the Performance of Transmission line	Various Factors governing the Performance of Transmission line	Skin and Proximity effect Description and effect on Resistance of Solid Conductors Ferranti effect Charging current shunt compensation Numerical problems Corona Description of the phenomenon Factors affecting corona Critical voltages and power loss Radio Interference Numerical problems

Unit-4:Sag and Tension Calculations and Overhead Line Insulators

Sag and Tension calculations with equal and unequal heights of towers–Effect of Wind and Ice on weight of Conductor–Numerical Problems – Stringing chart and sag template and its applications–Types of Insulators – String efficiency and Methods for improvement– Numerical Problems – Voltage distribution–Calculation of string efficiency–Capacitance grading and Static Shielding.

(12 Hrs)

Unit No	Module	Micro content						
4 (a) Sag and Tension calculations	Sag and Tension calculations	 Sag and tension calculations Definition of Sag and Tension of transmission line Sag and Tension calculations with equal and unequal heights of towers Effect of Wind and Ice on weight of Conductor Numerical Problems Stringing chart and sag template and its applications (Basic idea) 						
4 (b) Insulators	Insulators	 Insulators Definition and various types String efficiency Voltage distributions Methods for improving string efficiency Numerical problems Capacitance grading and static shielding 						

Unit-5: Bus Admittance Matrix & Bus Impedance Matrix Bus Admittance Matrix (Ybus):

Per Unit quantities, Single line diagram, Impedance diagram of a power system, Primitive network representation, Formation of Ybus matrix by direct inspection method. Numerical Problems.(6hrs)

Bus Impedance Matrix (Zbus):

Formation of Zbus matrix by building algorithm, Modification of Zbus for the changes in network, Numerical Problems (3 bus system) (6hrs)

U	nit No	Module	Micro content					
5(a) Bus A matrix	dmittance	Bus Admittance Matrix (Ybus)	Bus admittance matrix Per unit quantities Single line diagram Impedance diagram of power system Primitive network representation Formation of Ybus matrix by direct inspection method. Numerical Problems.					
5(b) Bus Impedance	Matrix (Zbus)	Bus Impedance Matrix (Zbus)	Bus Impedance Matrix (Zbus) ➤ Formation of Zbus matrix by building algorithm ➤ Modification of Zbus for the changes in network ➤ Numerical Problems (upto 3 bus system)					
		Course Out						
Upon succe	essful completion	n of the course, the stude	ent will be able to					
	Evaluate the performance of transmission lines. {Evaluate level, KL5}							
	Understand the Power systems transients, travelling waves {Understand level, KL2}							
CO3	Evaluate the various factors governing the performance of transmission line.							
	{Evaluate level, KL5}							
	Analyze the sag and tension calculations and overhead line insulators. {Apply level, KL4}							
CO5	Evaluate the bus	admittance matrix & bu	us impedance matrix. {Evaluate level, KL5}					

Learning Resources

Text books:

- 1. Electrical power systems by C.L.Wadhwa, New Age International (P) Ltd, Publishers, 1998.
- 2. Modern Power System Analysis, I.J.Nagarath and D.P.Kothari, Tata McGraw Hill, 2nd Edition
- 3. A Text Book on Power System Engineering, M.L.Soni, P.V.Gupta, U.S.Bhatnagar A.Chakrabarthy, DhanpatRai& Co Pvt. Ltd.

Reference books:

- 1. Power system Analysis-by John J Grainger William D Stevenson, TMC Companies, 4thedition
- 2. Modern Power System Analysis by I.J.Nagarath and D.P.Kothari, Tata McGraw Hill, 2nd Edition

CO-PO mapping

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (High: 3, Medium: 2, Low: 1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1	3													
CO2	3												1	
CO3	2	1												
CO4	2	2	1											1
CO5	3	1												1

L T P C 3 0 0 3

SPECIAL ELECTRICAL MACHINES

PRE-REQUISITES:1) Electrical Machines-I &II

Course objectives: The student should be able to

- 1. To explain theory of different permanent magnetic material and applications.
- 2. To explain the performance and control of stepper motors, and their applications.
- 3. To describe the operation and characteristics of switched reluctance motor.
- 4. To explain the operation permanent magnet brushless square wave and sine wave motors
- 5. To explain the theory of travelling magnetic field and applications of linear motors

	Syllabus	
Unit	Contents	Mapped
No		CO
Ι	Permanent magnet materials and PMDC motors(15hrs) Introduction-classification of permanent magnet materials used in electrical machines-minor hysteresis loop and recoil line-Stator frames of conventional dc machines-Development of electronically commutated dc motor from conventional dc motor. (07hrs Permanent-magnet materials and characteristics-B-H loop and demagnetization characteristics-Temperature effects: high temperature effects-reversible lossesIrreversible losses -Application of permanent magnets in motors-power density-operating temperature range-severity of operation duty. (08hrs)	CO1
II	Stepper Motors (14 hrs) Classification of stepper motors – Hybrid and Variable Reluctance Motor (VRM) - Construction and principle of hybrid type synchronous stepper motor – Different configuration for switching the phase windings control circuits for stepper motors – Open loop and closed loop control of 2-phase hybrid stepping motor. (08hrs) Construction and principle of operation of Variable Reluctance Motor (VRM) – Single stack and multiple stack – Open loop control of 3- phase VR Stepper Motor- Applications(06hrs)	CO2
III	Switched Reluctance Motors (10hrs) Construction – Comparison of conventional and switched reluctance motors – Design of stator and rotor pole arcs – Torque producing principle and torque expression (5 hrs) Different converter configurations for SRM – Drive and power circuits for SRM – Position sensing of rotor – Applications of SRM(5 hrs)	CO3
IV	Square and Sine Wave Permanent Magnet Brushless DC Motor (15hrs) Types of constructions – Surface mounted and interior type permanent magnet – Principle of operation of BLDC motor. Torque and EMF equations – Torque speed characteristics – Performance and efficiency- Square wave brushless motors with 120° and 180° magnetic areas commutation. (8 hrs) Sine wave Permanent Magnet Brushless Motor Torque and EMF equations – Torque/speed characteristics – Comparison between square wave and sine wave permanent magnet motors - Applications. (7 hrs)	CO4

	Linear Induction Motors (10hrs)	
T //	Construction— principle of operation—Double sided LIM from rotating type Induction Motor (5 hrs)	CO5
V	Schematic of LIM drive for traction – Development of one sided LIM with back	
	iron equivalent circuit of LIM. (5 hrs)	

Content Beyond the syllabus:

Powering A Generation: Reactive Power Requirements in steady state-Conventional control strategies-Alternate control strategies sources of reactive power-AC Filters – shunt capacitors-synchronous condensers. (Elementary treatment only)

	Course Outcomes					
Upon	successful completion of the course, the student will be able to					
CO1	To understand theory of different permanent magnetic material and					
	applications.{Understand level, KL2}					
CO2	To explain the performance and control of stepper motors, and their					
	applications.{Understand level, KL2}					
CO3	To describe the operation and characteristics of switched reluctance motor					
	{ Understand level, KL2}					
CO4	To explain the operation permanent magnet brushless square wave and sine wave					
	motors					
	.{Understand level, KL2}					
CO5	To explain the theory of travelling magnetic field and applications of linear motors					
	. {Understand level, KL2}					

Learning Resources

Text books:

- 1. Brushless Permanent magnet and reluctance motor drives, Clarenden press, T.J.E. Miller, 1989, Oxford.
- 2. Special electrical Machines, K. VenkataRatnam, University press, 2009, New Delhi.

Reference books:

1. Special Electrical Machines ,G.Janradhana, PHI Publishers

e- Resources & other digital material

1. https://nptel.ac.in/courses/108/102/108102156/

Micro-Syllabus

UNIT-I Permanent magnet materials and PMDC motors (15 hrs)

Introduction-classification of permanent magnet materials used in electrical machines-minor hysteresis loop and recoil line-Stator frames of conventional dc machines-Development of electronically commutated dc motor from conventional dc motor. (07 hrs

Permanent-magnet materials and characteristics-B-H loop and demagnetization characteristics-Temperature effects: high temperature effects-reversible lossesIrreversible losses -Application of permanent magnets in motors-power density-operating temperature range-severity of operation duty. (08hrs)

Unit No		Module	Micro content
1.a	Permanent	Permanent Magnetic	Introduction of Magnetic Materials
magi	net	Materials introduction	classification of permanent magnet materials used in

materials and		electrical machines
PMDC motors		minor hysteresis loop
		recoil line
		Stator frames of conventional dc machines
		Development of electronically commutated dc motor
		from conventional dc motor
		Permanent-magnet materials and characteristics
		Permanent-magnet materials and characteristics-B-H
11 5		loop
1.b . Permanent	Permanent Magnetic	demagnetization characteristics
magnet materials and	Materials	Temperature effects: high temperature effects
PMDC motors	characteristics	reversible losses
		Application of permanent magnets in motors
		power density-operating temperature range
		severity of operation duty

UNIT-II: Stepper Motors (14 hrs)

Classification of stepper motors – Hybrid and Variable Reluctance Motor (VRM) - Construction and principle of hybrid type synchronous stepper motor – Different configuration for switching the phase windings control circuits for stepper motors – Open loop and closed loop control of 2-phase hybrid stepping motor. (08hrs)

Construction and principle of operation of Variable Reluctance Motor (VRM) – Single stack and multiple stack – Open loop control of 3- phase VR Stepper Motor- Applications(06hrs)

Unit No	Module	Micro content
		Classification of stepper motors
		Construction of Hybrid Stepper Motor
		principle of hybrid type synchronous stepper
		motor
2.a	Hybrid Stepper Motor	Different configuration for switching the phase
Stepper Motors	Tryona stepper motor	windings control circuits for stepper motors
		Open loop control of 2-phase hybrid stepping
		motor
		closed loop control of 2-phase hybrid stepping
		motor
		Construction of Variable Reluctance Motor
	Vriable Reluctance Motor	(VRM)
2.b		principle of operation of Variable Reluctance
		Motor (VRM)
Stepper Motors	(VRM)	Single stack and multiple stack operation of
	(VICIVI)	Variable Reluctance Motor (VRM)
		Open loop control of 3- phase VR Stepper
		Motor
		Applications of stepper motor

Unit III Switched Reluctance Motors (10 hrs)

Construction – Comparison of conventional and switched reluctance motors – Design of stator and rotor pole arcs – Torque producing principle and torque expression (5 hrs)

Different converter configurations for SRM – Drive and power circuits for SRM – Position sensing of rotor – Applications of SRM(5 hrs).

Unit No	Module	Micro content					
		Construction of switched reluctance motor					
3.a Switched		Comparison of conventional and switched reluctance motors					
Reluctance	Construction of Operation VR Motors	Design of stator and rotor pole arcs					
Motors		Torque producing principle of switched reluctance motor					
		torque expression of switched reluctance motor					
		Different converter configurations for SRM					
3.b Switched	Control of VR Motors	Drive and power circuits for SRM					
Reluctance Motors	Control of VR Motors	Position sensing of rotor					
		Applications of SRM					

Unit IV Square and Sine Wave Permanent Magnet Brushless DC Motor (15 hrs)

Types of constructions – Surface mounted and interior type permanent magnet – Principle of operation of BLDC motor. Torque and EMF equations – Torque speed characteristics – Performance and efficiency- Square wave brushless motors with 120^{0} and 180^{0} magnetic areas commutation.

(8 hrs)Sine wave Permanent Magnet Brushless Motor Torque and EMF equations – Torque/speed characteristics – Comparison between square wave and sine wave permanent magnet motors - Applications. (7 hrs)

Unit No	Module	Micro content
		Types of constructions – Surface mounted and interior type permanent magnet,
4.a Square and Sine	Square Wave Permanent	Principle of operation of BLDC motor
Wave Permanent	Magnet Brushless DC	Torque and EMF equations
Magnet Brushless	Motor	Torque speed characteristics – Performance and
DC Motor		efficiency-
		Square wave brushless motors with 120° and
		180 ⁰ magnetic areas commutation
4 .b		Construction of Sine wave Permanent Magnet
Square and Sine	Sine Wave Permanent	Brushless Motor
Wave Permanent	Magnet Brushless DC Motor	Torque and EMF equations
Magnet Brushless		Torque/speed characteristics

DC Motor	Comparison	between	square	wave	and	sine
	wave perman	nent magn	et motor	S		
	Applications					

Unit V Linear Induction Motors (10 hrs)

Construction- principle of operation-Double sided LIM from rotating type Induction Motor (5 hrs)

Schematic of LIM drive for traction – Development of one sided LIM with back ironequivalent circuit of LIM. (5 hrs)

•11•010 01 <u>=11</u> ·11 (6 11	~,	
Unit No	Module	Micro content
F. a		Construction of Linear Induction motor
5.a Linear Induction	Construction of Linear Induction motor	principle of operation Linear Induction motor
Motors		Double sided LIM from rotating type Induction Motor
5.b	Applications of Linear Induction motor	Schematic of LIM drive for traction
Linear Induction		Development of one sided LIM with back iron
Motors		equivalent circuit of LIM

	Course Outcomes				
Upon	successful completion of the course, the student will be able to				
CO1	To understand theory of different permanent magnetic material and applications.				
	{Understand level, KL2}				
CO2	To explain the performance and control of stepper motors, and their applications.{				
	Understand level, KL2}				
CO3	To describe the operation and characteristics of switched reluctance motor				
	{ Understand level, KL2}				
CO4	To explain the operation permanent magnet brushless square wave and sine wave				
	motors				
	.{ Understand level, KL2}				
CO5	To explain the theory of travelling magnetic field and applications of linear motors				
	. { Understand level, KL2}				

Learning Resources

Text books:

- 1. Brushless Permanent magnet and reluctance motor drives, Clarenden press, T.J.E. Miller, 1989, Oxford.
- 2. Special electrical Machines, K. VenkataRatnam, University press, 2009, New Delhi..

Reference books:

- 1. Special Electrical Machines ,G. Janradhana, PHI Publishers
- e- Resources & other digital material
- 1.https://nptel.ac.in/courses/108/102/108102156/

CO PO MAPPING:

Co	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of														
	correlations (High: 3, Medium: 2, Low: 1)														
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PS0	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO	2	2	3	1								1			
1															
CO	2	2	3	1								1			1
2															
CO	2	2	3	1								1			1
3															
CO	2	2	3	1								1			1
4															
CO	2	2	3	1								1			1
5															

L T P C 3 0 0 3

POWER ELECTRONICS

PRE-REQUISITES: 1) Basic Circuit Analysis 2) Basics of Electronics

Preamble: It is very common to use power converters in all the systems of engineering. So it is compulsory for the students to imbibe the concepts of power electronics. This course covers characteristics of semiconductor devices, ac/dc, dc/dc, ac/ac and dc/ac converters.

Course objectives: The main objectives are

- 1. To study the characteristics of various power semiconductor devices and to design firing circuits for SCR.
- 2. To understand the operation of single phase full—wave converters and analyze harmonics in the input current.
- 3. To study the operation of three phase full–wave converters.
- 4. To understand the operation of choppers and AC-AC converters.
- 5. To understand the operation of inverters and application of PWM techniques for voltage control and harmonic mitigation.

	Syllabus	
Unit No	Contents	Mapped CO
I	Power Semi-Conductor Devices (11 hrs) static Characteristics of power MOSFET and power IGBT Silicon controlled rectifier (SCR): Basic theory of operation of SCR-Static characteristics—Dynamic characteristics of SCR - Turn on and turn off methods—Firing circuits of SCR-Snubber circuit design, Single phase diode bridge rectifier.	CO1
II	Single-Phase AC-DC Converters (13 hrs) Half wave controlled converter, Full wave controlled converters: Half controlled bridge converter with R and RL loads—continuous and discontinuous conduction, Fully controlled bridge converter with R and RL loads—continuous and discontinuous conduction, Effect of source inductance in fully controlled bridge rectifier with continuous conduction.	CO2
III	Three-Phase AC-DC Converters (12 hrs) Three-phaseHalf controlled bridge converter with R and RL loads: continuous and discontinuous conduction, Three-phaseFully controlled bridge converter with R and RL loads: continuous and discontinuous conduction, Three-phase Dual converter.	CO3
IV	DC-DC Converters (12 hrs) Analysis of Buck, Boost and Buck-Boost converters in Continuous Conduction Mode only. (05 hrs) AC – AC Regulators. Integral cycle control, Single phase-controlled AC voltage controller with R and RL loads, Single phase bridge Cycloconverters with R-load only. (07 hrs)	CO4
V	DC–AC Converters (12 hrs) 1- phase full bridge inverters with R and RL loads, Unipolar and Bipolar switching, 3-phase inverters: 120° and 180° conduction modes, Sinusoidal pulse	CO5

width modulation method, Current Source Inverter (CSI)

Content Beyond the syllabus:

Power diode, Series/parallel operation of SCR's, Three phase uncontrolled Rectifiers, Series inverter.

	Course Outcomes							
Upon	Upon successful completion of the course, the student will be able to							
CO1	CO1 Design firing circuits for SCR. {Apply level, KL4}							
CO2	Evaluate the performance of converters and can suggest the converter required for DC							
	drives. {Evaluate level, KL5}							
CO3	Analyze the source current harmonics. {Analyze level, KL4}							
CO4	Understand the operation of different types of DC-DC converters{Understand level,							
	KL2}							
CO5	Explain the operation of inverters and application of PWM techniques for voltage							
	control and harmonic mitigation. {Explain level, KL3}							

Learning Resources

Text books:

- 1. "Power Electronics" M.D.Singh,K B Khanchandani,2nd edition, Tata Mc-Graw Hill publishers,2007.
- 2. "Power Electronics" P.S.Bhimbra, 3rd edition, Khanna Publishers, 2002.
- 3. "Power Electronics" Daniel W.Hart, 1st edition, Tata Mc-Graw Hill publishers,2011.

Reference books:

- 1. "Power Electronics: Circuits, Devices and Applications" M.Harnur Rashid,3rd edition, Pearson,2009.
- 2. "Power Electronics: converters, applications & design" Ned Mohan, Tore M. Undeland, W.P. Riobbins3rdedition, Wiley India Pvt. Ltd,2009.
- 3. "Thyristorised Power Controllers" G. K. Dubey,S.R.Doradla,A.Joshi, R. M. K.Sinha,1st edition, New Age International (P) Limited Publishers, 1996

e- Resources & other digital material

- 2. https://nptel.ac.in/noc/courses/noc21/SEM1/noc21-ee01/
- 3. https://www.coursera.org/learn/power-electronics
- 4. https://www.classcentral.com/course/powerelectronics-716
- 5. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-334-power-electronics-spring-2007/lecture-notes/

Micro-Syllabus

Unit-1:Power Semi-Conductor Devices

(11 hrs)

static Characteristics of power MOSFET and power IGBT

Silicon controlled rectifier (SCR): Basic theory of operation of SCR-Static characteristics—Dynamic characteristics of SCR - Turn on and turn off methods—Firing circuits of SCR-Snubber circuit design, Single phase diode bridge rectifier.

Unit No	Module	Micro content					
1.a	Operation modes of	Basics of converter topologies					
static	Devices, Static I-V	Device symbols and I-V characteristics (Ideal)					
Characteristics of	graphs, SCR	power MOSFET operation					

devices	Operation	power IGBT operation
		operation of SCR-Static characteristics, Dynamic
		characteristics of SCR, two transistor analogy
1.b	Turn on and turn off	Turn on mechanisms of SCR
SCR firng	Turn on and turn off methods, Protection	R,RC& UJT firing circuits
,commutation and	of SCR	Class A,B,C.D,E & F commutation methods
Protection	OI SCK	Snubber circuit design

Unit-2:Single-Phase AC-DC Converters

(13 hrs)

Half wave controlled converter, Full wave controlled converters: Half controlled bridge converter with R and RL loads—continuous and discontinuous conduction, Fully controlled bridge converter with R and RL loads—continuous and discontinuous conduction, Effect of source inductance in fully controlled bridge rectifier with continuous conduction.

Unit No	Module	Micro content						
		Half wave controlled converter with R,RL loads						
		Freewheeling diode concept						
2.a One quadrant	Half wave controlled	center tapped configuration						
converters	converter, Full wave	bridge configuration						
	controlled converters	Discontinuous conduction mode and continuous conduction modes						
21.77		Half controlled converter with R and RL loads						
2.b.Two quadrant converters	Semi converter, Effect of source inductance	Difference between semi and full converters						
	or source inductance	Concept overlap angle and it's impact on rectifier output voltage						

Unit-3: Three-Phase AC-DC Converters

(12 hrs)

Three-phase Half controlled bridge converter with R and RL loads: continuous and discontinuous conduction, Three-phase Fully controlled bridge converter with R and RL loads: continuous and discontinuous conduction, Three-phase Dual converter.

Unit No	Module	Micro content				
		Half wave uncontrolled converter				
3.a .Three phase	Three pulse converter,	Half wave-controlled converter				
rectifiers	six pulse converter	Full bridge converter				
		Half bridge converters				
3. b. Four	1 1 5 1	Circulating current mode				
quadrant converter	1-phase Dual converter	Non-Circulating current mode				

Unit-4:DC–DC Converters (12 hrs)

Analysis of Buck, Boost and Buck-Boost converters in Continuous Conduction Mode only. (05 hrs)

AC - AC Regulators.

Integral cycle control, Single phase-controlled AC voltage controller with R and RL loads , Single phase bridge Cycloconverters with R-load only. (07 hrs)

Unit No	Module	Micro content			
4.a.DC–DC Converters	Choppers	Control strategies of chopper			
	- Tr	Basic step down chopper			

		Buck converter analysis in CCM				
		Boost converter analysis in CCM				
		Buck-Boost converter analysis in CCM				
		Integral cycle control				
4.b .AC – AC	AC Voltage controller,	Phase angle control				
Regulators	Cyclo converter	Step down cyclo converter				
		Step up cyclo converter				

Unit-5:DC–AC Converters (12 hrs)

1- phase full bridge inverters with R and RL loads, Unipolar and Bipolar switching, 3-phase inverters: 120^0 and 180^0 conduction modes, Sinusoidal pulse width modulation method, Current Source Inverter (CSI)

Unit No	Module	Micro content					
		Introduction and classification of inverters					
5.a.VSI	Single phase VSI,	full bridge inverter with R and RL loads					
	Three phase VSI	180 ^o conduction mode along with Fourier series					
		120 ⁰ conduction mode along with Fourier series					
		Need of PWM					
		Single Pulse PWM and Fourier series of Output					
5.b.PWM & CSI	Pulse width modulation	voltage					
3.0.P W W & CSI	methods, CSI	sine PWM					
		Operation of CSI					
		VSI Vs CSI					

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Design firing circuits for SCR. {Apply level, KL4}							
CO2	Evaluate the performance of converters and can suggest the converter required for DC							
	drives. {Evaluate level, KL5}							
CO3	Analyze the source current harmonics. {Analyze level, KL4}							
CO4	Understand the operation of different types of DC-DC converters{Understand level,							
	KL2}							
CO5	Explain the operation of inverters and application of PWM techniques for voltage							
	control and harmonic mitigation. {Explain level, KL3}							

Text books:

- 1. "Power Electronics" M.D.Singh, K B Khanchandani, 2nd edition, Tata Mc-Graw Hill publishers,2007.
- 2. "Power Electronics" P.S.Bhimbra, 3rd edition, Khanna Publishers, 2002.
- 3. "Power Electronics" Daniel W.Hart, 1st edition, Tata Mc-Graw Hill publishers,2011.

Reference books:

- 1. "Power Electronics: Circuits, Devices and Applications" M. Harnur Rashid, 3rd edition, Pearson, 2009.
- 2. "Power Electronics: converters, applications & design" Ned Mohan, Tore M. Undeland, W.P. Riobbins 3rdedition, Wiley India Pvt. Ltd, 2009.

3. "Thyristorised Power Controllers" G. K. Dubey, S.R.Doradla, A.Joshi, R. M. K.Sinha, 1st edition, New Age International (P) Limited Publishers, 1996

CO-PO mapping Table with Justification

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-	PSO-
													1	2
CO1	3	2	1											
CO2	3	2											1	
CO3	3		2											
CO4	3	2												1
CO5	3											1		

L T P C 2 0 0 2

INTERNET OF THINGS (Open Elective –I)

Pre-Requisites: Fundamentals of computers and its importance

Preamble: "Internet of Things" (IoT) is a very new concept created and developed in recent years. This subject first introduces the concept and origin of IoT, then describes basic principles of IoT, next illustrates the framework of IoT, and finally takes examples to suggest applications of IoT. The subject intends to help students recognize IoT as a whole, to hold the clue and venation of the development of IoT, and to forecast future trends of IoT development.

Course objectives:

The student should be able to

- 1. study the introductory concepts, design procedures and enabling technologies of IoT
- 2. Learn the concepts of networking and building blocks of IoT.
- 3. Study changes in architectures of IoT and its challenges.
- 4. Know the procedure of IoT Design Methodology.
- 5. Learn about IoT solutions to different real time problems.

	Syllabus	
Unit No	Contents	Mapped CO
I	Unit – 1: Introduction to IoT (10 hrs) Introduction to Internet of Things, Block diagram of IoT, Definition and characteristics of IoT, Physical Design of IoT, Logical Design of IoT, IoT Enabling Technologies, IoT levels. (Basic concepts only).	CO1
II	Unit-2:IoT & M2M (10 hrs) Machine to Machine, Difference between IoT & M2M, Software defined Networking, Network function virtualization, IoT Device and its basic building blocks	CO2
III	Unit-3:Architecture and Challenges in IoT Three, Four, Five and Seven layer, Cloud and Fog based, Social IoT and its representative architecture, Design challenges, Development challenges, Security challenges, Other challenges, Need for IoT systems management.	CO3
IV	Unit-4:IoT Platforms Design Methodology Introduction, Step by step procedure of IoT Design Methodology, Development of domain and Information model for IoT systems, Example case studies.	CO4
V	Unit-5:Domain Specific IoTs Home automation, Smart cities, Environment, Energy, Retail, Logistics, Agricultural, Industry, Health and Lifestyle.	CO5

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Understand the concepts and designing of IoT{Understand level, KL2}
CO2	Explain the concepts of networking and building blocks of IoT.{Understand level,
	KL2}
CO3	Analyze changes in architectures of IoT and its challenges {Analyze level, KL4}
CO4	Explain the procedure of IoT Design Methodology. {Understand level, KL2}
CO5	Design IoT solutions to different real time problems. {Apply level, KL4}

Text books:

- 1. **Internet of Things: A Hands-on Approach**, Arshdeep Bahga, Vijay Madisetti, Orient Blackswan Private Limited New Delhi; First edition, ISBN: 8173719543
- 2. **The Internet of Things Key Applications and Protocols**, Olivier Hersent, David Boswarthick, Omar Elloumi, John Wiley & Sons Ltd, ISBN: 978-1-119-99435-0
- 3. **Architecting the Internet of Things**, Dieter Uckelmann, Mark Harrison, Florian Michahelles, Springer Heidelberg Dordrecht London New York, ISBN: 978-3-642-19156-5
- 4. **Fundamentals of Wireless Sensor Networks: Theory and Practice**, Waltenegus Dargie, Christian Poellabauer, John Wiley & Sons Ltd, ISBN: 978-0-470-97568-8

Reference books:

- 1. Networks, Crowds, and Markets: Reasoning About a Highly Connected World, David Easley, Jon Kleinberg, Cambridge University Press
- 2. Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, daCosta Francis, Henderson Byron, Apress Publications, ISBN: 978-1-4302-5740-0CO4
- 3. **Getting Started with the Internet of Things**, CunoPfister, OReilly Media, ISBN: 97CO58-1-4493-9357-1

Micro-Syllabus

Unit – 1: Introduction to IoT

(10 hrs)

Introduction to Internet of Things, Block diagram of IoT, Definition and characteristics of IoT, Physical Design of IoT, Logical Design of IoT, IoT Enabling Technologies, IoT levels. (Basic concepts only).

Unit No	Module	Micro content				
		Introduction				
	Introduction	Block diagram of IoT				
1a. Physical and		Definition & characteristics of IoT				
Logical Design of	Dhysical Design of LaT	Things in IoT,				
IoT	Physical Design of IoT	IoT Protocols				
		IoT functional Blocks,				
	Logical Design of IoT	IoT Communication Models,				
		IoT communication APIs				
11. I.T.E1.1	IoT Enabling Technologies	Wireless Sensor Networks,				
1b. IoT Enabling		Cloud Computing,				
Techniques & Levels		Big Data Analytics,				
Levels	_	Communication Protocols,				
		Embedded Systems				

Unit-2:IoT & M2N	M		(10 hrs)
	IoT levels	IoT Leve-1 to IoT Leve-6	

Machine to Machine, Difference between IoT & M2M, Software defined Networking, Network function virtualization, IoT Device and its basic building blocks.

Unit No	Module	Micro content				
		Machine to Machine				
2.a. Machine to	Machine to Machine	Difference between IoT & M2M				
Machine		Software defined Networking				
		Network function virtualization				
		sensors,				
2.b. IoT Device		processors,				
building blocks	IoT basic building blocks	gateways,				
		applications				

Unit-3:Architecture and Challenges in IoT

(10

Three, Four, Five and Seven layer, Cloud and Fog based, Social IoT and its representative architecture, Design challenges, Development challenges, Security challenges, Other challenges, Need for IoT systems management.

Unit No Module		Micro content		
		Three, Four, Five and Seven layer		
3.a. Architecture	Different Layers in IOT	Cloud and Fog based		
		Social IoT and its representative architecture		
		Design challenges		
21 01 11	Challenges in LaT	Development challenges		
3.b. Challenges in IoT	Challenges in IoT	Security challenges		
101		Other challenges		
	IoT systems management	Need for IoT systems management		

Unit-4:IoT Platforms Design Methodology

(10

Introduction, Step by step procedure of IoT Design Methodology, Development of domain and Information model for IoT systems, Example case studies

	Unit No	Module	Micro content
		Stan by stan mus as dyma	Introduction
	1. Design Methodology	Step by step procedure	Step-1 to Step-10
4.		Models	Domain Model
			Information model
		case studies	Examples

Unit-5:Domain Specific IoTs

Home automation, Smart cities, Environment, Energy, Retail, Logistics, Agricultural, Industry, Health and Lifestyle.

Unit No Module		Micro content
		Home automation
5. Domain	Annligations	Smart cities
Specific IoTs	Applications	Environment
		Energy

Retail
Logistics
Agricultural
Industry
Health and Lifestyle

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Understand the concepts and designing of IoT{Understand level, KL2}
CO2	Explain the concepts of networking and building blocks of IoT.{Understand level,
	KL2}
CO3	Analyze changes in architectures of IoT and its challenges {Analyze level, KL4}
CO4	Explain the procedure of IoT Design Methodology. {Understand level, KL2}
CO5	DesignIoT solutions to different real time problems. {Apply level, KL4}

Text books:

- 1. **Internet of Things: A Hands-on Approach**, Arshdeep Bahga, Vijay Madisetti, Orient Blackswan Private Limited New Delhi; First edition, ISBN: 8173719543
- 2. **The Internet of Things Key Applications and Protocols**, Olivier Hersent, David Boswarthick, Omar Elloumi, John Wiley & Sons Ltd, ISBN: 978-1-119-99435-0
- 3. **Architecting the Internet of Things**, Dieter Uckelmann, Mark Harrison, Florian Michahelles, Springer Heidelberg Dordrecht London New York, ISBN: 978-3-642-19156-5
- 4. **Fundamentals of Wireless Sensor Networks: Theory and Practice**, Waltenegus Dargie, Christian Poellabauer, John Wiley & Sons Ltd, ISBN: 978-0-470-97568-8

Reference books:

- 1. Networks, Crowds, and Markets: Reasoning About a Highly Connected World, David Easley, Jon Kleinberg, Cambridge University Press
- 2. Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, daCosta Francis, Henderson Byron, Apress Publications, ISBN: 978-1-4302-5740-0CO4
- 3. **Getting Started with the Internet of Things**, CunoPfister, OReilly Media, ISBN: 97CO58-1-4493-9357-1

CO-PO mapping Table with Justification

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (High: 3, Medium: 2, Low: 1)

									•					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1	3	1												
CO2			2		3								1	
CO3			2		3									
CO4	3		1											1
CO5	3											2		

L T P C 2 0 0 2

ELECTRICAL MACHINES MODELLING AND ANALYSIS (Open Elective –I)

PRE-REQUISITES: 1) Electrical Machines-I

2) Electrical Machines-II

Course objectives: The student should be able to

- 1. Study the Establish unified theory of rotating machines.
- 2. Understand the concept of phase transformation.
- 3. Analyze different electrical machines for improved performance through modification of their characteristics.
- 4. Study develop concepts on mathematical modeling of electrical machines

	Syllabus	
Unit No	Contents	Mapped CO
I	Basic concepts of Modeling (10 hrs) Basic Two-pole Machine representation of Commutator machines, 3-phase synchronous machine with and without damper bars and 3-phase induction machine, Kron's primitive Machine-voltage, current and Torque equations.	CO1
II	DC Machine Modeling (12 hrs) Mathematical model of separately excited D.C motor-Sudden application of Inertia Load-Transfer function of Separately excited D.C Motor- Mathematical model of D.C Series motor, Shunt motor-Linearization Techniques for small perturbations.	CO2
ш	Reference frame theory & Modeling of single phase Induction Machines (12 hrs) Linear transformation-Phase transformation - three phase to two phase transformation (abc to dq0) and two phase to three phase transformation dq0 to abc -Power equivalence Mathematical modeling of single phase induction machines.	CO3
IV	Modeling of three phase Induction Machine (13 hrs) Generalized model inarbitrary reference frame-Electromagnetic torque-Derivation of commonly used Induction machine models- Stator reference frame model-Rotor reference frame model-Synchronously rotating reference frame model	CO4
V	Modeling of Synchronous Machines and Special Machines(13 hrs) Modeling of Synchronous Machine: Synchronous machine inductances—voltage equations in the rotor's dq0 reference frame electromagnetic torque-current in terms of flux linkages-three synchronous machine model. (7 hrs) Modeling of Special Machines: Modeling of PM Synchronous motor, modeling of BLDC motor, modeling of Switched Reluctance motor. (6 hrs)	CO5
	tent Beyond the syllabus:	
DC.	Machine Modeling: Steady State analysis-Transient State analysis	

Modeling of three phase Induction Machine: state space model with flux linkages as variables.

	Course Outcomes				
Upon s	successful completion of the course, the student will be able to				
CO1	Develop modeling of dc machine {Understand level, KL2}				
CO2	Apply mathematical modeling concepts to 3-phase Induction machines {Apply level,				
	KL3}				
CO3	Evaluate the control strategies based on dynamic modeling of 3-ph Induction machines				
	{ Evaluate level, KL5}				
CO4	Evaluate the control strategies based on dynamic modeling of 3-phase synchronous				
	machine. {Evaluate level, KL5}				
CO5	Analyze the BLDC Machine and switched reluctance machine based on mathematical				
	modeling of BLDCM and SRM. {Apply level, KL4}				

Learning Resources

Text books:

- 3. Generalized theory of Electrical Machinery –P.S.Bimbra- Khanna Publishers.
- 4. Electric Motor Drives Modeling, Analysis& control -R.Krishnan- Pearson Publications1st edition -2002.

Reference books:

- 5. Analysis of Electrical Machinery and Drive systems P.C.Krause, OlegWasynczuk, Scott D.Sudhoff Second Edition-IEEE Press.
- 6. Dynamic simulation of Electric machinery using Matlab / Simulink CheeMunOng-PHl.
- 7. Modern Power Electronics and AC Drives-B.K. Bose PHI

e- Resources & other digital material

http://nptel.iitm.ac.in

Micro-Syllabus

Unit – 1: Basic concepts of Modeling (10 hrs)

Basic Two-pole Machine representation of Commutator machines, 3-phase synchronous machine with and without damper bars and 3-phase induction machine, Kron's primitive Machine-voltage, current and Torque equations.

Unit No	Module	Micro content						
1a. Basic Two-pole Machine representation	Basic Two-pole Machine representation	Basic Two-pole Machine representation of Commutator machines 3-phase synchronous machine with and without damper bars 3-phase induction machine with and without damper bars						
1b. Kron's primitive Machine	Kron's primitive Machine	Kron's primitive Machine Kron's primitive Machine voltage equation Kron's primitive Machine current equation Kron's primitive Machine Torque equation						

Unit-2: DC Machine Modeling (12 hrs)

Mathematical model of separately excited D.C motor – Steady State analysis-Transient State analysis-Sudden application of Inertia Load-Transfer function of Separately excited D.C Motor-Mathematical model of D.C Series motor, Shunt motor-Linearization Techniques for small perturbations.

Unit No	Module	Micro content
2a Mathematical		Mathematical model of separately excited D.C motor,
model of	Mathematical model of	Steady State analysis,
separately excited	separately excited D.C	Transient State analysis,
D.C motor	lilotoi	Sudden application of Inertia Load-Transfer
		function of Separately excited D.C Motor,
2b.Mathematical	Mathematical model of	Mathematical model of D.C Series motor,
model of D.C Series motor &	D.C Series motor &	Mathematical model of D.C Shunt motor
Shunt motor	Shunt mot	Linearization Techniques for small perturbations.

Unit-3: Reference frame theory & Modeling of single phase Induction Machines (12 hrs)

Linear transformation-Phase transformation - three phase to two phase transformation (abc to dq0) and two phase to three phase transformation dq0 to abc -Power equivalence Mathematical modeling of single phase induction machines.

Unit No Module		Micro content				
		Linear transformation,				
3a.Reference	Reference frame theory	Phase transformation,				
frame theory		three phase to two phase transformation				
		two phase to three phase transformation				
3b.Modeling of	Modeling of single	Power equivalence Mathematical modeling of				
single phase	phase Induction	single phase induction machines.				
Induction	Machines					
Machines	wiacilines					

Unit-4: Modeling of three phase Induction Machine (13 hrs)

Generalized model inarbitrary reference frame-Electromagnetic torque-Derivation of commonly used Induction machine models- Stator reference frame model-Rotor reference frame model-Synchronously rotating reference frame model-state space model with flux linkages as variables.

Unit No	Module	Micro content
4a.Electromagnetic torque-Derivation of commonly used Induction machine models	Electromagnetic torque- Derivation of commonly used Induction machine models	Generalized model inarbitrary reference frame, Electromagnetic torque Derivation of commonly used Induction machine models
4b.Stator and Rotor reference	Stator and Rotor reference frame model	Stator reference frame model Rotor reference frame model,

frame model	Synchronously rotating reference frame model
	state space model with flux linkages as variables.
	Comparison between DC and AC distribution
	systems.

Unit-5: Modeling of Synchronous Machines and Special Machines (13 hrs)

Modeling of Synchronous Machine: Synchronous machine inductances—voltage equations in the rotor's dq0 reference frame electromagnetic torque-current in terms of flux linkages-three synchronous machine model. (7 hrs)

Modeling of Special Machines: Modeling of PM Synchronous motor, modeling of BLDC motor, modeling of Switched Reluctance motor. **(6 hrs)**

Unit	Module	Micro content
		Synchronous machine inductances,
5a.Modeling of	Modeling of Synchronous Machine	voltage equations in the rotor's,
Synchronous		reference frame electromagnetic torque,
Machine	Synchronous Machine	current in terms of flux linkages-three
		synchronous machine model.
5h adalina of	Modeling of Chasiel	Modeling of PM Synchronous motor
5b.odeling of Special Machines	Modeling of Special Machines	modeling of BLDC motor,
Special Machines	Macilines	modeling of Switched Reluctance motor.

Course Outcomes: Upon successful completion of the course, the student will be able to

0041	outcomes. Epon successful completion of the course, the student will be use to
CO1	Develop modeling of dc machine {Understand level, KL2}
CO2	Apply mathematical modeling concepts to 3-phase Induction machines {Apply level,
	KL3}
CO3	Evaluate the control strategies based on dynamic modeling of 3-ph Induction machines {
	Evaluate level, KL5}
CO4	Evaluate the control strategies based on dynamic modeling of 3-phase synchronous
	machine. {Evaluate level, KL5}
CO5	Analyze the BLDC Machine and switched reluctance machine based on mathematical
	modeling of BLDCM and SRM. {Apply level, KL4}

Text books:

- 1. Generalized theory of Electrical Machinery –P.S. Bimbra- Khanna Publishers.
- 2.Electric Motor Drives Modeling, Analysis& control -R.Krishnan- Pearson Publications1st edition -2002.

Reference books:

- 1. Analysis of Electrical Machinery and Drive systems P.C.Krause, OlegWasynczuk, Scott D.Sudhoff Second Edition-IEEE Press.
- 2. Dynamic simulation of Electric machinery using Matlab / Simulink CheeMunOng-PHI.
- 3.Modern Power Electronics and AC Drives-B.K. Bose PHI

CO-PO mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-	PSO-
													1	2
CO1	3												1	
CO2	3													
CO3	3	2												
CO4	3	1											1	
CO5	3	1											1	

L T P C 2 0 0 2

MICRO ELECTRO MECHANICAL SYSTEMS (Open Elective –I)

PRE-REQUISITES: --

Course objectives: The student should be able to

- 1. To understand the standard micro fabrication techniques and working principles of mechanical sensors and actuators
- 2. To understand the fundamental principles of thermal sensors and actuators
- 3. To learn the fundamental principles of magnetic sensors and actuators and optic applications in MEMS
- 4. To understand Applications of RF MEMS and micro fluid actuation methods
- 5. To teach applications MEMS in chemical and biological systems.

	Syllabus	
Unit No	Contents	Mapped CO
I	INTRODUCTION Definition of Mems, mems history and development, micro machining, lithography principles &methods, structural and sacrificial materials. Thin film deposition, impurity doping, etching, surface micro machining, wafer bonding .LIGA MECHANICAL SENSORS AND ACTUATORS: Principles of sensing and actuation: beam and cantilever, capacitative, piezo electric, strain, pressure flow, pressure measurement by micro phone ,MEMS gyroscopes ,shear mode piezo actuator ,gripping piezo actuator ,inchworm technology	CO1
II	THERMAL SENSORS AND ACTUATORS: Thermal energy basics and heat transfer processes, thermisters, thermo devices, thermo couple, micro machined thermo couple probe ,peltier effect heat pumps, thermal flow sensors, micro hot plate gas sensors. mems thermo vessels, pyro electricity, shape memory alloys (SMA),U-shaped horizontal and vertical electro thermal actuator ,thermally activated mems relay micro spring thermal actuator data storage cantilever.	CO2
III	MAGNETIC SENSORS AND ACTUATORS: Magnetic materials for mems and properties, magnetic sensing and detection, magneto resistive sensor, more on hall effect, magneto diodes, magneto transistor, mems magnetic sensor, pressure sensor utilizing moke mag mems actuators by directional micro actuator feedback circuit integrated magnetic actuator, large force reluctance actuator, magnetic probe based storage device. MICRO-OPTO -ELECTRO MECHANICAL SYSTEMS: MOEMS technology, properties of light, light modulators, beam splitter, micro lens, micro mirrors, digital micro mirror device(DMD), light detectors, grating light valve (GLV), optical switch. wave guide and tuning shear stress measurement	CO3
IV	RADIO FREQUENCY (RF) MEMS: RF-based communication systems .RF MEMS, Mems inductors, varactors, tuner/filter resonator clarification of tuner, filter resonator, mems switches, phase shifter.	CO4

	MICROFLUIDIC SYSTEMS: Applications considerations on micro scale fluid,					
	fluid actuation methods, dielectrophoresis (DEP), electro wetting , electro thermal					
	flow, thermo capillary effect electro osmosis flow, opto electro wetting					
	(OEW),tuning using micro fluidics ,typical micro fluidic channel ,micro fluid					
	dispenser, micro needle, molecular gate ,micro pumps					
	CHEMICAL AND BIO MEDICAL MICRO SYSTEMS: Sensing mechanism					
V	&principle membrane transducer materials ,chem. Lab on chip (CLOC), chemo	CO5				
V	resisters ,chemo capacitors ,chemo transistors, electronic nose(E nose),mass					
	sensitive chemo sensors, fluroscence detection ,calorimetric spectroscopy					

Content Beyond the syllabus:

	Course Outcomes				
Upon	successful completion of the course, the student will be able to				
CO1	To understand the applications of micro-fabrication processes in MEMS and working				
	principles of Mechanical sensors and actuators (KL-2)				
CO2	To Explain the various working principles of Thermal sensors and actuators in MEMS.				
	(KL-2)				
CO3	To Learn working principles of Magnetic sensors, actuators and various principles Light				
	and its applications in MEMS. (KL-2)				
CO4	To Learn and apply the principles of RF and to understand multi domain problems of				
	MEMS in micro-fluidic systems (KL-2)				
CO5	An ability to learn knowledge of MEMS in Chemical and Bio Medical Micro Systems				
	(KL-2)				

Learning Resources

Text books:

1. MEMS, Nitaigour Premchand Mahalik, TMH Publishing co.

Reference books:

- 1. Foundation of MEMS .Chang Liu .Prentice Hall Ltd.
- 2. Introductory MEMS, Thomas M Adams, Richard A Layton, Springer International Publishers.
- 3. MEMS design and fabrication by Mohamed gad -el -hak CRC
- 4. MEMS and NEMS, Sergey EdwrdLyshevski, CRC Press, Indian Edition.
- 5. Mems and Micro systems: Design and manufacture .Tai-ran Hsu.TMH Publishers
- 6. BIO-Mems (Micro Systems) Gerald Urban, Springer.

e- Resources & other digital material:

- 1. http://www.csa.com/discoveryguides/mems/gloss_f.php
- 2. https://www.mems-exchange.org/MEMS/applications.html

Micro-Syllabus

Unit 1: Mechatronics systems – Elements & levels of mechatronics system, Mechatronics design process, system, measurement systems, control systems, microprocessor-based controllers, advantages and disadvantages of mechatronics systems. Sensors and transducers, types, displacement, position, proximity, velocity, motion, force, acceleration, torque, fluid pressure, liquid flow, liquid level, temperature and light sensors.

Unit No	Module	Micro content
	Introduction	Introduction to mechatronics and
		mechatronics systems
		different elements and
	Elements and levels of	classification of levels of
1a. Mechatronics systems	mechatronics system	mechatronics systems
		steps in design process of
	Design process	mechatronics systems
		traditional design vs mechatronics
		design
	Systems	measurement systems and its basic
		elements
		control systems and its types
		microprocessor-based controllers
		advantages and disadvantages of
		mechatronics systems
1b. Mechatronics systems	Sensors and Transducers	definitions od sensor and
		transducer and their differences
		performance terminology
		static and dynamic characteristics
		different types of sensors and
		transducers and examples for each
		type

Unit 2: Solid state electronic devices - PN junction diode, BJT, FET, DIAC, TRIAC and LEDs. Analog signal conditioning, operational amplifiers, noise reduction, filtering.

Unit No	Module	Micro content
	Solid state electronic devices	different types of solid state
		electronic devices
		principle and working of PN
2a. Solid state electronic devices		junction diode, BJT, FET, DIAC,
		TRIAC and LEDs
	Signal conditioning	Need for signal conditioning
		Process of signal conditioning
		Elements used in signal
		conditioning
2b. Solid state electronic devices	Operational amplifiers	Brief introduction to amplifiers,
		operational amplifiers
		Different types of operational

		amplifiers
	Noise reduction and filtering.	Need for noise reduction and
		filtering
		Classification of filters

Unit 3: Hydraulic and pneumatic actuating systems - Fluid systems, Hydraulic systems, and pneumatic systems, components, control valves, electro-pneumatic, hydro-pneumatic, electro-hydraulic servo systems. Mechanical actuating systems and electrical actuating systems – basic principles and elements.

Unit No	Module	Micro content
3a.Actuating systems	Hydraulic and pneumatic actuating systems	Introduction to actuating systems
		Different types of actuating
		systems
		Different components and working
		of hydraulic and pneumatic
		actuating systems
		Control valves and its types
3b. Actuating systems	Hydraulic and pneumatic actuating systems	Electro-pneumatic, hydro-
		pneumatic, electro-hydraulic servo
		systems
		Basic principles, elements and
	Mechanical and electrical	operations of Mechanical and
	actuating systems	electrical actuating systems

Unit 4: Digital electronics and systems - digital logic control, microprocessors and micro controllers, programming, process controllers, programmable logic controllers, PLCs versus computers, application of PLCs for control.

Unit No	Module	Micro content
	Digital logic control	Introduction to digital electronics and systems
		Difference between analog and digital
		System Numbering systems and conversions
4a. Digital electronics and		Boolean algebra
systems		Different types of logic gates
		Difference between microprocessor
	Microprocessors and Micro controllers	and microcontroller
		Characteristics and important features
		of microprocessor
4b. Digital electronics and systems	Microprocessors and Micro controllers	Applications of microprocessors
		Characteristics and applications of
		microcontrollers
		Brief introduction to plc and its basic
	Plc	structure
		Components of a PLC, and
		programming
		PLCs versus computers
		Application of PLCs for control.

Unit 5: System and interfacing and data acquisition – Data Acquisition Systems, Analog to Digital and Digital to Analog conversions; Digital Signal Processing – data flow in DSPs, block diagrams, typical layouts, Interfacing motor drives. Design of mechatronics systems & future trends.

Unit No	Module	Micro content
	Data acquisition systems (DAQ)	Introduction to Data Acquisition
		Systems
		Objectives and components of DAQ
5a. System and interfacing		Block diagram of DAQ
and data acquisition		Advantages and disadvantages of
		DAQ
	Signal conversions	Analog to digital conversion
		Digital to analog conversion
5b. System and interfacing and data acquisition		Data flow in DSPs
	Digital signal processing	Block diagrams and typical layout of
		DSP
		Interfacing motor drives
		Design considerations of
		mechatronics systems
	Design of mechatronics	Different steps in design of
	systems & future trends.	mechatronics systems
		Future trends in the field of
		mechatronics and its applications

Cours	Course Outcomes	
Upon s	Upon successful completion of the course, the student will be able to	
CO1	To understand the applications of micro-fabrication processes in MEMS and working	
	principles of Mechanical sensors and actuators (KL-2)	
CO2	To Explain the various working principles of Thermal sensors and actuators in MEMS.	
	(KL-2)	
CO3	To Learn working principles of Magnetic sensors, actuators and various principles Light	
	and its applications in MEMS. (KL-2)	
CO4	To Learn and apply the principles of RF and to understand multi domain problems of	
	MEMS in micro-fluidic systems (KL-2)	
CO5	An ability to learn knowledge of MEMS in Chemical and Bio Medical Micro Systems	
	(KL-2)	

Learning Resources	
Text boo	oks:
1. MEMS, NitaigourPremchandMahalik,TMH Publishing co.	
Referen	ce books:
1. F	Foundation of MEMS .Chang Liu .Prentice Hall Ltd.
2. In	ntroductory MEMS, Thomas M Adams, Richard A Layton, Springer International
P	Publishers.
3. N	MEMS design and fabrication by Mohamed gad -el -hak CRC

- 4. MEMS and NEMS, Sergey EdwrdLyshevski, CRC Press, Indian Edition.
- 5. Mems and Micro systems: Design and manufacture .Tai-ran Hsu.TMH Publishers
- 6. BIO-Mems (Micro Systems) Gerald Urban, Springer.

e- Resources & other digital material:

- 1. http://www.csa.com/discoveryguides/mems/gloss_f.php
- 2. https://www.mems-exchange.org/MEMS/applications.html

CO-PO Mapping:

Mappin	P0	P01	P01	P01	PS0	PSO								
g	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C01	2		2										1	
C02	2		2										1	
C03	2		2										1	
C04	2		2										1	
C05	2		2										1	

L T P C 3 0 0 3

NEURAL NETWORKS & FUZZY LOGIC (Open Elective –/I)

Pre-requisites: Not specific

Course Objectives:

- 1. To introduce the concept of artificial neuron models
- 2. To study various neural network architectures and learning strategies
- 3. To explain ANN paradigms and application of ANN to Electrical Engineering problems.
- 4. To introduce fuzzy set operations and relations.
- 5. To study the design of fuzzy logic system

	Syllabus	
Unit No	Contents	Mapped CO
Ι	Introduction to Neural Networks: (12hrs)	
	Introduction: (7hrs)	
	Introduction, Organization of the Human Brain, Organization of the Biological	
	Neuron, Humans and Computers - Knowledge representation, Biological	CO1
	models- Hodgkin-Huxley Neuron Model, Integrate-and-Fire Neuron Model.	COI
	Artificial Neurons: (5hrs)	
	Artificial Neuron model, Activation functions, MC Culloch-pitts neuron	
	model, Design of basic logic gates using single artificial neuron.	
II	Essentials of Artificial Neural Networks: (12hrs)	
	Artificial Neural Network Architectures: (7hrs)	
	Neural Network Architectures, Single layer feed forward networks: concept of	
	Perceptron, learning algorithm for perceptron – linear separability- XOR	
	function.	CO2
	Learning strategies: (5hrs)	
	Learning methods (Supervised, Unsupervised and Reinforced), Learning rules	
	(Rosenblatt's Perceptron learning rule, Delta rule, Hebbian rule, Competitive	
	learning rule, Gradient Descent learning rule).	
III	ANN Paradigm and its applications: (10hrs)	
	ANN Paradigms: (6hrs)	
	Multi-layer feed forward networks –Generalized delta rule – Back Propagation	CO3
	algorithm – Radial Basis Function (RBF) network.	
	Applications of ANN: (4hrs)	
T 7	Speed control of DC and AC motors using Neural Network.	
IV	Classical and Fuzzy set Theory (14hrs)	
	Classical set Theory: (7hrs)	
	Introduction, Fuzzy versus crisp, properties of crisp sets- Verification of	COA
	Demorgan's Law, Operations and relations of crisp sets. Fuzzy set Theory: (7hrs)	CO4
	Fuzzy sets, Membership functions, Basic Fuzzy set operations, Properties of Fuzzy sets, Fuzzy Cartesian Product, Operations on Fuzzy relations.	

Fuzzy Logic System Design: (7hrs)

Fuzzy Logic, Fuzzy Quantifiers, Fuzzy Inference, Fuzzy Rule based system, De-fuzzification methods.

Fuzzy Logic Control Applications: (5hrs)

Speed control of DC and AC motors using Fuzzy logic controller

Content beyond syllabus:

Hybrid controller: Adaptive Neuro fuzzy system (ANFIS) information [Elementary Treatment Only]

Evolutionary programming: Basic genetic programming concepts and applications[Elementary Treatment Only]

Cours	Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to						
CO1	Understand the concept of artificial neuron.(Understand KL2, Analyze KL4)						
CO2	Know various ANN architectures and learning strategies. (Understand KL2, Analyze						
	KL4, Apply KL3)						
CO3	Understand ANN paradigm and its application to solve Electrical Engineering problems.						
	(Understand KL2, Apply KL3)						
CO4	Understand fuzzy set theory and membership functions. (Understand KL2)						
CO5	Design Fuzzy Logic System for Electrical Engineering problems. (Understand KL2,						
	Apply KL3)						

Learning Resources

Text Books:

- 1. Neural Networks, Fuzzy logic, Genetic algorithms: synthesis and applications by S.Rajasekaran and G.A. Vijayalakshmi Pai PHI Publication.
- 2. Fuzzy logic with fuzzy applications- by T.J. Ross, TMH.

Reference Books:

- 1. Introduction to Artificial Neural Systems Jacek M. Zurada, Jaico Publishing House, 1997
- 2. Fundamentals of Neural Networks Architectures, Algorithms and Applications by laurene Fausett, Pearson.
- 3. Neural Networks, Algorithms, Applications and programming Techniques by James A. Freeman, David M. Skapura.
- 4. Introduction to Neural Networks using MATLAB 6.0 by S N Sivanandam, S Sumathi, S N Deepa TMGH

Micro Syllabus

Unit-I: Introduction to Neural Networks:

(12hrs)

Introduction: (7hrs)

Introduction, Organization of the Human Brain, Organization of the Biological Neuron, Humans and Computers – Knowledge representation, Biological models- Hodgkin-Huxley Neuron Model, Integrate-and-Fire Neuron Model.

Artificial Neurons: (5hrs)

Artificial Neuron model, Activation functions, MC Culloch-pitts neuron model, Design of basic logic gates using single artificial neuron.

Unit No Module Micro content	
------------------------------	--

1.a	Biological Neuron	Human brain Organization, Biological neuron and its parts, comparison between Humans and Computers, Knowledge Representation.					
	Biological Models	Hodgkin-Huxley Neuron Model, Integrate-and-Fire Neuron Model.					
1.b	Artificial Neuron Models	Artificial Neuron model, Activation functions, MC Culloch-pitts neuron model.					
	Design of Logic Gates	Design of basic logic gates using single artificial neuron (AND, OR and NOT Gates Only).					

UNIT-II: Essentials of Artificial Neural Networks:

(12hrs)

Artificial Neural Network Architectures: (7hrs)

Neural Network Architectures, Single layer feed forward networks: concept of Perceptron, learning algorithm for perceptron – linear separability- XOR function.

Learning strategies: (5hrs)

Learning methods (Supervised, Unsupervised and Reinforced), Learning rules (Rosenblatt's Perceptron learning rule, Delta rule, Hebbian rule, Competitive learning rule, Gradient Descent learning rule).

Unit No	Module	Micro content
2.a	ANN Architectures	Neural Network Architectures (Single layer Feed Forward Network, Multi-layer Feed Forward Network and Recurrent Networks) [Elementary Treatment Only],
	Perceptron	Rosenblatt's Perceptron Theory, Perceptron learning algorithm, perceptron as Classifier limitations of Perceptron model.
		Learning methods (Supervised, Unsupervised and Reinforced) Only.
2.b	Learning Strategies	Learning rules (Rosenblatt's Perceptron learning rule, Delta rule, Hebbian rule, Competitive learning rule, Gradient Descent learning rule).

UNIT-III: ANN Paradigm and its applications:

(10hrs)

ANN Paradigms: (6hrs)

Multi-layer feed forward networks –Generalized delta rule– Back Propagation algorithm – Radial Basis Function (RBF) network.

Applications of ANN: (4hrs)

Speed control of DC and AC motors using Neural Network.

Unit No	Module	Micro content
3.a	ANN Paradigms	Multi-layer feed-forward network (based on Back propagation algorithm), Generalized delta rule, Back Propagation algorithm step by step procedure. Radial-basis function networks, Radial base functions Difference between RBN & MLFFN.
3.b.	Applications of	Neural Networks applications in Load Forecasting

		AN	IN S	Speed control	of DC and	AC motors	using Neural
]	Network.			
UNIT	_	IV:	Classical	and	Fuzzy	set	Theory
(14hrs)							

Classical set Theory: (7hrs)

Introduction, Fuzzy versus crisp, properties of crisp sets- Verification of Demorgan's Law, Operations and relations of crisp sets.

Fuzzy set Theory: (7hrs)

Fuzzy sets, Membership functions, Basic Fuzzy set operations, Properties of Fuzzy sets, Fuzzy Cartesian Product, Operations on Fuzzy relations.

Unit No	Module	Micro content
4.a.	Classical set Theory	Introduction to classical sets, Fuzzy Vs Classical Set Theory- Basic Definitions: Set, Single ton set, Null set, Power set, sub set Super set. Classical set properties, Operations and relations, Verification of Demorgan's Law.
4.b	Fuzzy set Theory	Fuzzy sets, Membership functions (Both Continuous type and Discrete type), Basic Fuzzy set operations. Properties of Fuzzy set, Fuzzy Cartesian Product, Operations on Fuzzy relations.

UNIT V: Fuzzy Logic System Design and Applications

(12hrs)

Fuzzy Logic System Design: (7hrs)

Fuzzy Logic, Fuzzy Quantifiers, Fuzzy Inference, Fuzzy Rule based system, De-fuzzification methods.

Fuzzy Logic Control Applications: (5hrs)

Speed control of DC and AC motors using Fuzzy logic controller

Unit No	Module	Micro content
		Fuzzy Logic, Fuzzy Quantifiers, Fuzzy Inference,
	Euzzy I ogio System	Fuzzy Rule based system
5.a	Fuzzy Logic System Design	Defuzzification methods (Centroid method, Centre
		of sums method and Mean of Maxima Method
		Only).
	Fuzzy Logic Control	Speed control of DC motors using Fuzzy logic
<i>5</i> h		controller
5.b	Applications	Speed control of AC motors using Fuzzy logic
		controller

Cours	Course Outcomes							
Upon s	Upon successful completion of the course, the student will be able to							
CO1	Understand the concept of artificial neuron.(Understand KL2, Analyze KL4)							
CO2	Know various ANN architectures and learning strategies. (Understand KL2, Analyze							
	KL4, Apply KL3)							
CO3	Understand ANN paradigm and its application to solve Electrical Engineering problems.							
	(Understand KL2, Apply KL3)							
CO4	Understand fuzzy set theory and membership functions. (Understand KL2)							
CO5	Design Fuzzy Logic System for Electrical Engineering problems. (Understand KL2,							

Apply KL3)

Learning Resources

Text Books:

- 1. Neural Networks, Fuzzy logic, Genetic algorithms: synthesis and applications by S.Rajasekaran and G.A. Vijayalakshmi Pai PHI Publication.
- 2. Fuzzy logic with fuzzy applications- by T.J. Ross, TMH.

Reference Books:

- 1. Introduction to Artificial Neural Systems Jacek M. Zurada, Jaico Publishing House, 1997.
- 2. Fundamentals of Neural Networks Architectures, Algorithms and Applications by laurene Fausett, Pearson.
- 3. Neural Networks, Algorithms, Applications and programming Techniques by James A. Freeman, David M. Skapura.
- 4. Introduction to Neural Networks using MATLAB 6.0 by S N Sivanandam, S Sumathi, S N Deepa TMGH.

CO-PO mapping Table with Justification

Con	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (High: 3, Medium: 2, Low: 1)											
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											PO12
CO1	3	1										1
CO2	3	2										1
CO3	2	3										2
CO4	3	3										2
CO5	3	3										2

L T P C 3 0 0 3

ADVANCED PYTHON PROGRAMMING (Open Elective –/I)

PRE-REQUISITES:

- Fundamentals of Python
- Problem solving skills

Course objectives: The student should be able to

- 1. Able to learn advanced concepts in Python
- 2. Able to use advanced packages like numpy, scipy, opency in Python for building data processing & visualizing applications.
- 3. Able to process digital imaging applications

	Syllabus	
Unit	Contents	Mapped
No		CO
Ι	Python Fundamentals: Introduction to Python, Data Structures – List, Dictionaries, Sets and Tuples. (6 hrs) Modules, Python Packages, Libraries: Modules - Creating modules, import statement, from Import statement, name spacing. Math Module: Constants, Power and logarithmic functions, Trigonometric functions. Numpy Library: Numpy import, Basic functions, Matrices Addition, Subtraction Multiplication, Transpose, Inverse, Eigen values and Eigenvectors using Numpy (8hrs)	CO1
II	Python packages: Introduction to PIP, Installing Packages via PIP, Using Python Packages (4hrs) Data Visualization – Matplotlib - Loading the library and importing the data, How Mat plot lib works?, modifying the appearance of a plot, Plotting multiple plots, Modifying the tick marks, Scatter plots, Bar plots. (8hrs)	CO2
ш	 File Handling – Introduction to Files, File modes, Reading, Writing data from files, Copy one file to another, deletion of files. Other file programs in Python. (4hrs) Text Processing: Word, character and line counting, Frequency count. Usage of with() and split(). Reading and writing into CSV formats. (8hrs) 	CO3
IV	Image Processing - Installing Jupiter notebook. Image & Its properties. Image processing applications. Image I/O and display with Python, Reading, saving and displaying an image using Open CV - PyPI, matplotlib Sample programs – Image statistics Croping, Converting images from RGB to Gray and resizing the image. (12 hrs)	CO4
V	Using Databases and SQL – Introduction to Database Concepts, usage of SQLite, Create, Insert & Retrieve data, Spidering twitter using a database. Sample Python codes (8 hrs)	CO5

	Course Outcomes				
Upon	Upon successful completion of the course, the student will be able to				
CO1	Recall the usage of Python Concepts.				
CO2	Use different Python packages for Data Visualization				
CO3	Demonstrate File handling & text processing				
CO4	Demonstrate applications that performs Image processing				
CO5	Connect database with Python.				

Learning Resources

Text books:

- 1. Python for Everybody: Exploring Data Using Python 3, Charles Severance
- 2. The Hitchiker's Guide to Python, O'Reilly publications

Reference books:

- 1. Hands-On Image Processing with Python, O'Reilly Publications
- 2. Think Python, Allen Downey, Green Tea Press

e- Resources & other digital material

- 6. https://nptel.ac.in/courses/117/105/117105079/
- 7. https://nptel.ac.in/courses/106/106/106106145/#
- 8. https://realpython.com/python-mysql/

Micro-Syllabus

Unit-I: Python Fundamentals: Introduction to Python, Data Structures – List, Dictionaries, Sets and Tuples.

Modules, Python Packages, Libraries: Modules - Creating modules, import statement, from Import statement, name spacing. Math Module: Constants, Power and logarithmic functions, Trigonometric functions. Numpy Library: Numpy import, Basic functions, Matrices Addition, Subtraction Multiplication, Transpose, Inverse, Eigen values and Eigenvectors using Numpy

Unit No	Module	Micro content
		Introduction to Python features, advantages and disadvantages, applications Lists - different types of problems using lists
1. a	Python Fundamentals	Tuples
	Tundamentais	Dictionaries - converting lists into dictionaries and other problems
		sets
		Module creation and import
		Math module and functions - basic math, statistical and
1. b	Modules, Python	logarithmic, trigonometric functions
1. 0	Packages, Libraries	Numpy basic mathematical operations - matrix
		applications
		Eigen values and vectors

Unit-II: Python packages: Introduction to PIP, Installing Packages via PIP, Using Python Packages

Data Visualization – Matplotlib - Loading the library and importing the data, How Mat plot lib works?, modifying the appearance of a plot, Plotting multiple plots, Modifying the tick marks,

Scatter plots, Bar plots.						
Unit No	Module	Micro content				
2.0		Installation process, commands				
2.a	Introduction to PIP	Installation of various packages				
		Using Python packages				
		Loading and importing matplotlib				
2.b	Data Visualization	Multiple plots - small applications				
2.0	Data Visualization	Updating plot ticks, scatter plots - sample applications				
		Bar plots sample applications				

Unit-III: File Handling – Introduction to Files, File modes, Reading, Writing data from files, Copy one file to another, deletion of files. Other file programs in Python. **(4hrs)**

Text Processing: Word, character and line counting, Frequency count. Usage of with() and split(). Reading and writing into CSV formats. **(8hrs)**

Unit No	Module	Micro content
		Introduction to Files, File modes
3a.		Reading and writing files - sample
Ja.	File Handling	programs - copy, reverse, reading lines, reading words,
		deletion of files
		Updating a file
		Word, line, character count programs
		Frequency count
3b.	Text processing	Usage of with() and split()
		Reading different files like CSV
		Implement read, update, cells/rows/columns in a CSV file

Unit-IV: Image Processing - Installing Jupiter notebook. Image & Its properties. Image processing applications. Image I/O and display with Python, Reading, saving and displaying an image using Open CV - PyPI, matplotlib.

Unit No	Module	Micro content
		 Introduction to images and their properties
		 Reading and writing images
	 Types of images 	 Types of images
4	T	 Display images using opency
	Image processing	 Usage of PyPI (methods for image processing)
	Image enhancement operation	 Image enhancement operations
		 other simple image based programs

Unit-V: Using Databases and SQL – Introduction to Database Concepts, usage of SQLite, Create, Insert & Retrieve data, Spidering twitter using a database. Sample Python codes (8 hrs)

Unit No	Module	Micro content		
		Database concepts - tables, rows and columns, primary keys, referential integrity		
=	Database	Usage of SQlite		
5	connectivity	DDL and DML commands		
		Basic storage and retrieval operations on database		
		Spidering twitter data and related python code modules		

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Recall the usage of Python Concepts.
CO2	Use different Python packages for Data Visualization
CO3	Demonstrate File handling & text processing
CO4	Demonstrate applications that performs Image processing
CO5	Connect database with Python.

Text books:

Python for Everybody: Exploring Data Using Python 3, Charles Severance

2. The Hitchiker's Guide to Python, O'Reilly publications

Reference books:

- 1. Hands-On Image Processing with Python, O'Reilly Publications
- 2. Think Python, Allen Downey, Green Tea Press

Digital resources:

- 1. https://nptel.ac.in/courses/117/105/117105079/
- 2. https://nptel.ac.in/courses/106/106/106106145/#
- 3. https://realpython.com/python-mysql/

CO-PO mapping

		1.1.	0											
	P	PO	PO	PO	PO	РО	PO	РО	PO	PO1	PO1	PO1	PSO	PSO
	O1	2	3	4	5	6	7	8	9	0	1	2	-1	-2
CO1	1	1	1	2										
CO2	1	2	2	2										
CO3	1	2	2	2										
CO4	2	2	2	2										
CO5	1	2	2	1										

BLOCKCHAINTECHNOLOGIES (Open Elective –/I)

	Syllabus	
Unit	Contents	Mapped
No		CO
I	INTRODUCTION: Scenarios, Challenges Articulated, Blockchain, Blockchain Characteristics, Opportunities Using Blockchain, History of Blockchain. Evolution of Blockchain: Evolution of Computer Applications, Centralized Applications, Decentralized Applications, Stages in Blockchain Evolution, Consortia, Forks, Public Blockchain Environments	CO1
II	BLOCKCHAIN CONCEPTS: Introduction, Changing of Blocks, Hashing, Merkle-Tree, Consensus, Mining and Finalizing Blocks, Currency aka tokens, security on blockchain, data storage on blockchain, wallets, coding on blockchain: smart contracts, peer-to-peer network, types of blockchain nodes, risk associated with blockchain solutions, life cycle of blockchain transaction.	CO2
Ш	ARCHITECTING BLOCKCHAIN SOLUTIONS: Introduction, Obstacles for Use of Blockchain, Blockchain Relevance Evaluation Framework, Blockchain Solutions Reference Architecture, Types of Blockchain Applications, Cryptographic Tokens, Types of Blockchain Solutions, Architecture Considerations, Architecture with Blockchain Platforms, Approach for Designing Blockchain Applications.	CO3
IV	ETHEREUM BLOCKCHAIN IMPLEMENTATION: Introduction, Tuna Fish Tracking Use Case, Ethereum Ecosystem, Ethereum Development, Ethereum Tool Stack, Ethereum Virtual Machine, Smart Contract Programming, Integrated Development Environment, Truffle Framework, Ganache, UnitTesting, Ethereum Accounts, My Ether Wallet, Ethereum Networks/Environments, Infura, Ether scan, Ethereum Clients, Decentralized Application, Meta mask.	CO4
V	ADVANCED CONCEPTS IN BLOCKCHAIN : Introduction, Inter Planetary FileSystem (IPFS),Zero-Knowledge Proofs, Oracles, Self-Sovereign Identity, Blockchain with IoT, Initial Coin Offering, Blockchain Cloud Offerings, Blockchain and its Future Potential.	CO5

	Course Outcomes					
Upon	successful completion of the course, the student will be able to					
CO1	Describe various blockchain fundamentals					
CO2	Explain the working mechanism of a blockchain and smart contracts					
CO3	Illustrate different blockchain applications and their architectural styles					
CO4	Explain the implementation of blockchain in the Ethereum ecosystem					
CO5	Explain advanced concepts of blockchain and its integration with IoT					

Learning Resources

Text books:

- 1."Blockchain for Enterprise Application Developers", Ambadas, Arshad Sarfarz Ariff, Sham-Wiley
- 2. "Mastering Bit coin: Programming the Open Blockchain", Andreas M. Antonpoulos, O'Reilly.

Reference books:

- 1. Blockchain: A Practical Guide to Developing Business, Law, and Technology Solutions, Joseph Bambara, PaulR.Allen, McGrawHill.
- 2. Blockchain: Blue print for aNew Economy, Melanie Swan, O'Reilly
- e- Resources & other digital material

https://github.com/blockchainedindia/resources

DIGITAL SYSTEM DESIGN WITH VHDL (Open Elective –II)

PRE-REQUISITES: Digital Circuits & Logic Design

Course objectives: The student should be able to

- 1. To understand various Digital Logic Families and their Interfacing
- 2. To know the basics of VHDL and programming models
- 3. To implement digital systems using VHDL
- 4. To design and implement combinational circuits using VHDL code and relevant ICs
- 5. To design and implement sequential circuits using VHDL code and relevant ICs.

Syllabus					
Unit No	Contents	Mapped CO			
I	Unit-1:Digital Logic Families- (16 hours) Introduction to logic families, CMOS logic, CMOS steady state and dynamic electrical behaviour, CMOS logic families. Bipolar logic, Transistor-Transistor logic and TTL families, CMOS/TTL interfacing, low voltage CMOS logic and interfacing, Emitter coupled logic, Parameters to choose logic families for the design applications.	CO1			
II	Unit-2:Introduction to VHDL- (13 hours) Introduction to HDL, design flow with VHDL, Program structure in VHDL. Levels of abstraction, VHDL elements: data types, data objects, operators and identifiers. VHDL programming models: data flow, structural and behavioral with examples on simple combinational and sequential circuits.	CO2			
Ш	Unit-3: Digital Design Using VHDL-(12 hours) Concurrent vs. Sequential statement, <i>Concurrent statements:</i> WHEN, GENERATE, BLOCK. Process: single and multiple, variable assignment vs signal assignment. <i>Sequential statements:</i> IF, WAIT, CASE, LOOP, NULL, EXIT, ASSERTION, CASE vs IF, CASE vs WHEN. Delay Models: Inertial and Transport, Comparison of VHDL with other procedural languages.	CO3			
IV	Unit-4:Combinational Logic IC Design- (12 hours) Adders: Ripple Carry, Carry Look ahead, Adder-Sub tractors, Multiplexers, Decoders/De-multiplexers, Encoders: Priority Encoders, Parity Checkers, ALU, Comparators, Design considerations of these combinational circuits using VHDL code and relevant IC.	CO4			
V	Unit-5:Sequential Logic IC Design-(13 hours) SSI Latches and Flip-flops, Shift Registers, Synchronous and Asynchronous Counters, Ring and Johnsons Counter, Applications: Sequence detector, Traffic light controller, Vending machine controller, Signal Generator, Serial data receiver. Design considerations of these sequential circuits using VHDL code	CO5			

	and relevant IC					
Con	Content Beyond the syllabus:					
Imp	lementation of Booths Multiplier					

Implementation of Serial Adder Guessing Game State Machine

	Course Outcomes						
Upon	successful completion of the course, the student will be able to						
CO1	Understand the structural description and electrical characteristics of various digital						
	logic families. {Understand level, KL2}						
CO2	Understand the basics of HDL and Programming models of VHDL. {Understand level,						
	KL2}						
CO3	Implement digital systems using VHDL. {Analyze level, KL4}						
CO4	Implement the Combinational logic using ICs and VHDL code. {Evaluate level, KL5}						
CO5	Modelthe Sequential circuits using ICs and VHDL code{Apply level, KL4}						

Learning Resources

Text books:

- 1. Digital Design Principles & Practices John F. Wakerly, PHI/ Pearson Education Asia, 3rd Ed., 2005.
- 2. Circuit Design with VHDL V. A. Pedroni, MIT Press, Cambridge, 2004.
- 3. VHDL Primer J. Bhasker, Pearson Education/PHI, 3rd Edition.
- 4. Cem Unsalan, Bora Tar "Digital System Design with FPGA: Implementation using Verilog and VHDL", McGraw Hill Education. 2017

Reference books:

- 1. Fundamentals of Digital Logic with VHDL Design- Stephen Brown, ZvonkoVranesic, McGrawHill, 3rd Edition, 2009.
- 2. Digital systems principles and Applications-Ronald J. Tocci, Neal S.Widmer, Eighth Edition, Prentice Hall.
- 3. VHDL: Programming by Example- Douglas L. Perry, Fourth Edition, Tata McGraw-Hill, 2003.
- 4. Digital Logic Circuit Analysis and Design V. P. Nelson, H.T. Nagle, B.D. Carroll, and D. Irwin, 1st Edition, Prentice Hall International, 1995

e- Resources & other digital material

- 1. https://technobyte.org/vhdl-course-tutorials/
- 2. http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
- 3. https://www.fpga4student.com/p/vhdl-project.html

Micro-Syllabus

Unit-1:Digital Logic Families-(16 hours)

Introduction to logic families, CMOS logic, CMOS steady state and dynamic electrical behaviour, CMOS logic families. Bipolar logic, Transistor-Transistor logic and TTL families, CMOS/TTL interfacing, low voltage CMOS logic and interfacing, Emitter coupled logic, Parameters to choose logic families for the design applications.

Unit No	Module	Micro content					
		Introduction to logic families					
		CMOS logic (Basic logic gates)					
1a.	Introduction to logic	CMOS steady state and dynamic electrical					
Introduction to	families up to	behaviour					
logic families	CMOS logic.	CMOS logic families (classifications and features)					
		Bipolar logic (Introduction, Schottky-clamped					
		transistor)					
		Transistor-Transistor logic (2-input LS-TTL NAND					
	TTL &Interfacing of different logic families	and NOR gates)					
1b. Interfacing of		TTL families (features and comparison)					
different logic		CMOS/TTL interfacing					
families		low voltage CMOS logic and interfacing					
Tailines		Emitter coupled logic					
		(Basic ECL inverter, 2-input OR/NOR gate)					
		comparison of logic families					

Unit-2:Introduction to VHDL- (13 hours)

Introduction to HDL, design flow with VHDL, Program structure in VHDL. Levels of abstraction, VHDL elements: data types, data objects, operators and identifiers. VHDL programming models: data flow, structural and behavioural with examples on simple combinational and sequential circuits.

Unit No	Module	Micro content			
		Introduction to HDL and types			
2a. Introduction	Introduction to HDL	Design flow and program structure in VHDL.			
to HDL		Levels of abstraction in VHDL			
	and VHDL elements	Data types, Data objects			
		operators and identifiers			
		Data Flow with examples			
2b.	VHDL programming	Behavioural with examples			
VHDL programming	models	Structural with examples			
models		Introduction to HDL and types			
		Design flow and program structure in VHDL.			

Unit-3: Digital Design Using VHDL-(12 hours)

Concurrent vs. Sequential statement, *Concurrent statements:* WHEN, GENERATE, BLOCK. Process: single and multiple, variable assignment vs signal assignment. *Sequential statements:* IF, WAIT, CASE, LOOP, NULL, EXIT, ASSERTION, CASE vs IF, CASE vs WHEN. Delay Models: Inertial and Transport, Comparison of VHDL with other procedural languages.

Unit No	Module	Micro content				
3a.Concurrent &	Concurrent &	WHEN, GENERATE, BLOCK				
Sequential	Sequential Statements-1	Process: single and multiple				

Statements		variable assignment vs signal assignment.					
		IF Statement and examples					
		WAIT statements					
		CASE Statement					
		LOOP, NULL and EXIT statements					
		ASSERTION statements					
3b. Concurrent &		CASE vs IF, CASE vs WHEN					
Sequential	Concurrent &	Delay Models: Inertial Delay					
Statements	Sequential Statements-2	Transport Delay					
		Design Examples					
		Comparison of VHDL withother procedural					
		languages					

Unit-4:Combinational Logic IC Design- (12 hours)

Adders: Ripple Carry, Carry Look ahead, Adder-Sub tractors, Multiplexers, Decoders/Demultiplexers, Encoders: Priority Encoders, Parity Checkers, ALU, Comparators, Design considerations of these combinational circuits using VHDL code and relevant IC.

Unit No Module		Micro content				
		Ripple Carry				
4a.		Carry Look ahead(74×283)				
Combinational	Combinational Logic	Multiplexers (74×151, 74×153, 74×157)				
Logic IC Design	IC Design-1	Decoders/De-multiplexers(74×138)				
		VHDL implementations of above-mentioned IC's				
		Encoders: Priority Encoders				
41-		(74x148)				
4b. Combinational	Combinational Logic IC Design-2	Parity Checkers (74×280)				
Logic IC Design		ALU (74×181)				
		Comparators (74×85, 74×682)				
		VHDL implementations of above-mentioned IC's				

Unit-5:Sequential Logic IC Design-(13 hours)

SSI Latches and Flip-flops, Shift Registers, Synchronous and Asynchronous Counters, Ring and Johnsons Counter, Applications: Sequence detector, Traffic light controller, Vending machine controller, Signal Generator, Serial data receiver. Design considerations of these sequential circuits using VHDL code and relevant IC

Unit No	Module	Micro content
		SSI Latches and Flip-flops (ICs)
5a.		Shift Registers (74×164, 74x366)
Latches and Flip-	Latches and Flip-flops and its applications	Universal Shift Register
flops and its		(74×194)
applications		Synchronous Counters (74×163)
approurions		Asynchronous Counters
		Ring and Johnsons Counter

		(Design with 74×194 IC)		
		Introductions toState Machines		
5b.	State Machines and case studies	Sequence detector		
State Machines		Traffic light controller		
State Machines		Signal Generator, Serial data receiver.		
		Vending machine		

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Understand various Digital Logic Families and their Interfacing {Understand level,
	KL2}
CO2	Understand the basics of VHDL and programming models {Understand level, KL2}
CO3	Implement digital systems using VHDL{Apply level, KL3}
CO4	Design and implementation of combinational circuits using VHDL code and relevant
	ICs {Evaluate Level, KL5}
CO5	Design and implementation of sequential circuits using VHDL code and relevant
	ICs.{Evaluate Level, KL5}

Text books:

- 1. Digital Design Principles & Practices John F. Wakerly, PHI/ Pearson Education Asia, 3rd Ed., 2005.
- 2. Circuit Design with VHDL V. A. Pedroni, MIT Press, Cambridge, 2004.
- 3. VHDL Primer J. Bhasker, Pearson Education/PHI, 3rd Edition.
- 4. Cem Unsalan, Bora Tar "Digital System Design with FPGA: Implementation using Verilog and VHDL", McGraw Hill Education. 2017

Reference books:

- 1. Fundamentals of Digital Logic with VHDL Design- Stephen Brown, ZvonkoVranesic, McGrawHill, 3rd Edition, 2009.
- 2. Digital systems principles and Applications-Ronald J. Tocci, Neal S.Widmer, Eighth Edition, Prentice Hall.
- 3. VHDL: Programming by Example- Douglas L. Perry, Fourth Edition, Tata McGraw-Hill, 2003.
- 4. Digital Logic Circuit Analysis and Design V. P. Nelson, H.T. Nagle, B.D. Carroll, and D. Irwin, 1st Edition, Prentice Hall International, 1995

CO-PO mapping

			•											
	P	PO	PO1	PO1	PO1	PSO	PSO							
	О	2	3	4	5	6	7	8	9	0	1	2	-1	-2
	1													
CO1		3		2										
CO2	3				2									
CO3	2				3									
CO4	3				3									
CO5	3			3	3									

L T P C 3 0 0 3

HIGH VOLTAGE ENGINEERING (Professional Elective –I)

PRE-REQUISITES: 1) Physics & Chemistry

Course objectives: The student should be able to

- 1. Understand electric field distribution and computation in different configuration of electrode systems
- 2. Understand HV breakdown phenomena in gases, liquids and solids dielectrics
- **3.** Acquaint with the generating principle of operation and design of HVDC, AC and Impulse voltages and currents
- **4.** Understand various techniques of AC, DC and Impulse measurement of high voltages and currents.
- **5.** Know the insulating characteristics of dielectric materials **and** various testing techniques of HV equipments

	Syllabus	
Unit No	Contents	Mapped CO
I	Introduction to High Voltage Technology (13Hrs) Electric Field Stresses – Uniform and non–uniform field configuration of electrodes Estimation and control of electric Stress – Numerical methods for electric field computation.	CO1
п	Break down phenomenon in gaseous, liquid and solid insulation (13 Hrs) Gases as insulating media – Collision process – Ionization process – Townsend's criteria of breakdown in gases – Paschen's law – Liquid as Insulator – Pure and commercial liquids – Breakdown in pure and commercial liquid – Intrinsic breakdown – Electromechanical breakdown – Thermal breakdown –Breakdown of solid dielectrics, composite dielectrics used in practice.	CO2
III	Generation of High voltages and High currents (13 Hrs) Generation of high DC voltages – Generation of high alternating voltages – Generation of impulse voltages and currents – Tripping and control of impulse generators.	CO3
IV	Measurement of high voltages and High current (13Hrs) Measurement of high AC, DC and Impulse voltages – Voltages and measurement of high currents – Direct, alternating and Impulse.	CO4
V	Testing of electrical materials and apparatus (13Hrs) Measurement of DC resistivity – Measurement of dielectric constant and loss factor – Partial discharge measurements. Testing of insulators and bushings – Testing of isolators and circuit breakers – Testing of cables – Testing of transformers – Testing of surge arresters – Radio interference Measurements.	CO5
Con	tent Beyond the syllabus:	
1	. Applications of insulating materials in various equipment: Applications in po	
	transformers, rotating machines, cables, circuit breakers, power capacitors, HV b	ushings.
_ 2	2. Advancements in insulators design: polymer insulators, composite insulators.	

3. **Condition monitoring of high voltage equipment:** Intelligent monitoring of high voltage equipment with optical fibre sensors and chromatic techniques.

	Course Outcomes					
Upon	successful completion of the course, the student will be able to					
CO1	Acquainted with the performance of high voltages with regard to different configurations of					
	electrode systems. (Analyze, KL4)					
CO ₂	Understand theory of breakdown and withstand phenomena of all types of dielectric					
	materials (understand, KL2)					
CO3	Acquaint with the techniques of generation of AC,DC and Impulse voltages					
	(understand, KL2)					
CO4	Apply knowledge for measurement of high voltage and high current AC, DC and Impulse.					
	(apply, KL3)					
CO5	Experiment to measure dielectric property of electrical material and know the techniques of					
	testing various equipment's used in HV engineering (Analyze, KL4)					

Learning Resources

Text books:

- 1. "High Voltage Engineering: Fundamentals", E.Kuffel, W.S.Zaengl, J.Kuffel, 2nd Edition, Elsevier, 2000.
- 2. "High Voltage Engineering", M.S.Naidu, V.Kamaraju, 3rd Edition, TMH, 2003.

Reference books:

- 1. "High Voltage Engineering and Testing", Ryan, 3rd Edition, IET Publishers, 2013.
- 2. "High Voltage Engineering", C.L.Wadhwa, 1st Edition, New Age Publishers, 1997.
- **3.** "High Voltage and Electrical Insulation Engineering", Ravindra Aurora, Wolfgang Mosch, John Wiley Publications, 2011.

e- Resources & other digital material

- **1.** https://nptel.ac.in/courses/108/104/108104048/
- 2. https://cds.cern.ch/record/1005044/files/p113

Micro-Syllabus

Unit – 1: Introduction to High Voltage Technology Electric Field Stresses – Uniform and non–uniform field configuration of electrodes – Estimation and control of electric Stress – Numerical methods for electric field computation

Unit No	Module	Micro content			
		Electric field stress			
1a.	Electric field stresses	Gas/Vacuum as insulator			
Electric Field		Liquid dielectrics			
stresses		Solids and composite dielectrics			
		Uniform and non-uniform electric fields			
	Estimation and control of electric	Estimation of electric field			
1h Estimation		Estimation of electric field in geometric			
1b. Estimation		boundaries			
and control of electric stress		Numerical methods for electric field computation			
electric stress	stress	Finite element method			
		Charge simulation method			

Boundary element method
Surge voltages, their distribution and control

Unit-2: Break down phenomenon in gaseous, liquid and solid insulation (13 Hrs)
Gases as insulating media – Collision process – Ionization process – Townsend's criteria of breakdown in gases – Paschen's law – Liquid as Insulator – Pure and commercial liquids – Breakdown in pure and commercial liquid – Intrinsic breakdown – Electromechanical breakdown – Thermal breakdown – Breakdown of solid dielectrics, composite dielectrics used in practice

Unit	Module	Micro content			
		Gases as insulating media			
		Collision processes			
		Ionization process			
		Townsends current growth equation			
		Current growth in the presence of secondary			
		processes			
		Townsends criteria for breakdown			
2a. Breakdown	Conduction and	Breakdown in electronegative gases			
phenomenon in gases	breakdown in gases	Time lags for breakdown			
		Streamer theory of breakdown in gases			
		Paschen's law			
		Breakdown in non-uniform fields and corona			
		discharges (elementary treatment only)			
		Practical Considerations In Using Gases And			
		Gas Mixtures For Insulation Purposes			
	Vacuum insulation	Vacuum as insulating media, conduction and breakdown in vacuum			
		Liquids as insulators			
	Conduction and	Classification of liquid dielectrics			
		Characteristics of liquid dielectrics			
	breakdown in liquids	Pure and commercial liquids			
2b.		Conduction and breakdown in pure liquids			
Breakdown in		Conduction and breakdown in commercial liquids			
liquids and solid insulation		Solids as insulators: intrinsic breakdown			
		Electromechanical breakdown, thermal breakdown			
	Conduction and breakdown in solid dielectrics	Breakdown in solid dielectrics in practice			
		Breakdown in composite dielectrics in practice			
		(elementary treatment only)			
		Solid dielectrics used in practice (elementary			
		treatment only)			

Unit-3: Generation of High voltages and High currents Hrs)

(13

Generation of high DC voltages – Generation of high alternating voltages – Generation of impulse voltages and currents – Tripping and control of impulse generators.

Unit	Module	Micro content		
		Half and full wave rectifier circuits		
	Generation of High DC	Voltage doubler circuits		
	voltages	Voltage multiplier circuit		
		Van De Graff generator		
		Cascaded transformer connection		
3a. Generation of		Resonant transformers		
high voltages		Generation of high frequency ac voltages: tesla		
nigh voltages	Generation of High AC voltages	coil		
		Generation of impulse voltages: standard		
		impulse wave form and representation		
		RLC circuits for impulse wave form generation		
		Multistage impulse generator: Marx circuit		
		Generation of switching surges		
3b.		Impulse current waveform and representation		
Generation of	Generation of high	RLC impulse current generator		
impulse currents	currents	Generation of rectangular pulses		
impuise currents		Tripping and control of impulse generator		

Unit-4: Measurement of high voltages and High current (13Hrs)
Measurement of high AC, DC and Impulse voltages – Voltages and measurement of high currents – Direct, alternating and Impulse.

Unit	Module	Micro content				
	Measurement of high DC voltages High ohmic series resistance with ammeter Resistance potential divider for 'DC voltage Generating voltmeters					
4a.Measurement of high voltages	Measurement of high AC & impulse voltages	Series impedance voltmeter Series capacitance voltmeter Capacitance potential divider & CVT				
		Electrostatic voltmeters Peak reading ac voltmeters Spark gap arrangement for high voltage measurements Potential dividers for impulse voltage measurements				
4b. Measurement of High currents	Measurement of high AC,DC and impulse currents	Measurement of high DC currents: Hall generators Measurement of high power frequency currents Measurement of high frequency & impulse currents Rogowski's coil current transformers				
		Measurements using CRO				

Unit-5: Testing of electrical materials and apparatus

(13Hrs)

 $\label{lem:measurement} \begin{tabular}{ll} Measurement of DC resistivity - Measurement of dielectric constant and loss factor - Partial discharge measurements \\ \end{tabular}$

Testing of insulators and bushings – Testing of isolators and circuit breakers – Testing of cables – Testing of transformers – Testing of surge arresters – Radio interference measurements

Unit	Module	Micro content		
		Measurement of DC resistivity		
		Measurement of dielectric constant and loss		
Eq. Togting of		factor (only power frequency methods)		
5a. Testing of materials	Non destructive testing	Partial discharge measurements		
materials		Discharge detection using straight detectors		
		Balanced detection method		
		Discharge detection in power cables		
	Destructive testing	Testing of insulators and bushings		
		Testing of isolators and circuit breakers		
5b.Teting of		Testing of cables		
apparatus		Testing of surge arresters		
		Testing of transformers		
		RI measurements		

Course Outcomes: Upon successful completion of the course, the student will be able to

	T T T T T T T T T T T T T T T T T T T
CO1	Acquainted with the performance of high voltages with regard to different configurations of
	electrode systems. (Analyze, KL4)
CO2	Understand theory of breakdown and withstand phenomena of all types of dielectric
	materials (understand, KL2)
CO3	Acquaint with the techniques of generation of AC,DC and Impulse voltages (understand,
	KL2)
CO4	Apply knowledge for measurement of high voltage and high current AC, DC and Impulse.
	(apply, KL3)
CO5	Experiment to measure dielectric property of electrical material and know the techniques of
	testing various equipment used in HV systems. (analyze, KL4)

Text books:

- 1. "High Voltage Engineering: Fundamentals", E.Kuffel, W.S.Zaengl, J.Kuffel, 2nd Edition, Elsevier, 2000.
- 2. "**High Voltage Engineering**", M.S.Naidu, V.Kamaraju, 3rd Edition, TMH, Year of publication, 2003.

Reference books:

- 1. "**High Voltage Engineering and Testing**", Ryan, 3rd Edition, IET Publishers, 2013.
- 2. "High Voltage Engineering", C.L. Wadhwa, 1st Edition, New Age Publishers, 1997.
- 3. "High Voltage and Electrical Insulation Engineering", Ravindra Aurora, Wolfgang Mosch, John Wiley Publications, 2011.

CO-PO mapping Table

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-	PSO-
													1	2
CO1	3	1	1										1	1
CO2	3	1												
CO3	2													
CO4	2													
CO5	3			2										

L T P C 3 0 0 3

ENERGY CONSERVATION & AUDITING (Professional Elective –I)

CourseObjectives:

- 1. To understand energy efficiency, scope, conservation and technologies.
- 2. To design energy efficient lighting systems.
- 3. To estimate/calculate power factor of systems and propose suitable compensation techniques.
- 4. To understand energy conservation in HVAC systems.
- 5. To calculate life cycle costing analysis and return on investment on energy efficient technologies

	Syllabus					
Unit No	Contents	Mapped CO				
I	Basic Principles of Energy Audit and management (15h) Energy audit – Definitions – Concept – Types of audit – Energy index – Cost index – Piecharts –Sankey diagrams – Load profiles – Energy conservation schemes and energy saving potential – Numerical problems – Principles of energy management – Initiating, planning, controlling, promoting, monitoring, reporting – Energy manager – Qualities and functions – Language – Questionnaire – Check list for top management	CO1				
п	Lighting(15h) Modification of existing systems – Replacement of existing systems – Priorities: Definition of terms and units – Luminous efficiency – Polar curve – Calculation of illumination level – Illumination of inclined surface to beam – Luminance or brightness – Types of lamps – Types of lighting – Electric lighting fittings (luminaries) – Flood lighting – White light- LED and conducting Polymers – Energy conservation measures.	CO2				
III	Power Factor and energy instruments (12h) Power factor – Methods of improvement – Location of capacitors – Power factor with nonlinear loads – Effect of harmonics on Power factor – Numerical problems. Energy Instruments – Watt–hour meter – Data loggers – Thermocouples – Pyrometers – Lux meters– Tong testers – Power analysis.	CO3				
IV	Space Heating and Ventilation (12h) Ventilation – Air–Conditioning (HVAC) and Water Heating: Introduction – Heating of buildings – Transfer of Heat–Space heating methods – Ventilation and air conditioning –Insulation–Cooling load – Electric water heating systems – Energy conservation methods.	CO4				
V	Economic Aspects and Financial Analysis (14h) Understanding energy cost - Economics Analysis - Depreciation Methods - Time value of money - Rate of return - Present worth method - Replacement analysis - Life cycle costing analysis - Energy efficient motors (basic concepts) - Economics of energy efficient motorsand systems.	CO5				

	Course Outcomes				
Upon	Upon successful completion of the course, the student will be able to				
CO1	Explain energy efficiency, conservation and various technologies.				
CO2	Design energy efficient lighting systems.				
CO3	Calculate power factor of systems and propose suitable compensation techniques.				
CO4	Explain energy conservation in HVAC systems				
CO5	Calculate life cycle costing analysis and return on investment on energy efficient				
	technologies.				

Learning Resources

Text books:

- 1. Hand Book of Energy Audit by Sonal Desai- Tata McGraw hill
- 2. Energy efficient electric motors by John .C. Andreas, Marcel Dekker Inc Ltd–2nd edition, 1995.

Reference books:

- 1. Energy management by W.R. Murphy & G. Mckay Butter worth, Elsevier publications. 2012
- 2. Electric Energy Utilization and Conservation by S C Tripathy, Tata McGraw hill publishing company Ltd. New Delhi.
- 3. Energy management by Paul o' Callaghan, Mc–Graw Hill Book company–1st edition, 1998.
- 4. Energy management hand book by W.C.Turner, John wiley and sons.
- 5. Energy management and conservation –k v Sharma and pvenkataseshaiah-I K International Publishing House pvt.ltd,2011.
- 6. http://www.energymanagertraining.com/download/Gazette_of_IndiaPartIISecI-37_25-08-2010.pdf

Website materials:

- **1.** http://nptel.ac.in/courses/108104052/
- 2. http://freevideolectures.com/Course/2354/Power-Systems-Operation-and-Control
- **3.** http://nptel.iitg.ernet.in/courses/Elec_Engg/IIT%20Bombay/Power%20Systems %20Operation%20and%20Control.html

Micro-Syllabus

Unit 1: Basic Principles of Energy Audit and management

(15h)

Energy audit – Definitions – Concept – Types of audit – Energy index – Cost index – Pie charts –Sankey diagrams – Load profiles – Energy conservation schemes and energy saving potential – Numerical problems – Principles of energy management – Initiating, planning, controlling, promoting, monitoring, reporting – Energy manager – Qualities and functions – Language – Questionnaire – Check list for top management.

Unit No	Module	Micro content		
	Energy audit – Definitions –	Energy audit – Definitions		
1 0	Concept – Types of audit	Concept – Types of audit		
1.a	Energy index - Cost index - Pie			
	charts -Sankey diagrams - Load			
	profiles	Sankey diagrams – Load promes		

	Energy conservation schemes and	Energy conservation schemes and
	energy saving potential –	energy saving potential – Numerical
	Numerical problems	problems
	Principles of energy management-	Principles of energy management-
	Initiating, planning, controlling,	Initiating, planning, controlling,
	promoting, monitoring, reporting	promoting, monitoring, reporting
1.b	Energy manager - Qualities and	Energy manager – Qualities and
	functions	functions
	Language – Questionnaire – Check	Language – Questionnaire – Check list
	list for top management.	for top management.
1.b	Energy manager – Qualities and functions Language – Questionnaire – Check	Energy manager – Qualities and functions Language – Questionnaire – Check list

Unit 2: Lighting (15h)

Modification of existing systems – Replacement of existing systems – Priorities: Definition of terms and units – Luminous efficiency – Polar curve – Calculation of illumination level – Illumination of inclined surface to beam – Luminance or brightness – Types of lamps – Types of lighting – Electric lighting fittings (luminaries) – Flood lighting – White light- LED and conducting Polymers – Energy conservation measures.

Unit No	Module	Micro content		
	Modification of existing systems	Modification of existing systems -		
	 Replacement of existing 	Replacement of existing systems		
	systems – Priorities: Definition	Priorities: Definition of terms and units		
2. a.	of terms and units – Luminous	– Luminous efficiency – Polar curve		
	efficiency – Polar curve – Calculation of illumination level –Illumination of inclined surface to beam	Calculation of illumination level – Illumination of inclined surface to beam.		
2. b.	Luminance or brightness – Types of lamps – Types of lighting – Electric lighting fittings	Luminance or brightness – Types of lamps – Types of lighting		
	(luminaries) – Flood lighting – White light- LED and conducting Polymers – Energy c	Flood lighting – White light- LED and conducting Polymers – Energy conservation measures.		

Unit 3: Power Factor and energy instruments

(12h)

Power factor – Methods of improvement – Location of capacitors – Power factor with nonlinear loads – Effect of harmonics on Power factor – Numerical problems. EnergyInstruments – Watthour meter – Data loggers – Thermocouples – Pyrometers – Lux meters – Tong testers – Power analysis.

Unit No	Module	Micro content		
	Power factor – Methods of	Power factor – Methods of improvement		
	improvement			
2 -	Location of capacitors – Power	Location of capacitors – Power factor		
3. a.	factor with nonlinear loads –	with nonlinear loads - Effect of		
	Effect of harmonics on Power	harmonics on Power factor – Numerical		
	factor – Numerical problems	problems		
	Energy Instruments – Watt–hour	Energy Instruments – Watt–hour meter –		
3.b.	meter – Data loggers.	Data loggers		
3.0.	Thermocouples – Pyrometers –	Thermocouples – Pyrometers – Lux		
	Lux meters- Tong testers -	meters– Tong testers – Power analysis		

Power analysis	
Unit 4: Space Heating and Ventilation	(12h)

Ventilation – Air–Conditioning (HVAC) and Water Heating: Introduction – Heating ofbuildings – Transfer of Heat–Space heating methods – Ventilation and air conditioning –Insulation–Cooling load – Electric water heating systems – Energy conservation methods.

Unit No	Module	Micro content		
4. a.	Ventilation – Air–Conditioning (HVAC) and Water Heating: Introduction – Heating of buildings – Transfer of Heat– Space heating methods	Ventilation – Air–Conditioning (HVAC) and Water Heating: Introduction Heating of buildings – Transfer of Heat– Space heating methods		
4.b	Ventilation and air conditioning —Insulation—Cooling load — Electric water heating systems — Energy conservation methods	Ventilation and air conditioning – Insulation Cooling load – Electric water heating systems Energy conservation methods.		

Unit 5: Economic Aspects and Financial Analysis

(14h)

Understanding energy cost - Economics Analysis - Depreciation Methods - Time value of money - Rate of return - Present worth method - Replacement analysis - Life cycle costing analysis - Energy efficient motors (basic concepts) - Economics of energy efficient motors and systems.

Unit No	Module	Micro content
5. a.	Understanding energy cost - Economics Analysis - Depreciation Methods - Time value of money - Rate of return - Present worth method	Understanding energy cost - Economics Analysis Depreciation Methods - Time value of money - Rate of return - Present worth method.
5.b.	Replacement analysis – Life cycle costing analysis – Energy efficient motors (basic concepts) – Economics of energy efficient motors and systems	Replacement analysis – Life cycle costing analysis – Energy efficient motors (basic concepts) – Economics of energy efficient motors and systems

Course Outcomes: Upon successful completion of the course, the student will be able to

	Course Outcomes				
Upon	Upon successful completion of the course, the student will be able to				
CO1	Explain energy efficiency, conservation and various technologies.				
CO2	Design energy efficient lighting systems.				
CO3	Calculate power factor of systems and propose suitable compensation techniques.				
CO4	Explain energy conservation in HVAC systems				
CO5	Calculate life cycle costing analysis and return on investment on energy efficient				
	technologies.				

CO-PO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3				2							
CO2	1	3		2			2							
CO3	2	2				2							2	
CO4	2		3	1		2								2
CO5	3	2	2	2										

ADVANCED CONTROL SYSTEM

(Professional Elective –I)

PRE-REQUISITES: 1) Control System

- 2) Analog Circuits -1
- 3) Engineering Mathematics -1

Course objectives: The student should be able to

- 1) To study the basic theory required for solving complex control problems.
- 2) To do analysis and modeling of systems and signals.

	Syllabus	
Unit	Contents	Mapped
No		CO
I	Concept of state space -state space representation of system, solution of time invariant state equation- state transition matrix. Linear time varying System. Discrete system state space representation and solution (7hrs)	CO1
II	Non-linear system , types of non-linearity, singular point, non-linear system stability analysis- phase plane technique, construction of phase trajectories, isocline method. (8Hrs)	CO2
III	Describing function analysis : Basic concepts, derivation of describing functions for common non-linearities Describing function analysis of non-linear systems – Conditions for stability – Stability of oscillations. (9Hrs)	CO3
IV	Lyapunov stability analysis - definition of stability, instability and asymptotic stability. Lyapunov stability theorems. Stability analysis of simple linear systems. (9Hrs)	CO4
V	MIMO systems-controllability- Observability- Effect of pole-zero cancellation, Practical examples-controllable and uncontrollable systems-observable and unobservable systems. Optimal control system-definition-design using state variable feedback and error squared performance indices. (9Hrs)	CO5
Con	tent Beyond the syllabus:	

Z-transfer function- block diagram- signal flow graph- discrete root locus.

	Course Outcomes				
Upon s	successful completion of the course, the student will be able to				
CO1	Graduates will be able to understand different state model of a				
	system, and have the knowledge to find its solution. {Knowledge & Understand (1				
	& 2) }				
CO2	Graduates will be able to understand nonlinear system models, and analyse its stability.				
	{Understand & Analyze (2 & 4)}				
CO3	Graduates will be able to analyse the describing function analysis of various nonlinear				
	systems. {Analyze (4)}				

CO4	Graduates will be able design different systems and analyse its stability using Lyapunov
	stability analysis. { Analyze & Design (4 & 6)}
CO5	Graduates will be industry ready by analysis of controllability and observability of the
	dissimilar system. {Analyze (4)}

Learning Resources

Text books:

- 1. "Discrete Time Control Systems", K. Ogata, PHI, 1996.
- 2. "Modern Control Engineering", K. Ogata, PHI, 1996.
- 3. Modern Control Systems, R. C. Dorf and R. H. Bishop, 8th ed., Pearson Education, Delhi, 2004.

Reference books:

- 1. Process Control Instrumentation Technology, C. D. Johnson, 7th ed., Prentice Hall of India, New Delhi, 2003.
- 2. "Modern Control System Theory", M. Gopal, New Age International Publishers, 2nd edition,1996.
- 3. "Digital control and state variables methods", Madangopal, PHI, 1997.
- 4. Modern control engineering Katsuhiko Ogata, Pearson Edn.

e- Resources & other digital material

- 1. http://nptel.iitm.ac.in/courses/108101037/
- 2. http://nptel.iitm.ac.in/video.php?subjectId=108102043
- 3. http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-Delhi/Control%20system%20design%20n%20principles/index.htm

Micro-Syllabus

Unit – 1: Concept of state space - state space representation of system, solution of time invariant state equation- state transition matrix. Linear time varying system. Discrete system state space representation and solution (7hrs)

Unit	Module	Micro content
		State space representation of system
		Solution of time invariant state equation
Concept of state	Concept of state	State transition matrix
space	space	Linear time varying system
		Discrete system state space representation and solution

Unit-2: Non-linear system, types of non-linearity, singular point, non-linear system stability analysis- phase plane technique, construction of phase trajectories, isocline method. (8Hrs)

Unit Module		Micro content		
Non linear		Types of non-linearity		
Non-linear	Non-linear system Singular point	Singular point		
system		Non-linearsystem stability analysis		
		Phase plane technique		

Construction of Phase Trajectories
Isoline Method.

Unit-3: **Describing function analysis**: Basic concepts, derivation of describing functions for common non-linearities Describing function analysis of non-linear systems – Conditions for

stability – Stability of oscillations. (9Hrs).

Unit	Module	Micro content
Describing function analysis	Describing function analysis	Basic concepts Derivation of describing functions for common non-linearities Describing function analysis of non-linear systems Conditions for stability
		Stability of oscillations

Unit-4: Lyapunov stability analysis- definition of stability, instability and asymptotic stability. Lyapunov stability theorems. Stability analysis of simple linear systems. (9Hrs)

Unit	Module	Micro content		
T		Definition of stability		
Lyapunov	Lyapunov stability	Instability and asymptotic stability		
stability	analysis	Lyapunov stability theorems.		
analysis	•	Stability analysis of simple linear systems.		

Unit-5: MIMO systems-controllability- Observability- Effect of pole-zero cancellation, Practical examples-controllable and uncontrollable systems-observable and unobservable systems. Optimal control system-definition-design using state variable feedback and error squared performance indices. (9Hrs)

Unit	Module	Micro content
		Observability
		Effect of pole-zero cancellation
		Practical examples
MIMO systems-	MIMO systems-	Controllable and uncontrollable systems
controllability	controllability	Observable and unobservable systems
		Optimal control system-definition
		Design using state variable feedback
		Error squared performance indices.

Course Outcomes:

	Course Outcomes				
Upon	Upon successful completion of the course, the student will be able to				
CO1	Graduates will be able to understand different state model of a				
	system, and have the knowledge to find its solution. {Knowledge & Understand (1				
	& 2) }				
CO2	Graduates will be able to understand nonlinear system models, and analyse its stability.				
	{Understand & Analyze (2 & 4)}				
CO3	Graduates will be able to analyse the describing function analysis of various nonlinear				
	systems. {Analyze (4)}				

CO4	Graduates will be able design different systems and analyse its stability using Lyapunov
	stability analysis. { Analyze & Design (4 & 6)}
CO5	Graduates will be industry ready by analysis of controllability and observability of the
	dissimilar system. {Analyze (4)}

Text books:

- 1. K. Ogata "Discrete Time Control Systems", 1996, PHI.
- 2. K. Ogata "Modern Control Engineering", 1996, PHI.
- 3. R. C. Dorf and R. H. Bishop, Modern Control Systems, 8th ed., Pearson Education, Delhi, 2004.

Reference books:

- **1.** C. D. Johnson, Process Control Instrumentation Technology, 7th ed., Prentice Hall of India, New Delhi, 2003.
- **2.** M. Gopal, "Modern Control System Theory", New Age International Publishers, 2nd edition, 1996.
- 3. Madangopal "Digital control and state variables methods" 1997, PHI.
- 4. Modern control engineering Katsuhiko Ogata, Pearson Edn.

CO-PO mapping

	PO	PO1	PO1	PO1	PS	PS	PS								
	1	2	3	4	5	6	7	8	9	0	1	2	O-1	O-2	O-3
CO	3	2	1	1	-	-	-	-	-	-	-	-	-	2	2
1															
CO	2	3	-	-	-	-	-	-	-	-	-	-	-	-	3
2															
CO	-	3	2	-	-	-	-	-	-	-	-	-	2	2	-
3															
CO	-	2	3	-	-	-	-	-	-	-	-	-	-	-	2
4															
CO	-	-	-	-	3	ı	_	-	_	-	_	2	-	2	-
5															

L T P C 3 0 0 3

ELECTRICAL MACHINE DESIGN (Professional Elective –I)

PRE-REQUISITES: 1) Electrical Machines-I

2) Electrical Machines-II

3) Special Electrical Machines

Course objectives: The student should be able to

- 6. Study the Principles of Design of static and rotating machines.
- 7. To understand the design of cooling system of transformers
- 8. Know the main dimensions of static and rotating machines, field coil, stator and rotor.

	Syllabus			
Unit	Contents	Mapped		
No		CO		
	D.C.Machines (13 hrs) E.M.F generated from full pitch -fractional pitch with and without distributed			
Ι	windings -distribution factor. Design of main dimensions from output equation.	CO1		
	Design of Armature winding- Design of field system			
II	Transformers (12 hrs) Derivation of output equation -volt per turn importance and calculation of main dimensions for three phase and single phase transformers -window dimensions. Yoke design and coil design –Design of transformer tank with tubes.	CO2		
III	Induction Motor (12 hrs) Derivation of output equation -calculation of main dimensions -Stator design - number of slots -shape and area of slots. Rotor design for squirrel cage and slip ring types.	CO3		
IV	Synchronous Machines (12 hrs) Derivation of output equation –Calculations of Main Dimensions for salient pole and cylindrical rotor alternators. Stator design -number of stator slots and slot dimensions, Pole design for salient pole generators.	CO4		
V	Computer Aided Design (9 hrs) Advantage of computer aided design –Flow chart for computer aided design.	CO5		

Content Beyond the syllabus:

D.C.Machines: Design of inter-pole and commutator.

Synchronous Machines (salient pole): pole winding calculations. Design of rotor for cylindrical rotor alternator-Design of rotor windings.

	Course Outcomes					
Upon	Upon successful completion of the course, the student will be able to					
CO1	Understand the basic concepts of electrical machine design and the principles of					
	computerized design of electrical machines {Understand level, KL2}					
CO2	Understand the specifications and design of main dimensions of transformer, cooling					
	systems { Understand level, KL2}					

CO3	Evaluate the design of dc machine and performance calculations { Evaluate level, KL5}						
CO4	Analyze the design of induction motor stator & rotor{ Apply level, KL4}						
CO5	Analyze the design of synchronous machine (both. Salient pole & non-salient						
	pole).{Apply level, KL4}						

Learning Resources

Text books:

- 5. A.K. Sawhney, A Course in Electrical machine Design, Dhanpatrai& Sons,
- 6. M.G. Say, Performance and Design of AC Machines, CBS.

Reference books:

- 1. CEDT Manual on design and technology on low power transformers and inductors by IISC, Bangalore.
- 2. V.N.Mittle, Design of Electrical Machines, Standard Publishers Distributors 2009.
- 3. A.E. Clayton Performance and Design of AC Machines.
- 4. R.K. Agarwal, Principles Of Electrical Machine Design, S.K.Kataria&Sons,2010.
- 5. M. Ramamoothy, Computer aided design of electrical equipment, Affiliated East West press Pvt Ltd New Delhi.

e- Resources & other digital material

- 9. http://www.faadooengineers.com/threads/9454-Electrical-Machine-Designfull-notes-e-books-pdf-all-units
- 10. http://nptel.iitm.ac.in

Micro-Syllabus

Unit – 1: D.C.Machines (13 hrs)

E.M.F generated from full pitch -fractional pitch with and without distributed windings - distribution factor. Design of main dimensions from output equation.

Design of Armature winding- Design of field system

Unit No Module		Micro content			
1a.E.M.F generated	Design of main	E.M.F generated from full pitch,			
from full pitch -	dimensions	fractional pitch with and without distributed			
fractional pitch with	from output	windings,			
and without distributed	equation.	distribution factor,			
windings		Design of main dimensions from output equation.			
1b. Design of	Design of field	Design of Armature winding,			
Armature winding	system	Design of field system			

Unit-2: Transformers (12 hrs)

Derivation of output equation -volt per turn importance and calculation of main dimensions for three phase and single phase transformers -window dimensions.

Yoke design and coil design –Design of transformer tank with tubes.

Unit No	Module	Micro content					
	calculation of main	Derivation of output equation,					
2a. Derivation of	dimensions for three	volt per turn importance,					
output equation	phase and single phase	calculation of main dimensions for three phase					
	transformers	transformers,					

		calculation of main dimensions for single phase transformers, window dimensions
2b. Yoke design and coil design	Design of transformer tank with tubes.	Yoke design,
		Design of transformer tank with tubes

Unit-3: Induction Motor (12 hrs)

Derivation of output equation -calculation of main dimensions -Stator design -number of slots - shape and area of slots.

Rotor design for squirrel cage and slip ring types.

Unit No	Module	Micro content					
	Stator design -number	Derivation of output equation,					
3a.Derivation of	of slots -shape and area	calculation of main dimensions,					
output equation	of slots.	Stator design -number of slots -shape and area of					
		slots.					
3b.Rotor design	Rotor design for slip	Rotor design for squirrel cage					
for squirrel cage	ring types	slip ring types					

Unit-4: Synchronous Machines (12 hrs)

Derivation of output equation –Calculations of Main Dimensions for salient pole and cylindrical rotor alternators.

Stator design -number of stator slots and slot dimensions, Pole design for salient pole generators.

Unit No	Module	Micro content					
4a.Derivation of output equation	Main Dimensions for salient pole and cylindrical rotor alternators.	Derivation of output equation, Calculations of Main Dimensions for salient pole and cylindrical rotor alternators. Layout of 33/11 kV substation (Diagram and arrangement of equipment)					
4b.Stator design - number of stator slots and slot dimensions	Pole design for salient pole generators.	Stator design, number of stator slots and slot dimensions, Pole design for salient pole generators					

Unit-5: Computer Aided Design (9 hrs)

Advantage of computer aided design –Flow chart for computer aided design.

Unit No	Module	Micro content				
5a.Advantage of computer aided design	Advantage of computer aided design	Advantage of computer aided design,				
5b.Flow chart for computer aided design	Flow chart for computer aided design	Flow chart for computer aided design				

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Understand the basic concepts of electrical machine design and the principles of											
	computerized design of electrical machines {Understand level, KL2}											
CO2	Understand the specifications and design of main dimensions of transformer, cooling											
	systems { Understand level, KL2}											
	Evaluate the design of dc machine and performance calculations { Evaluate level, KL5}											
CO3	Evaluate the design of dc machine and performance calculations { Evaluate level, KL5}											
CO3												

Text books:

- 1. A.K. Sawhney, A Course in Electrical machine Design, Dhanpatrai& Sons,
- 2. M.G. Say, Performance and Design of AC Machines ,CBS.

Reference books:

- 1. CEDT Manual on design and technology on low power transformers and inductors by IISC, Bangalore.
- 2. V.N.Mittle, Design of Electrical Machines, Standard Publishers Distributors 2009.
- 3. A.E. Clayton Performance and Design of AC Machines.
- 4. R.K. Agarwal, Principles Of Electrical Machine Design, S.K.Kataria&Sons,2010.
- 5. M. Ramamoothy, Computer aided design of electrical equipment, Affiliated East West press Pvt Ltd New Delhi.

CO-PO mapping

		11 8												
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	-1	-2
CO	3													
1														
CO	3													
2														
CO	3													
3														
CO	3	1											1	
4														
CO	3	1												
5														

ELECTRICAL MACHINES-II LAB

PRE-REQUISITES: 1) Electrical Machines-1 Theory

Preamble: Electrical Machines-II Lab provides the essential facilities to the students to augment their concepts about the fundamentals of rotating Asynchronous and Synchronous machines. The lab is equipped with three phase induction motors, synchronous generators, synchronous motor and Single phase induction motor. The lab covers the determination of performance characteristics, speed control method of induction motor, voltage regulation of synchronous generator and v and inverted v curves of synchronous motor.

Course Objectives: The student should be able to

- 1. To control the speed of three phase induction motors.
- 2. To determine /predetermine the performance of three phase induction.
- 3. To determine /predetermine the performance of single phase induction.
- 4. To improve the power factor of single phase induction motor.
- 5. To predetermine the regulation of three–phase alternator by various methods, find Xd/ Xq ratio of alternator and asses the performance of three–phase synchronous motor.

LIST OF EXPERIMENTS

Any Ten of the following experiments are to be conducted:

- 1. Brake test on three phase Slip ring Induction Motor
- 2. No-load & Blocked rotor tests on three phase Slip ring Induction motor
- 3. Load test on single phase induction motor.
- 4. Equivalent circuit of single phase induction motor
- 5. Regulation of a three –phase alternator by synchronous impedance method
- 6. Regulation of a three –phase alternator by M.M.F method
- 7. Regulation of three–phase alternator by Potier triangle method
- 8. Determination of Xd and Xq of a salient pole synchronous machine
- 9. V and Inverted V curves of a three—phase synchronous motor.
- 10. Determination of efficiency of three phase alternator by loading with three phase induction motor.
- 11. Determination of sub transient direct axis (Xd'') and quadrature axis (Xq'') synchronous reactance of an alternator.
- 12. To perform parallel operation of two alternators.

List of Additional Experiments: Any of the two experiments are to be conducted

- 1. Brake test on three phase Squirrel cage Induction Motor.
- 2. Determination of the symmetrical impedances of a synchronous machine.
- 3. Speed control of induction motor by V/f method.

Course Outcomes: Upon successful completion of the course, the student will be able to

Course Outcomes
CO1 Able to assess the performance of three phase induction motor. (Analyze)

CO2	Able to control the speed of three phase induction motor. (Remember and Understand)
CO3	Able to assess the performance of single phase induction motor. (Analyze)
CO4	Able to predetermine the regulation of three–phase alternator by various methods.
	(Evaluate)
CO5	Able to find the Xd / Xq ratio of alternator and asses the performance of three–phase
	synchronous motor. (Understand, Apply and Analyze).

Learning Resources

Text books:

- 1. Theory & Performance of Electrical Machines by J.B.Guptha. S.K.Kataria & Sons.
- 2. Electrical Machines P.S. Bhimbra, Khanna Publishers.

Reference books:

- 1. Electrical Machines by D. P.Kothari, I.J. Nagarth, Mc Graw Hill Publications, 4th edition.
- 2. Electrical Machinery by Abijith Chakrabarthi and Sudhipta Debnath, Mc Graw Hill education 2015.
- 3. Electrical Machinery Fundamentals by Stephen J Chapman McGraw Hill education 2010.
- 4. Electric Machinery by A.E. Fitzgerald, Charles kingsley, Stephen D.Umans, TMH.

e- Resources & other digital material

- 1.https://nptel.ac.in/courses/108/105/108105017
- 2.https://nptel.ac.in/courses/103/102/108102146
- 3.www.nptelvideos.in/2012/11/electrical-machines-i.html
- 4. https://www.electrical4u.com/losses-in-dc-machine

CO-PO mapping Table with Justification:

Mappin	P0	P01	P01	P01	PS0	PSO								
g	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C01	2	2	1	1	-	-	-	-	-	-	_	1	2	2
C02	2	2	1	1	_	-	-	_	_	-	_	-	-	-
C03	3	1	-	1	-	-	-	-	-	-	-	1	1	2
C04	2	3	_	1	-	-	-	_	-	-	-	1	2	2
C05	2	2	_	-	_	-	_	_	_	_	_	_	1	-

L T P C 0 0 3 1.5

POWER ELECTRONICS LAB

Pre-Requisites: 1) Basic Circuit Analysis
2) Engineering Mathematics

Preamble: Introduction to Power Electronics—various power electronics devices, Pulse width modulation, AC to DC Converters, AC Voltage Regulator and DC to AC Converters.

Course objectives: The student should be able to

- 1. Study the characteristics of various power electronic devices and analyze firing circuits and commutation circuits of SCR.
- 2. Analyze the performance of single-phase and three-phase full-wave bridgeconverters with both resistive and inductive loads.
- 3. Understand the operation of AC voltage regulator with resistive and inductive loads.
- 4. Understand the working of Buck converter, Boost converter and inverters.

List of Experiments: Any 10 of the following experiments are to be conducted

- 1. Study of Characteristics of Thyristor, MOSFET & IGBT.
- 2. Design and development of a firing circuit for Thyristor.
- 3. Design and development of gate drive circuits for IGBT.
- 4. Single -Phase Half controlled converter with R and RL load
- 5. Single -Phase fully controlled bridge converter with R and RL loads.
- 6. Single -Phase AC Voltage Regulator with R and RL Loads
- 7. Single -Phase square wave bridge inverter with R and RL Loads
- 8. Three- Phase fully controlled converter with RL-load.
- 9. Design and verification of voltages gain of Boost converter.
- 10. Design and verification of voltages gain of Buck-Boost converter.
- 11. Single -phase PWM inverter with sine PWM technique.
- 12. 3-phase AC-AC voltage regulator with R-load.

List of Additional Experiments: Any 2 of the following experiments are to be conducted

- 1. Study of Characteristics of NPN Transistor.
- 2. Design and verification of voltages gain of Buck converter.
- 3. Three -phase PWM inverter with sine PWM technique.

Course Outcomes:

Upon successful completion of the course, the student will be able to

No	Description	POs, PSOs	KL
CO1	Study the characteristics of various power electronic devices and analyze gate drive circuits of IGBT.	PO1, PSO2	1,3
CO2	Analyze the performance of single phase and three phase full wave bridge converters with both resistive and inductive loads.	PO1, PSO2	2,3

	Understand the operation of single phase AC voltage regulator with resistive and inductive loads.		
CO4	Understand the working of Buck converter, Boost converter, single phase square wave inverter and PWM inverter.	PO1, PSO2	2,3

Text books:

- 1. Elements of Power Electronics–Philip T.Krein.oxford.
- 2. 2. Power Electronics by P.S.Bhimbra, Khanna Publishers.

e-resources:

- 1. http://vlabs.iitb.ac.in/vlabs-dev/labs/mit_bootcamp/power_electronics/labs/index.php
- 2. https://www.vlab.co.in/broad-area-electrical-engineering
- 3. https://www.vlab.co.in/broad-area-electronics-and-communications

CO-POs& PSOs Mapping:

CO No.	PO Number									PO Number							PS Nu	SO umb	er
110.	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3				
CO1	3								2				1						
CO2	2								2				1						
CO3	3								2				1						
CO4	2								2				1						

L T P C 0 0 3 1.5

IoT LAB

Pre-Requisites:

A course on "C + + Programming". A course on "Python Programming".

Course objectives:

Students will be explored to the interconnection and integration of the physical world and thecyber space. They are also able to design &develop IOT Devices.

List of Experiments:

- **1.** Basic program and device interfacing for Arduino and Node MCU and operating system installation in Raspberry pi.
- 2. Interfacing LCD with Arduino, Node MCU and raspberry pi.
- 3. Interfacing DHT11 humidity sensor with raspberry pi and Arduino.
- 4. Intruder detection using PIR sensor using Arduino and raspberry pi
- **5.** Distance measurement using Ultrasonic sensor by connecting to Arduino and Raspberry pi
- 6. ESP8266 WI-FI Module Interface with Arduino and DHT11 data upload to the cloud server.
- 7. Motor forward and reverse control using L293D motor driver Arduino and raspberry pi.
- 8. Voice Activated Arduino Bluetooth Android.3 and Raspberry pi.
- 9. Measuring pulse and spo2 in body using MAX30100 sensor and data uploading to cloud using Arduino ESP8266 and raspberry pi.
- 10. Measuring soil moisture using REES52 sensor and data uploading to cloud using Arduino ESP8266 and raspberry pi.
- 11. Detecting poisonous gas using MQ-2 gas sensor and data uploading to cloud using Arduino ESP8266 and raspberry pi
- 12. IoT based smart energy meter using Arduino and Raspberry pi
- 13. Installation of NodeJS on Raspberry Pi and connecting sensor for data monitoring.
- 14. Develop IoT based smart lock system for Motorcycle/Car
- 15. Develop IoT based Smart water flow system
- 16. Develop IoT based home security system
- 17. Develop IoT based smart Ignition for Motorcycle/Car
- 18. Develop IoT based fuel level indication system in Automobile.

Software(s) used:

- 1. For Arduino and Node MCU software used is Arduino IDE
- 2. For Raspberry pi operating raspbian OS

Course Outcomes:

Upon successful completion of the course, the student will be able to

No	Description	POs, PSOs	KL
CO1	Determine the various codes of Arduino, Nodemcu& Raspberry pi	PO3, PSO1	3,4
COI	Programming.	103, 1301	3,4
CO2	Differentiate the features of various IOT platforms.	PO4, PSO1	3,4
CO3	Able to choose the best available IOT principle for solving the problem	PO5, PSO2	5,4
CO4	Able to design simple IOT applications using Arduino, NodeMcu and	PO11,PSO2	6
CO4	Raspberry pi boards	1011,F302	U

Text books:

- 1. AdrianMcEwen, "Designing the Internet of Things", Wiley Publishers, 2013, ISBN:78-1-118-43062-0
- 2. Daniel Kellmereit, "The Silent Intelligence: The Internet of Things". 2013, ISBN 0989973700

e-resources:

- 4. https://circuitdigest.com/internet-of-things-iot-projects.
- 5. https://create.arduino.cc/projecthub/projects/tags/raspberry%2Bpi.
- 6. https://create.arduino.cc/projecthub/projects/tags/iot.
- 7. https://iotdesignpro.com/iot-projects.

CO-POs& PSOs Mapping:

CO No.	PO N	Numbe	er										PSO Number		
No.	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1			2									1	2		
CO2				2									3		
CO3					3									2	
CO4			3						2		3			3	

L T P C 3 0 0 3

MANAGERIAL ECONOMIC AND FINANCIAL ANALYSIS

PRE-REQUISITES: 1) Basic Sciences and Humanities

Course objectives: The student should be able to

- 1. To equip the students with the basic inputs of managerial economics and demand concepts.
- 2. To understand the concepts of production and cost for various business decision.
- 3. To understand the different types of market, market structures & pricing strategies and their applications in business decision making and to know the different forms of Business organization and the concept of Business Cycles.
- 4. To understand the fundamental of accounting and analysis of accounting statements for managerial decision making.
- 5. To understand the concept of Capital, Capital Budgeting and the techniques used to evaluate Capital Budgeting proposals.

Syllabus						
Unit No	Contents	Mapped CO				
I	Introduction to Managerial Economics and demand Analysis: 10 Hrs Definition of Managerial Economics –Scope of Managerial Economics and its relationship with other subjects –Concept of Demand, Types of Demand, Determinants of Demand- Demand schedule, Demand curve, Law of Demand and its limitations- Elasticity of Demand, Types of Elasticity of Demand and Measurement- Demand forecasting and Methods of forecasting.	CO1				
II	Theory of Production and Cost Analysis: Production Function – Isoquant and Isocost, MRTS, Least Cost Combination of Inputs - Laws of Returns to scale - Internal and External Economies of Scale, Cost Analysis: Cost concepts, Cost & output relationship in short run & long run - Break-even Analysis (BEA)-Determination of Break-Even Point - Significance and limitations.	CO2				
Ш	Introduction to Markets, Pricing Policies & Types of Business Organization and Business Cycles: Market Structures: Perfect Competition, Monopoly, Monopolistic competition and Oligopoly – Features – Price and Output Determination – Methods of Pricing: Average cost pricing, Limit Pricing, Market Skimming Pricing, and Internet Pricing: Flat Rate Pricing, Usage sensitive pricing and Priority Pricing. Features and Evaluation of Sole Trader, Partnership, Joint Stock Company – Business					
IV	Cycles: Phases of Business Cycles. Introduction to Financial Accounting & Analysis: Financial Accounting and analysis: Accounting –significance Book Keeping- Double entry system –Journal- Ledger- Trial Balance- Final Accounts with simple adjustments. Financial Statement Analysis through ratios: Ratio-analysis of financial statement using different ratios (Liquidity -Profitability- Solvency -Activity					

	ratios).							
	Capital and Capital Budgeting: 12 Hrs							
	Capital Budgeting: Meaning of Capital-Capitalization-Meaning of Capital							
1 7	Budgeting-Time value of money- Methods of appraising Project profitability:	CO5						
V	Traditional Methods (payback period, accounting rate of return) and modern							
	methods (Discounted cash flow method, Net Present Value method, Internal Rate							
	of Return Method and Profitability Index).							

Content Beyond the syllabus:

Introduction to Managerial Economics and demand Analysis: Economics, Micro Economics, Macro Economics, Scope of Micro & Macro Economics, Concept of supply.

Theory of Production and Cost Analysis: Production Process, Types of production.

Types of Business organization: State & Public Enterprises.

	Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to						
CO1	To equipped with the knowledge of estimating the Demand and demand elasticities for a						
	product.						
CO2	The knowledge of understanding of the Input-Output-Cost relationships and estimation						
	of the least cost combination of inputs						
CO3	To understand the nature of different markets and Price Output determination under						
	various market conditions and also to have the knowledge of different Business Units.						
CO4	To prepare Financial Statements and the usage of various Accounting tools for analysis						
CO5	To evaluate various investment project proposals with the help of capital budgeting						
	techniques for decision making.						

Learning Resources

Text books:

- 1. Dr. A. R. Aryasri Managerial Economics and Financial Analysis, TMH 2011.
- 2. Dr. N. Appa Rao, Dr. P. Vijay Kumar: 'Managerial Economics and Financial Analysis', Cengage Publications, New Delhi 2011.
- 3. Prof. J.V. Prabhakara rao, Prof. P. Venkatarao. 'Managerial Economics and Financial Analysis', Ravindra Publication.

Reference books:

- 1. V. Maheswari: Managerial Economics, Sultan Chand.
- 2. Suma Damodaran: Managerial Economics, Oxford 2011.
- 3. Dr. B. Kuberudu and Dr. T. V. Ramana: Managerial Economics & Financial Analysis, Himalaya Publishing House 2011.
- 4. Vanitha Agarwal: Managerial Economics, Pearson Publications 2011.
- 5. Sanjay Dhameja: Financial Accounting for Managers, Pearson.
- 6. Maheswari: Financial Accounting, Vikas Publications.
- 7. S. A. Siddiqui & A. S. Siddiqui: Managerial Economics and Financial Analysis, New Age International Publishers, 2012.

e- Resources & other digital material

- 1. www.managementstudyguide.com
- 2. www.tutorialspoint.com
- 3. www.lecturenotes.in

Micro-Syllabus

UNIT – I Introduction to Managerial Economics and demand Analysis:

Definition of Managerial Economics –Scope of Managerial Economics and its relationship with other subjects –Concept of Demand, Types of Demand, Determinants of Demand- Demand schedule, Demand curve, Law of Demand and its limitations- Elasticity of Demand, Types of Elasticity of Demand and Measurement- Demand forecasting and Methods of forecasting.

Unit	Module	Micro Content				
		Economics, Definitions of Economics				
		Micro economics, Macro economics				
	Concept of Economics	Scope of Micro & Macro Economics				
	Concept of Economics	Difference Between Micro & Macro Economics				
		Meaning & Definitions of Managerial				
		Economics				
		Nature & scope of Managerial Economics				
	Concept of Managerial	Importance of Managerial Economics				
	economics	Difference between Economics & Managerial				
		Economics				
	relationship with other subjects	Linkage with other Disciplines				
	Basic Economic tools of	Opportunity cost Principle, Incremental				
	Managerial economics	principle, Time perspective principle,				
		Discounting Principle, Eqi marginal Principle What is Demand, Demand Analysis &				
Unit I	Concept of Demand	Objectives				
		Demand distinctions, Demand function				
	Types of Demand	Factors determining demand				
	D 101 11	Individual demand schedule, Market demand				
	Demand Schedule	schedule				
	Demand Curve	Individual demand curve, Market demand curve				
		Assumption of law of demand, Change in				
	Law of Demand	demand, Exceptions of law of demand, why				
		does demand curve slope downwards.				
		Meaning of elasticity of demand, types of Price				
	Elasticity of Demand, Types of	and income elasticity of demand, factors				
	Elasticity of Demand &	effecting elasticity of demand, measurements of				
	Measurement	elasticity of demand, significance of elasticity				
		of demand				
	Demand fore casting	types of demand forecasting				

UNIT - II Theory of Production and Cost Analysis:

Production Function – Isoquant and Isocost, MRTS, Least Cost Combination of Inputs - Laws of Returns to scale - Internal and External Economies of Scale, Cost Analysis: Cost concepts, Cost & output relationship in short run & long run - Break-even Analysis (BEA)-Determination of Break-Even Point - Significance and limitations.

	e	
	Theory of Production	Production function, Production process,
	Theory of Froduction	importance of production, assumptions
Unit II	Isoquant and Isocost	Meaning and Types, properties
Onit II	MRTS, Least Cost Combination	Schedule of Marginal rate of technical
	of Inputs	substitution, combination of different inputs
	Laws of Returns to scale	Schedule and graph

	Economies of scale	Internal and external
	Cost Analysis	Types of costs, cost & output relationship in
		short run and long run
	Break even Analysis	Uses, limitations of Break even analysis, Key
		terminology in Break analysis, Simple
		problems on BEP, graphical representation of
		Break even analysis.

UNIT – III Introduction to Markets, Pricing Policies & Types of Business Organization and Business Cycles:

Market Structures: Perfect Competition, Monopoly, Monopolistic competition and Oligopoly – Features – Price and Output Determination – Methods of Pricing: Average cost pricing, Limit Pricing, Market Skimming Pricing, and Internet Pricing: Flat Rate Pricing, Usage sensitive pricing and Priority Pricing. Features and Evaluation of Sole Trader, Partnership, Joint Stock Company – Business Cycles: Phases of Business Cycles.

Company	Business Cycles. I hases of Business Cycles.					
	Market Structures	Meaning, definitions, types of market				
	Darfact Competition	Features, price output determination under				
	Perfect Competition	perfect competition				
	Monopoly	Features, price output determination under				
	Monopoly	perfect competition				
	Managalistia aggregatitian	Features, price output determination under				
	Monopolistic competition	perfect competition				
Unit III	Oligopoly	features				
OIIIt III	pricing	Methods of pricing and internet pricing				
	Type of business organization: Sole	Features, Advantages & disadvantages,				
	trader	suitability				
	Doutnouchin	Features, Advantages & disadvantages,				
	Partnership	suitability				
	Laint ataaly acompany	Features, Advantages & disadvantages,				
	Joint stock company	suitability				
	Business cycle	Phases of business cycle				

UNIT – IV Introduction to Financial Accounting & Analysis:

Financial Accounting and analysis: Accounting –significance –- Book Keeping-Double entry system –Journal- Ledger- Trial Balance- Final Accounts with simple adjustments.

Financial Statement Analysis through ratios: Ratio-analysis of financial statement using different ratios (Liquidity -Profitability- Solvency -Activity ratios).

	Financial Accounting	Meaning, definitions, objectives & significance,
	Tillancial Accounting	users of accounting, accounting cycle, GAAP.
	Pools Vooring	Single and double entry book keeping, types of
	Book Keeping	Accounting
		Features, Pro-forma, Advantages &
	Journal	Limitations, preparation of journal entries,
Unit IV		simple problems
	ledger	Features, Pro-forma, Advantages &
		Limitations, preparation of ledger, simple
		problems.
	Trial Balance	Features, Pro-forma, Advantages &
		Limitations, preparation of Trial balance,
		simple problems.

	Trading account- Pro-forma, Simple problems
	Profit & Loss account- Pro-forma, Simple
Final accounts	problems
	Preparation of balance sheet with simple
	adjustments
	Ratio Analysis, uses and types of ratios,
Financial Statement Analysis	significance, analysis of financial statements
through ratios	using Liquidity -Profitability- Solvency -
	Activity ratios

UNIT - V Capital and Capital Budgeting:

Capital Budgeting: Meaning of Capital-Capitalization-Meaning of Capital Budgeting-Time value of money- Methods of appraising Project profitability: Traditional Methods (payback period, accounting rate of return) and modern methods (Discounted cash flow method, Net Present Value method, Internal Rate of Return Method and Profitability Index).

1 Tesent vai	resent value method, internal Rate of Return Method and Frontability index).			
	Capital	What is capital, need of capital types of capital		
	Сарпаг	Types of fixed capital, types of working capital		
		Meaning, Nature & scope of capital budgeting		
	Capital Budgeting	Capital budgeting procedure, capital budgeting		
		decisions, method of capital budgeting.		
	Daviha als mani a d	Meaning, formula, advantages & disadvantages,		
	Payback period	simple problems		
Unit V	Accounting rate of return(ARR)	Meaning, formula, advantages & disadvantages,		
		simple problems		
	Net present value (NPV)	Meaning, formula, advantages & disadvantages,		
		simple problems		
	Due 64 -1: 114 1- 4 (DI)	Meaning, formula, advantages & disadvantages,		
	Profitability index (PI)	simple problems		
	Internal rate of return (IDD)	Meaning, formula, advantages & disadvantages,		
	Internal rate of return (IRR)	simple problems		

Course Outcomes: Upon successful completion of the course, the student will be able to

· · · · · · · · · · · · · · · · · · ·
To equipped with the knowledge of estimating the Demand and demand elasticities for a
product.
The knowledge of understanding of the Input-Output-Cost relationships and estimation
of the least cost combination of inputs
To understand the nature of different markets and Price Output determination under
various market conditions and also to have the knowledge of different Business Units.
To prepare Financial Statements and the usage of various Accounting tools for analysis
To evaluate various investment project proposals with the help of capital budgeting
techniques for decision making.

Text books:

- 1. Dr. A. R. Aryasri Managerial Economics and Financial Analysis, TMH 2011.
- 2. Dr. N. Appa Rao, Dr. P. Vijay Kumar: 'Managerial Economics and Financial Analysis', Cengage Publications, New Delhi 2011.
- 3. Prof. J.V. Prabhakara rao, Prof. P. Venkatarao. 'Managerial Economics and Financial Analysis', Ravindra Publication.

Reference books:

- 1. V. Maheswari: Managerial Economics, Sultan Chand.
- 2. Suma Damodaran: Managerial Economics, Oxford 2011.
- 3. Dr. B. Kuberudu and Dr. T. V. Ramana: Managerial Economics & Financial Analysis, Himalaya Publishing House 2011.
- 4. Vanitha Agarwal: Managerial Economics, Pearson Publications 2011.
- 5. Sanjay Dhameja: Financial Accounting for Managers, Pearson.
- 6. Maheswari: Financial Accounting, Vikas Publications.
- 7. S. A. Siddiqui & A. S. Siddiqui: Managerial Economics and Financial Analysis, New Age International Publishers, 2012.

CO-PO mapping

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (**High: 3, Medium: 2, Low: 1**)

					•			,				
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	-	-	-	-	-	1	-	-	1	-	-	-
CO 2	-	-	-	-	-	1	-	2	1	2	2	2
CO 3	-	-	-	-	-	1	-	-	1	-	-	-
CO 4	-	-	-	-	-	1	-	2	1	2	2	-
CO 5	-	-	-	-	-	1	-	2	1	2	3	3

L T P C 3 0 0 3

MICROPROCESSORS AND MICROCONTROLLERS

Pre-Requisites: Digital Electronics

Preamble: The Purpose of the course is to provide students with the Knowledge of Microprocessors and Microcontroller. To solve real world problems in an efficient manner, this course also emphasis on architecture, Programming and system design used in various day to day gadgets.

Course objectives: The student should be able to

- 1. To understand the organization and architecture of Micro Processor
- 2. To understand addressing modes to access memory and modes of operation
- 3. To interface different devices to 8086.
- **4.** To understand 8051 micro controller architecture
- 5. To understand the basics of PIC18 architecture and develop programs using C.

	Syllabus	
Unit No	Contents	Mapped CO
I	Introduction to Microprocessor Architecture(13h) Introduction and evolution of Microprocessors,8086 Pin diagram- Architecture of 8086, Register Organization of 8086, Memory organization of 8086– General bus operation of 8086–Introduction to 80286–80386 and 80486 and Pentium [Elementary treatment only]	CO1
II	Minimum and Maximum Mode Operations (10h) Instruction set- Addressing modes, Minimum and Maximum mode operations of 8086- Read and write cycle timing diagrams, 8086 Control signal interfacing	CO2
Ш	I/O Interface(20h) 8255 PPI– Architecture of 8255–Modes of operation–Interfacing A to D converters– Interfacing D to A converters– Stepper motor interfacing, DMA controller (8257)–Architecture– Modes of operations, Programmable Interrupt Controller (8259)–Modes of Operation- Command words of 8259, Keyboard/display controller (8279)–Architecture–Modes of operation[Elementary treatment only]	соз
IV	Introduction to 8051 Micro Controller (12h) Introduction to 8051 Micro Controller– Architecture– Register set, I/O ports, Memory Organization– Interrupts, Timers and Counters–Serial Communication.	CO4
V	Introduction to PIC Micro Controller (10h) Block diagram of basic PIC 18 micro controller, registers I/O ports, Data types, I/O programming, logical operations, data conversion.	CO5
1 2 3	tent Beyond the Syllabus: Difference between 8085 and 8086- Distinguish between RISC and CISC archite Difference between 8051 and PIC family Applications of 8051 microcontroller Applications of PIC18 micro controller	cture

	Course Outcomes					
Upon	successful completion of the course, the student will be able to					
CO1	Understand the concepts of 8086 architecture, register and memory					
	organization{Knowledge level, KL1}					
CO2	Understand and apply the concepts of the modes of operations and instruction set to					
	develop the Assembly level language programs. {Apply level, KL3}					
CO3	Classify the types of interfacing devices and implement to interface with 8086					
	{Knowledge level, KL1}					
CO4	Explain the 8051 architecture and its features. {Knowledge level, KL1}					
CO5	Understand the PIC18 architecture and Develop the programs using C {Apply level,					
	KL3}					

Learning Resources

Text books:

- 1. "Advanced Micro Processors and Interfacing", Ray and Burchandi, Tata McGraw-Hill
- 2. "The 8051 Micro Controller Architecture, Programming and Applications", Kenneth J Ayala, Thomson Publishers, 2nd Edition.
- "PIC Microcontroller and Embedded Systems using Assembly and C for PIC 18", Muhammad Ali Mazidi, RolindD.Mckinay, Danny causey, Pearson Publisher 21st Impression.

Reference books:

- 1. "A Text book of Microprocessors and Micro Controllers", R.S. Kaler, I.K. International Publishing House Pvt. Ltd.
- 2. "Microcontrollers Theory and Applications", Ajay V. Deshmukh, Tata McGraw– Hill Companies –2005
- 3. "Microcontrollers Principles and Applications", Ajit Pal, PHI Learning Pvt Ltd, 2011.
- 4. "Microprocessors and Interfacing", Douglas V Hall, Mc–Graw Hill, 2nd Edition.

e-resources:

1. https://nptel.ac.in/courses/108107029/

Micro-Syllabus

Unit 1Introduction to Microprocessor Architecture (13h)

Introduction and evolution of Microprocessors—8086 Pin diagram- Architecture of 8086—Register Organization of 8086—Memory organization of 8086—General bus operation of 8086—Introduction to 80286–80386 and 80486 and Pentium [Elementary treatment only]

Unit	Module	Micro content
	Introduction and	Evolution and Applications of Microprocessors.
	evolution of	Differences between 8085 and 8086.
1.a	Microprocessors-	Differences between 8083 and 8080.
	8086 Pin diagram	8086 common pins, minimum mode and maximum
	6060 Fili diagraffi	mode pins.
	Architecture of 8086	Detailed architecture(BIU and EU)
1.b	Register Organization	General purpose registers, segment registers, Pointer
1.0	of 8086	and Index registers, flag register.
	Memory organization	Physical Memory organization (odd bank and even

of 8086	bank) [Elementary treatment only]
General bus operation	General 8086 system bus structure and operation
of 8086	with timing diagram. [Elementary treatment only]
Introduction to 80286–80386 and	Features of 80286, 80386, 80486 and Pentium.
80486 and Pentium	[Elementary treatment only]

Unit 2 Minimum and Maximum Mode Operations: (10h)

Instruction set- Addressing modes—Minimum and Maximum mode operations of 8086–8086 Control signal interfacing—Read and write cycle timing diagrams.

Unit	Module	Micro content				
		Arithmetic Instructions- Data Transfer				
		Instructions - Logical Instructions - Branch and				
		loop instructions - String Instructions - Process				
	Instruction set-	Control Instructions.				
2.a	Addressing modes,	Arithmetic Instructions- Data Transfer Instructions- Logical Instructions - Branch and loop instructions - String Instructions - Process				
	Control signal	Indexed, Based Indexed, Based Relative,				
	interfacing					
		WR', DEN, READY) interfacing				
	Minimum and	Block diagram of Minimum mode-Operation				
2.b	Maximum mode	Read and write cycle timing diagrams				
2.0	operations- Read and	Block diagram of Maximum mode-Operation				
	write cycle timing	Dead and arrive arrelationing discourse				
	diagrams	Read and write cycle timing diagrams				

Unit 3 I/O Interface: (20h)

8255 PPI– Architecture of 8255–Modes of operation–Interfacing A to D converters– Interfacing D to A converters– Stepper motor interfacing–DMA controller (8257)– Architecture– Modes of operations– Programmable Interrupt Controller (8259)– Modes of Operation-Command words of 8259.Keyboard/display controller (8279)–Architecture -Modes of operations of 8279 [Elementary treatment only]

Unit	Module	Micro content
	8255 Architecture	Features, Pin diagram and Block diagram of 8255
3.a	DMA controller (8257)— Architecture	Features, Pin diagram and Block diagram of 8257
	Programmable Interrupt Controller (8259)	Features, Pin diagram and Block diagram of 8259
	Keyboard/display controller (8279)— Architecture	Features, Pin diagram and Block diagram of 8279
	Modes of operation of 8255	BSR mode and I/O mode (Mode 0, Mode1 and Mode 2)
D to A converters— Stepper motor Interf ALP		Interfacing of 0808/0809 ADC with 8086 Interfacing of 0800 DAC with 8086 ALP to rotate 4 phase stepper motor in clockwise and anti-clock wise direction.

Modes of operations of 8257	Rotating priority mode, Fixed priority mode, Extended write mode, TC stop mode and Auto Load mode.		
Modes of Operation of 8259	Fully nested mode, Specially Fully nested mode, Rotating priority mode, Special Masked mode, Polled Mode		
Command words of 8259	Initialization command words and operational command words.		
Modes of operations of 8279	Keyboard modes: Scanned keyboard, scanned sensor matrix and strobed input modes.		

Unit 4 Introduction to 8051 Micro Controller (12h)

Introduction to 8051 Micro Controller– Architecture– Register set–I/O ports and Memory Organization– Interrupts–Timers and Counters–Serial Communication.

Unit	Module	Micro content
	Introduction to 8051	Features, Pin diagram and block diagram and
4.a.	Micro Controller-	applications of 8051
	Architecture– Register set–I/O ports	Registers of 8051
		Program memory and Internal memory
	Memory Organization-	Interrupts (IE0, IE1, TF0, TF1 and serial port) –
	Interrupts-Timers and	IE register, IP register
4.b	Counters-Serial	Timers/counters: TMOD register, TCON
	Communication.	register and modes of Timers
		Serial Communication: SBUF register, SCON
		register and PCON register

Unit 5 Introduction to PIC Micro Controller (10h)

PIC Architecture: Block diagram of basic PIC 18 micro controller, registers I/O ports.

Programming in C for PIC: Data types, I/O programming, logical operations, data conversion

Unit	Module	Micro content				
	Plack diagram of basis	Difference between 8051MC and PIC18,				
	Block diagram of basic PIC 18 micro controller	Types of PIC microcontrollers.				
	FIC 16 IIIICIO COIIIIOIICI	Features and block diagram of PIC18				
5.a.		Working Register, File register, Special				
	Pagistars I/O norts	Function registers, General purpose registers				
	Registers, I/O ports	and CCP registers				
		I/O ports in different family of PIC				
	Data types, I/O	C-Programs related to Data types, I/O				
5.b.	programming, logical	programming, logical operations, data				
5.0.	operations, data	conversion. [Elementary treatment only]				
	conversion					

	Course Outcomes					
Upon	successful completion of the course, the student will be able to					
CO1	Understand the concepts of 8086 architecture, register and memory					
	organization{Knowledge level, KL1}					
CO2	Understand and apply the concepts of the modes of operations and instruction set to					
	develop the Assembly level language programs. {Apply level, KL3}					
CO3	Classify the types of interfacing devices and implement to interface with 8086					

	{Knowledge level, KL1}
CO4	Explain the 8051 architecture and its features. (Knowledge level, KL1)
CO5	Understand the PIC18 architecture and Develop the programs using C {Apply level,
	KL3}

Learning Resources

Text books:

- 1. "Advanced Micro Processors and Interfacing", Ray and Burchandi, Tata McGraw-Hill
- 2. "The 8051 Micro Controller Architecture, Programming and Applications", Kenneth J Ayala, Thomson Publishers, 2nd Edition.
- 3. "PIC Microcontroller and Embedded Systems using Assembly and C for PIC 18", Muhammad Ali Mazidi, RolindD.Mckinay, Danny causey, Pearson Publisher 21st Impression.

Reference books:

- 1. "A Text book of Microprocessors and Micro Controllers", R.S. Kaler, I.K. International Publishing House Pvt. Ltd.
- 2. "Microcontrollers Theory and Applications", Ajay V. Deshmukh, Tata McGraw– Hill Companies –2005
- 3. "Microcontrollers Principles and Applications", Ajit Pal, PHI Learning Pvt Ltd, 2011.
- 4. "Microprocessors and Interfacing", Douglas V Hall, Mc–Graw Hill, 2nd Edition.

e-resources:

1. https://nptel.ac.in/courses/108107029/

CO-POs& PSOs Mapping:

$\frac{CO-1}{C}$	CO-1 OSC 1 DOS Mapping.													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-	PSO-
													1	2
CO1	2													
CO2	2		1											
CO3	2													
CO4	2													
CO5	2		1											

L T P C 3 0 0 3

ELECTRICAL MEASUREMENTS & INSTRUMENTATION

Pre-Requisites: 1) Basic Circuit Analysis

Preamble: This course introduces the principle of operation of basic analog and digital measuring instruments for measurement of current, voltage, power, energy etc. Measurement of resistance, inductance and capacitance by using bridge circuits will be discussed in detail. It is expected that student will be thorough with various measuring techniques that are required for an electrical engineer.

Course objectives: The student should be able to

- 1. Study the principle of operation and working of different types of instruments for measurement of electrical quantities.
- 2. Study the working principle of operation of different types of instruments for measurement of power and power factor, energy and frequency.
- 3. Understand the principle of operation and working of various types of bridges for measurement of parameters –resistance, inductance, capacitance and frequency.
- 4. Know the principle of operation and working of transducers and CRO.
- 5. Study the principle of operation and working of DVMs, DMM and other digital instruments.

	Syllabus				
Unit No	Contents				
	Measuring Instruments& Instrument Transformers: Error analysis;				
	Classification – Deflecting, Controlling and Damping torques – PMMC, MI,				
I	Electrodynamometer typeinstruments- Expression for torque. Extension of	CO1			
1	ranges using Shunts and Multipliers-numerical problems				
	Instrument transformers: C.T& P.T:Principle of operation and working.				
	Measurement of Power, Power factor & Energy:Single phase and three phase				
	dynamometer wattmeter: LPF and UPF; Expression fordeflecting and control				
	torques; Measurement of active and reactive powers in balanced and				
	unbalancedsystems-Numerical problems				
II	Type of P.F. Meters – Single phase and three phase dynamometer and moving	CO2			
	irontype (Elementary treatment only)				
	Single phase induction type energy (Elementary treatment only)				
	Electrical resonance type frequency meter and Weston type synchro scope,				
	Phase sequence indicator (Elementary treatment only)				
	Potentiometers & Bridges				
	Potentiometers: Principle and operation of D.C. Crompton's potentiometer –				
	Standardization – Measurement of unknown resistance – Current – Voltage.				
	AC Potentiometers: polar and coordinate types – Standardization (Elementary				
	treatment only).				
	Bridges: Kelvin's double bridge, Wheat stone's bridge, Measurement of high				
III	resistance by loss of charge methods – Megger; Measurement of Inductance &	CO3			
	Capacitance: Maxwell' bridge, Anderson's bridge, Hays bridge, Wien's bridge,				
	Schering's bridge, Wagner's earth device				

	Transducers	
	Transducers: Q-meters, Definition and Classification of Resistive, Inductive	
IV	and Capacitive Transducer, LVDT, Strain Gauge, Thermistors,	
	Thermocouples, Piezo electric and Photo Diode Transducers, measurement of	
	non-electrical quantities – Pressure- Angular velocity- liquid level.	
	Digital Meters: Advantages of Digital meters, Principle of operation of	
V	Ramp, dual-Slope integration continuous balance type DVM's - Successive	CO5
V	approximation DVM's, digital multi-meters, digital phase & frequency meters	
	and digital tachometer.	

Content Beyond the Syllabus:

Oscilloscope: Hysteresis loop using lissajious patterns in CRO (Elementary treatment only)

	Course Outcomes				
Upon	successful completion of the course, the student will be able to				
CO1	Choose suitable instrument for measurement of ac and dc Electrical quantities.{Apply				
	level, KL3}				
CO2	Understand the concepts used in measurement of power, power factor, and energy &				
	know the application of synchroscope and sequence indicators.{Understanding level,				
	KL2}				
CO3	Select suitable bridge for measurement of electrical parameters. {Apply level, KL3}				
CO4	Acquire proper knowledge to use various types of Transducers and able to measure				
	various non-electric quantities & frequency of signals with CRO{Apply level, KL3}				
CO5	Acquire proper knowledge and working principle of various types of digital instruments				
	{Apply level, KL3}				
	Learning Resources				

Text books:

- 1. Electrical & Electronic Measurement & Instruments by A.K.Sawhney, Dhanpat Rai & Co 17th edition 2000.
- 2. Electronic Instrumentation by H S Kalsi, 2nd Edition, McGraw-Hill Publishing, 2004.
- 3. Electrical Measurements and measuring Instruments by E.W. Golding and F.C. Widdis, 5th Edition, Wheeler Publishing, 1999.

Reference books:

- 1. Electrical and Electronic Measurements and instrumentation by R.K.Rajput, S.Chand.
- 2. Electrical Measurements by Harris John Wiley.
- 3. Electrical Measurements: Fundamentals, Concepts, Applications by Reissland, M.U, New Age International (P) Limited, Publishers.
- e- Resources & other digital material
- 1. https://nptel.ac.in/noc/courses/noc19/SEM2/noc19-ee44
- 2. http://www.facstaff.bucknell.edu/mastascu/elessonshtml/Measurements/MeasIntro.htm

Micro-Syllabus

Unit 1: Measuring Instruments& Instrument Transformers

Measuring Instruments: Error analysis; Classification – Deflecting, Controlling and Damping torques – PMMC, MI, Electrodynamometer type instruments– Expression for torque. Extension of ranges using Shunts and Multipliers-numerical problems

Instrument transformers: C.T& P.T: Principle of operation and working.

Unit	Module	Micro content	
(A)	Error analysis	Error analysis: Definitions of true value, static error, accuracy, precision, sensitivity, linearity, hysteresis, threshold, dead time, dead zone, limiting errors, relative limiting errors, simple problems on limiting errors only	
Measuring Instruments	Classification, Torques	Error analysis: Definitions of true value, static error, accuracy, precision, sensitivity, linearity, hysteresis, threshold, dead time, dead zone, limiting errors, relative limiting errors, simple problems on limiting errors only Classification of instruments Deflecting, Controlling and damping torques PMMC instruments: Torque equation, merits & demerits MI instruments: Torque equation, merits & demerits ED instruments: torque equation, merits & demerits Extension of range of PMMC and MI instruments Simple Numerical problems on extension of range of instruments Use of Instrument transformers, ratios of instrument transformers, burden	
	PMMC, MI, ED, ES type instruments, Expression for torque	demerits MI instruments: Torque equation, merits & demerits	
(B)	Extension of ranges using Shunts and Multipliers-numerical problems	Simple Numerical problems on extension of range of	
Range extension & Instrument transformer	Instrument transformers: C.T& P.T	transformers, burden CT: Principle of operation and working, effect of CT secondary open circuit	

UNIT-II: Measurement of Power, Power factor & Energy

Measurement of Power, Power factor: Single phase and three phase dynamometer wattmeter: LPF and UPF; Expression for deflecting and control torques; Measurement of active and reactive powers in balanced and unbalanced systems-Numerical problems

Type of P.F. Meters – Single phase and three phase dynamometer and moving irontype (Elementary treatment only)

Measurement of Energy: Single phase induction type energy meter (Elementary treatment **only** Electrical resonance type frequency meter and Weston typesynchroscope, Phase sequence indicator (Elementary treatment only)

Unit	Module	Micro content
		Power in DC & AC circuits
	M CD	Electrodynamometer type wattmeter
(A)	Measurement of Power	construction, theory, shape of scale
Measurement	and Power factor	Errors in ED type wattmeter's and compensation
of Power, Power factor		LPF wattmeter
Tower ractor	Power in Polyphase circuits	Power measurement in polyphase circuits
		Measurement of Reactive power and simple

		numerical problems on power measurement
	Power factor meters	Principle of operation of ED & MI power factor meter (Elementary treatment only)
(B)	Measurement of Energy	Single phase induction type energy meter principle of operation (Elementary treatment only), meter constant
Measurement	Frequency meters, synchroscope, phase	Electrical resonance type frequency meter
of Energy	sequence indicators	Weston type synchroscope
	Applications (elementary treatment only)	Phase sequence indicators: static and rotating

UNIT-III: Potentiometers & Bridges

Potentiometers: Principle and operation of D.C. Crompton's potentiometer – Standardization – Applications: Measurement of unknown resistance – Current – Voltage. AC Potentiometers: polar and coordinate types – Standardization(Elementary treatment only).

Bridges: Kelvin's double bridge, Wheat stone's bridge, Measurement of high resistance by loss of charge methods – Megger; Measurement of Inductance & Capacitance: Maxwell' bridge, Anderson's bridge, Hays bridge, Wien's bridge, De sautys bridge, Schering's bridge, Wagner's earth device

Unit	Module	Micro content			
(A)	DC Potentiometer	Basic potentiometer circuit, Laboratory type Crompton's potentiometer, multi range potentiometer, standardization procedure			
Potentiometers	Applications of potentiometer	Measurement of resistance, Current, voltage, power using potentiometer, Volt ratio box			
		Polar type potentiometer (elementary treatment only)			
	AC potentiometers	Measurement of resistance, Current, voltage, power using potentiometer, Volt ratio box Polar type potentiometer (elementary treatment only) Coordinate type potentiometer (elementary treatment only) Low resistance: Kelvin's double bridge Medium resistance: whetstones bridge High resistance: Loss of charge method, Megger and simple problems on measurement of high resistance General form & equation for bridge balance, detectors for AC bridges			
		only)			
		Low resistance: Kelvin's double bridge			
	Measurement of	Medium resistance: whetstones bridge			
	resistance	High resistance: Loss of charge method, Megger and			
(D)		simple problems on measurement of high resistance			
(B) Bridges		General form & equation for bridge balance,			
Diluges	Measurement of	detectors for AC bridges			
	Inductance	Maxwell's bridge, Hays bridge, Andersons bridge			
		and simple problems			
	Measurement of	De Sauty's bridge, Schering bridge, Wien's bridge,			
	capacitance	Wagner's earth device and simple problems			

UNIT – IV: Transducers

Transducers: Q-meters, Definition and Classification of Resistive, Inductive and Capacitive Transducer, LVDT, Strain Gauge, Thermistors, Thermocouples, Piezo electric and Photo Diode Transducers

Unit	Module	Micro content				
	Q-meters	Principle and operation of LCR Q-meters				
	Definitions,	Transducers, electrical transducers, advantages				
	Classification of	Classification based principle of transduction, primary				
	Transducers	and secondary; Active & Passive				
	Thermistors	Construction, Resistance-Temperature characteristics				
(A)	Thermistors	& application to measurement of temperature				
Transducers	Thermocounles	Construction, application to measurement of				
	Thermocouples	temperature, advantages and disadvantages				
		Construction, principle of operation, application to				
	LVDT	measurement of displacement, advantages and disadvantages				
	Strain gauge	Theory, gauge factor, gauge sensitivity, strain				
	D' 1					
	Piezo electric					
	transducer &	materials				
(D)	Photo diode	Semi conductor photo diode theory and applications				
(B)	transducer	Transducers, electrical transducers, advantages Classification based principle of transduction, primary and secondary; Active & Passive Construction, Resistance-Temperature characteristic & application to measurement of temperature Construction, application to measurement of temperature, advantages and disadvantages Construction, principle of operation, application to measurement of displacement, advantages and disadvantages Theory, gauge factor, gauge sensitivity, strain measurement on cantilever beam Theory, working, applications of Piezo electric materials Semi conductor photo diode theory and applications Pressure ((inductive Capacitive methods))				
Transducers	Measurement of	_				
	non electrical					
	quantities					
		metnoa)				

UNIT V: Digital Meters

Digital Meters: Advantages of Digital meters, Principle of operation of Ramp, dual–Slope integration continuous balance type DVM's - Successive approximation DVM's, digital multimeters, digital phase & frequency meters, digital tachometer

Unit	Module	Micro content
(A)	Digital meters	Block diagram, Merits & demerits
Voltmeters		Principle and operation of Ramp type DVM
	Digital valtmatars	Principle and operation of Dual slope type DVM
	Digital voltmeters	Principle and operation of integrating type DVM
		Principle and operation of successive approximation type DVM
	Digital Multimeters	Principle and operation of DMM
(B)	Digital phase &	Principle and operation of digital phase meter
DMM, DFM	frequency meter,	Principle and operation of frequency meter
	tachometer	Principle and operation of tachometer

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Choose suitable instrument for measurement of ac and dc Electrical quantities.{Apply
	level, KL3}
CO2	Understand the concepts used in measurement of power, power factor, and energy &
	know the application of synchro scope and sequence indicators. {Understanding level,
	KL2}

CO3	Select suitable bridge for measurement of electrical parameters. {Apply level, KL3}
CO4	Acquire proper knowledge to use various types of Transducers and able to measure
	various non-electric quantities & frequency of signals with CRO{Apply level, KL3}
CO5	Acquire proper knowledge and working principle of various types of digital instruments
	{Apply level, KL3}

Text books:

- 1. Electrical & Electronic Measurement & Instruments by A.K.Sawhney, Dhanpat Rai & Co 17th edition 2000.
- 2. Electronic Instrumentation by H S Kalsi, 2nd Edition, McGraw-Hill Publishing, 2004.
- 3. Electrical Measurements and measuring Instruments by E.W. Golding and F.C. Widdis, 5th Edition, Wheeler Publishing, 1999.

Reference books:

- 1. Electrical and Electronic Measurements and instrumentation by R.K.Rajput, S.Chand.
- 2. Electrical Measurements by Harris John Wiley.
- 3. Electrical Measurements: Fundamentals, Concepts, Applications by Reissland, M.U, New Age International (P) Limited, Publishers.

CO-PO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-	PSO-
													1	2
CO1	2	3	3											
CO2	2	3	2											
CO3	2	2												
CO4	2		3											
CO5	2		3											

L T P C 3 0 0 3

POWER SYSTEMS-III

Pre-Requisites: Power Systems-I and Power Systems-II

Preamble:

The course is designed to give the required knowledge for the calculation of power flow in a power system network using various techniques, short circuit analysis, power system analysis for steady state and transient stability. It also deals with economic operation of power systems, modelling of speed governing system, turbines and generators including single area and two area load frequency control.

Course Objectives:

- 6. To study the Gauss Seidel, Newton Raphson, Decoupled and Fast Decoupled load flow methods.
- 7. To understand the short circuit calculations for symmetrical and unsymmetrical faults.
- 8. To study the stability analysis of power systems.
- 9. To understand optimal dispatch of generation with and without losses.
- 10. To study the load frequency control for single and two area system.

	Syllabus	
Unit No	Contents	Mapped CO
I	Power Flow Studies (13hrs) Necessity of power flow studies, Derivation of static power flow equations, Load flow solutions using Gauss Seidel Method, Newton Raphson Method, Decoupled and Fast Decoupled Methods, Numerical problems.	CO1
II	Short Circuit Analysis Symmetrical Fault Analysis: (6hrs) Symmetrical fault analysis-Short circuit current and MVA calculations, Series reactors-Selection and Advantages of reactors, Numerical problems. Unsymmetrical Fault Analysis: (7hrs) Symmetrical component theory-Positive, Negative and Zero sequence components, Sequence impedances and networks, Various types of faults-LG, LL and LLG on unloaded alternator, Numerical problems.	CO2
III	Stability Analysis Steady State Stability: (7hrs) Classification of power system stability, Transfer Reactance, Synchronizing Power Coefficient ,Power Angle Curve , Determination of Steady State Stability, Methods to improve steady state stability, Numerical Problems. Transient Stability: (6hrs) Swing Equation, Determination of Transient Stability by Equal Area Criterion, Application of Equal Area Criterion-Critical Clearing Angle and time, Methods to	CO3

	improve transient stability, Numerical Problems.	
	Economic Operation of Power Systems:	
	Different Curves: (6hrs)	
	Optimal operation of Generators in Thermal power stations, Input-output	
IV	characteristics, Cost Curve, Heat rate curve, Incremental fuel and Production costs.	CO4
	Mathematical Analysis: (6hrs)	
	Optimum generation allocation with and without transmission line losses, Loss	
	Coefficients, General transmission line loss formula, Numerical Problems.	
	Load Frequency Control	
	Load Frequency Control-I: (7hrs)	
	Modeling of speed governing system-steam turbine-generator, Control area	
	concept, Single area control-Transfer function and Block diagram representation of	
\mathbf{V}	an isolated power system, Steady state analysis, Dynamic response, Numerical	CO5
V	Problems.	COS
	Load Frequency Control-II: (6hrs)	
	Proportional plus Integral control of single area and its block diagram	
	representation, Two area control- Transfer function and Block diagram	
	representation, Tie-line bias control.	

Content Beyond the Syllabus:

Power flow solution including convergence characteristics, Case studies of different faults, Swing Equation solution using point by point method, Economic load dispatch including all constraints and real time load frequency control concepts.

	Course Outcomes				
Upon	successful completion of the course, the student will be able to				
CO1	Find out the load flow solution of a power system network using different load flow methods.				
CO2	Evaluate the fault current for different types of faults with a view to provide data for the design of protective devices.				
CO3	Analyze the steady state and transient stability concepts of a power system.				
CO4	Calculate optimal scheduling for generators with and without losses.				
CO5	Acquire the knowledge of load frequency control for various systems.				
	Learning Resources				
Text b	ooks:				
1.	. Modern Power System Analysis- I.J.Nagrath&D.P.Kothari: Tata McGraw-Hill Publishing				
	Company, 2 nd edition.				
2.	2. Electrical Power Systems- C.L. Wadhwa, New Age International Publishers, 7th Edition.				
Refere	Reference books:				
1.	Power System Analysis–Grainger and Stevenson, Tata McGraw-Hill				
2.	Power Systems Operation and Control - Chakravarthi, Prentice Hall, Inc.				
3.	Power System Analysis -Hadi Saadat, TMH Edition .				

e- Resources & other digital material

1. https://nptel.ac.in/courses/117105140/

4. Power System Stability & Control -PrabhaKundur, TMH.

- 2. https://nptel.ac.in/courses/108/105/108105104
- $3. \quad \underline{https://nptel.ac.in/courses/108/107/108107127/}$
- 4. https://nptel.ac.in/courses/108/105/108105060/
- 5. https://www.coursera.org/learn/electric-power-systems
- 6. https://www.edx.org/ power-systems
- 7. https://www.classcentral.com/course/electric-power-systems

Micro-Syllabus

Unit-1 Power Flow Studies (13hrs)

Necessity of power flow studies, Derivation of static power flow equations, Load flow solutions using Gauss Seidel Method, Newton Raphson Method, Decoupled and Fast Decoupled Methods, Numerical problems.

Unit No	Module	Micro content		
1a.	Power Flow Studies Introduction and Static Power Flow Equations	Introduction and Necessity of power flow studies Classification of buses Data for power flow studies Derivation of static power flow equations		
1b.	Iterative Methods and Problems	Load flow solutions using iterative methods(in polar coordinates only) Gauss Seidel Method with and without PV buses, concept of acceleration factor. Newton Raphson Method Decoupled and Fast Decoupled Methods Line flows and line losses equations Algorithm and flow chart of all iterative methods Comparison of iterative methods Numerical problems (3 bus system up to one iteration only)		

Unit-2 Short Circuit Analysis

Symmetrical Fault Analysis: (6hrs)

Symmetrical fault analysis-Short circuit current and MVA calculations, Series reactors-Selection and Advantages of reactors, Numerical problems.

Unsymmetrical Fault Analysis: (7hrs)

Symmetrical component theory-Positive, Negative and Zero sequence components, Sequence impedances and networks, Various types of faults-LG, LL and LLG on unloaded alternator, Numerical problems.

Unit No	Module	Micro content			
		Introduction and Reasons for faults			
		Concept of synchronous reactance			
2a.	Symmetrical Fault Analysis	Symmetrical fault analysis using Thevenin's theorem			
		Introduction and Reasons for faults Classification of faults Concept of synchronous reactance Symmetrical fault analysis using Thevenin's			
		Concept of Series reactors			

		Selection and Advantages of reactors				
		Numerical problems-Short circuit current and MVA calculations.				
		Symmetrical component theory				
		MVA calculations. Symmetrical component theory Relation between unbalanced vectors(voltage and current) and symmetrical component Sequence impedances and networks Sequence networks for power system components Fault current expression for LG, LL and LLG fault on unloaded alternator				
2b.						
	Unsymmetrical Fault Analysis					
		Numerical problems-Short circuit current and MVA calculations. Symmetrical component theory Relation between unbalanced vectors(voltage and current) and symmetrical component Sequence impedances and networks Sequence networks for power system components Fault current expression for LG, LL and LLC fault on unloaded alternator				
		fault on unloaded alternator				
		Numerical problems.				

Unit-3 Stability Analysis

Steady State Stability: (7hrs)

Classification of power system stability, Transfer Reactance, Synchronizing Power Coefficient ,Power Angle Curve , Determination of Steady State Stability, Methods to improve steady state stability, Numerical Problems.

Transient Stability: (6hrs)

Swing Equation, Determination of Transient Stability by Equal Area Criterion, Application of Equal Area Criterion-Critical Clearing Angle and time, Methods to improve transient stability, Numerical Problems.

Unit No	Module	Micro content
		Introduction to stability studies
		Classification of power system stability
		Concept of steady state stability limit & Transfer
		Reactance
		Power angle equation derivation
		Power angle curve
3a.	Steady State Stability	Concept of synchronizing power coefficient
		Determination of Steady State Stability
		Methods to improve steady state stability
		Steady state stability limit in terms of ABCD
		parameters
		Numerical Problems
		Swing equation derivation
		Concept of Equal Area Criterion
		Application of Equal Area Criterion
3b.	Transient Stability	Expressions of Critical Clearing Angle and time
	Transient Stability	for single circuit and double circuit transmission
		line
		Methods to improve transient stability
		Numerical Problems

Unit-4 Economic Operation of Power Systems:

Different Curves: (6hrs)

Optimal operation of Generators in Thermal power stations, Input-output characteristics, Cost Curve, Heat rate curve, Incremental fuel and Production costs.

Mathematical Analysis: (6hrs)

Optimum generation allocation with and without transmission line losses, Loss Coefficients, General transmission line loss formula, Numerical Problems.

Unit No	Module	Micro content
		Introduction and over view of thermal plant operation
		Input-output characteristics
		Cost Curve and equation
4a.	Different Curves	Incremental Cost Curve and equation
144		Incremental efficiency
		Heat rate curve
		Incremental fuel and Production costs
		Equality and inequality constraints
		Optimum generation allocation without transmission line losses expression
		Optimum generation allocation with
		transmission line losses expression
4b.	Mathematical Analysis	Concept of exact and approximate penalty
	Wathematical Analysis	factors
		General transmission line loss formula
		Incremental transmission line loss formula
		Loss Coefficients
		Numerical Problems

Unit-5 Load Frequency Control Load Frequency Control-I: (7hrs)

Modelling of speed governing system-steam turbine-generator, Control area concept, Single area control-Transfer function and Block diagram representation of an isolated power system, Steady state analysis, Dynamic response, Numerical Problems.

Load Frequency Control-II: (6hrs)

Proportional plus Integral control of single area and its block diagram representation, Two area control- Transfer function and Block diagram representation, Tie-line bias control.

Unit No	Module	Micro content
5a.	Load Frequency Control-I	Introduction and Concept of load frequency control Necessity of constant frequency Control area concept Operation of speed governing system Modelling of speed governing system(Transfer function and Block diagram representation) Modelling of steam turbine (Transfer function

		and Block diagram representation)
		Modelling of generator(Transfer function and
		Block diagram representation)
		Transfer function and Block diagram
		representation of an isolated power system
		(Single area control)
		Steady state analysis-Controlled and
		Uncontrolled case
		Dynamic response
		Numerical Problems
		Proportional plus Integral control of single area-
		steady state frequency error derivation
5b.		Transfer function and Block diagram
	Load Frequency Control-II	representation of two area control
		Concept of Tie-line bias control
		Load frequency and economic dispatch control

	Course Outcomes					
Upon	successful completion of the course, the student will be able to					
CO1	Find out the load flow solution of a power system network using different types of load					
	flow methods.					
CO2	Evaluate the fault current for different types of faults with a view to					
	provide data for the design of protective devices.					
CO3	CO3 Analyze the steady state and transient stability concepts of a power system.					
CO4	CO4 Calculate optimal scheduling for generators with and without losses.					
CO5	CO5 Acquire the knowledge of load frequency control for various systems .					
	Learning Resources					

Text books:

- 1. Modern Power system Analysis- I.J.Nagrath&D.P.Kothari: Tata McGraw-Hill Publishing Company, 2nd edition.
- 2. Electrical Power Systems- C.L. Wadhwa, New Age International Publishers, 7th Edition.

Reference books:

- 1. Power System Analysis-Grainger and Stevenson, Tata McGraw-Hill
- 2. Power Systems Operation and Control Chakravarthi, Prentice Hall, Inc.
- 3. Power System Analysis -Hadi Saadat, TMH Edition
- 4. Power System Stability & Control -PrabhaKundur, TMH.

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/117105140/
- 2. https://nptel.ac.in/courses/108/105/108105104
- 3. https://nptel.ac.in/courses/108/107/108107127/
- 4. https://nptel.ac.in/courses/108/105/108105060/
- 5. https://www.coursera.org/learn/electric-power-systems
- 6. https://www.edx.org/ power-systems
- 7.https://www.classcentral.com/course/electric-power-systems

CO-PO mapping

	P	PO	PO1	PO1	PO1	PSO	PSO							
	О	2	3	4	5	6	7	8	9	0	1	2	-1	-2
	1													
CO1	2	3	3											
CO2	2	3	2											
CO3	2	2												
CO4	2		3											
CO5	2		3											

L T P C 2 0 0 2

BIG DATA ANALYTICS (Open Elective-III)

PRE-REQUISITES: 1) Java Programming, DBMS, Data Mining

Course objectives: The student should be able to

- 1. Understand the Data Mining Concepts and Big Data Introduction
- 2. Provide an overview of Apache Hadoop
- 3. Provide HDFS Concepts and Interfacing with HDFS
- 4. Understand Map Reduce Jobs
- 5. Provide hands on Hadoop Eco System
- 6. To study different types Case studies on the current research and applications of the Hadoop and big data in Smart Grids

	Syllabus				
Unit No	Contents	Mapped CO			
I	Data Mining Concepts: (10 hrs) Data Mining, KDD Process, Kinds of Patterns Can Be Mined, Applications of DM. Data pre-processing: Data Cleaning - Missing Values, Noisy Data, Data Cleaning as a Process; Data Integration - Entity Identification Problem, Redundancy and Correlation Analysis, Tuple Duplication, Data Value Conflict Detection and Resolution; Data Reduction; Data Transformation and Data Discretization, Overview of Data Mining Techniques. Introduction to Big Data: (04 hrs) Big Data-definition, Characteristics of Big Data (Volume, Variety, Velocity), Data in the Warehouse and Data in Hadoop, Why is Big Data Important? Patterns for Big Data Development, Examples of Big Data Analytics.	CO1			
II	Introduction to Hadoop: (07 hrs) Working with Big Data: Google File System, A Brief History of Hadoop, Apache Hadoop and the Hadoop Ecosystem, Hadoop Releases, Hadoop Installation Modes. Hadoop Distributed File System: (07 hrs) HDFS, Building Blocks of Hadoop (Namenode, Datanode, Secondary Namenode, JobTracker, TaskTracker), Introducing and Configuring Hadoop cluster (Local, Pseudodistributed mode, Fully Distributed mode), Configuring XML files.	CO2			
III	Map Reduce: (12 hrs) Introduction, How MapReduce works? MR Execution Flow with an Example, Understanding Hadoop API for MapReduce Framework (Old and New), Components of MapReduce: Driver code, Mapper code, Reducer code, RecordReader, Combiner, Partitioner; MR Program for Word Count.	CO3			
IV	Pig: (07 hrs) Admiring the Pig Architecture, Installation and Running of Pig, Execution Types, Evaluating Local and Distributed Modes, Pig Latin Editors, Comparison with databases, Pig Latin, Functions, Data Processing Operators, Checking out the Pig Script Interfaces, Scripting with Pig Latin, Running Pig Programs. Hive: (05 hrs)	CO4			

	Installing Hive, An Example, Running Hive, Comparison with Traditional Databases,	
	HiveQL, Tables, Querying Data.	
	Big Data Analytics in Smart Grids: (16 hrs)	
	Smart Grid: Architectural Designs, Smart Grid Communications And Measurement	
	Technology, Performance Analysis Tools For Smart Grid Design. (11 hrs)	
\mathbf{V}	Big Data for Smart Grid: Need of Data Analysis in Smart Grid, Building the	CO5
	Foundation for Data Analytics, Applying Analytical Models in the Utility, Big Data	
	Integration, Frameworks, and Databases, (03 hrs)	
	Big Data implementation in smart grid: the case of customer data analytics (02 hrs)	

Content Beyond the syllabus: (03 hrs)

Introduction to Data Structures using Java: Introduction to Data Structures, Stack, Queue, Linked List, Set, Map, Wrapping and Unwrapping, Generic Classes, Generic Methods (Elementary treatment only)

Map Reduce Programs: Word Count Example (Elementary treatment only)

	Course Outcomes				
Upon s	successful completion of the course, the student will be able to				
CO1	CO1 Understand the concepts of Data mining and Big Data Analytics, Analyze Hadoop Architecture				
	{Understand level, KL2} {Analyze level, KL4}				
CO2	Master the concepts of Hadoop Distributed File System.{Apply level, KL3}				
CO3	Acquire knowledge on Map Reduce Framework. { Evaluate level, KL5}				
CO4	Apply Pig and Hive concepts for Data Processing. {Evaluate level, KL5}				
CO5	Analyze the Data Analytics on Smart Grid. {Analyze level, KL4}				

Learning Resources

Text books:

- 1. Jiawei Han and Micheline Kamber, Data Mining Concepts & Techniques, 3 ed, Elsevier Publishers.
- 2. Dirk deRoos, Chris Eaton, George Lapis, Paul Zikopoulos, Tom Deutsch, "Understanding Big Data Analytics for Enterprise Class Hadoop and StreamingData", 1st Edition, TMH,2012.
- 3. TomWhite, Hadoop, "TheDefinitiveGuide", 3rdEdition, O'Reilly Publications, 2012.
- 4. Smart Grid: Fundamentals of Design and Analysis, 1st Edition, Wiley- IEEE Press.
- 5. Carol L. Stimmel, Big Data Analytics Strategies for the Smart Grid, CRC Press. 2015.
- 6. Daki, H., El Hannani, A., Aqqal, A. et al. Big Data management in smart grid: concepts, requirements and implementation. J Big Data 4, 13 (2017). https://doi.org/10.1186/s40537-017-0070-y.

Reference books:

- 1. Michael Berthold, DavidJ. Hand, "Intelligent Data Analysis", Springer, 2007.
- 2. David Loshin, "BigDataAnalytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, NoSQL, and Graph", Morgan Kaufmann Publishers, 2013.
- 3. Hadoop in Practice by AlexHolmes, MANNING.
- 4. Hadoop in Action by ChuckLam, MANNING.

e- Resources & other digital material

- 1. https://onlinecourses.swayam2.ac.in/arp19_ap60/preview
- 2. Big Data Use cases for Beginners | Real Life Case Studies | Success Stories

- https://www.youtube.com/watch?v=HHR0-iJp2sM
- 3. Alexey Grishchenko, Hadoop vs MPP, https://0x0fff.com/hadoopvs-mpp/
- 4. Random notes on bigdata- SlideShare: www.slideshare.net/yiranpang/random-notes-on-big-data-26439474
- 5. https://nptel.ac.in/courses/106/104/106104189/
- $6.\ \ Prof.\ Nandansudharsanam\ and\ Prof.\ B. Ravindran\ ,\ IIT\ Madras,\ Introduction\ to\ Data\ Analytics\ http://nptel.ac.in/courses/110106064/23$

Micro-Syllabus

Unit – 1: Data Mining Concepts:

Data Mining, KDD Process, Kinds of Patterns Can Be Mined, Applications of DM.

Data pre-processing:

Data Cleaning - Missing Values, Noisy Data, Data Cleaning as a Process;

Data Integration - Entity Identification Problem, Redundancy and Correlation Analysis, Tuple Duplication, Data Value Conflict Detection and Resolution; Data Reduction;

Data Transformation and Data Discretization, Overview of Data Mining Techniques.

Introduction to Big Data:

Big Data-definition, Characteristics of Big Data (Volume, Variety, Velocity), Data in the Warehouse and Data in Hadoop, Why is Big Data Important? Patterns for Big Data Development, Examples of Big Data Analytics.

Unit No	Module	Micro content				
		Data Mining, KDD Process, Kinds of Patterns Can Be Mined				
		Applications of data mining, Data pre-processing				
		Data Cleaning - Missing Values, Noisy Data				
		Data Cleaning as a Process				
		Data Integration - Entity Identification Problem,				
1a. Data Mining	Data Mining	Redundancy and Correlation Analysis				
Concepts	Concepts	Tuple Duplication				
		Data Value Conflict Detection and Resolution				
		Data Reduction				
		Data Transformation				
		Data Discretization				
		Overview of Data Mining Techniques				
		Big Data-definition, Characteristics of Big Data (Volume, Variety, Velocity)				
1b. Introduction to	Introduction to	Data in the Warehouse and Data in Hadoop				
Big Data	Big Data	Why is Big Data Important? Patterns for Big Data Development				
		Examples of Big Data Analytics				

Unit-2: Introduction to Hadoop:

Working with Big Data: Google File System, A Brief History of Hadoop, Apache Hadoop and the Hadoop Ecosystem, Hadoop Releases, Hadoop Installation Modes.

Hadoop Distributed File System:

HDFS, Building Blocks of Hadoop (Namenode, Datanode, Secondary Namenode, JobTracker, TaskTracker), Introducing and Configuring Hadoop cluster (Local, Pseudo-distributed mode, Fully Distributed mode), Configuring XML files.

Unit No	Module	Micro content					
		Data, Data Storage and Analysis					
	Introduction to Hadoop	Google File System					
2a. Introduction to		A Brief History of Hadoop					
Hadoop		Apache Hadoop and the Hadoop Ecosystem					
r		Hadoop Releases					
		Hadoop Installation Modes					
		The Design of HDFS, HDFS Concepts					
2h Hadaan	Hadoop Distributed File System	Building Blocks, Namenodes and Datanodes					
2b. Hadoop Distributed File		Basic Filesystem Operations					
		Introducing and Configuring Hadoop cluster – Local Mode,					
System		Pseudo-distributed mode, Fully Distributed mode					
		Configuring XML Files					

Unit-3: **Map Reduce**:

Introduction, How MapReduce works? MR Execution Flow with an Example, Understanding Hadoop API for MapReduce Framework (Old and New), Components of MapReduce: Driver code, Mapper code, Reducer code, RecordReader, Combiner, Partitioner; MR Program for Word Count.

Unit No	Module	Micro content					
		Introduction to Map Reduce					
		How MapReduce works?					
		MR Execution Flow with an Example					
	Map Reduce	Understanding Hadoop API for MR Framework (old)					
3. Map Reduce		Understanding Hadoop API for MR Framework (new)					
		Basic Concept of Map and Reduce					
		Driver Code					
		Mapper Code					
		Reducer Code					
		Record Reader, Combiner, Partitioner					
		Example basic level programs for Map Reduce concepts					
		implementation (Word Count)					

Unit-4: Pig:

Admiring the Pig Architecture, Installation and Running of Pig, Execution Types, Evaluating Local and Distributed Modes, Pig Latin Editors, Comparison with databases, Pig Latin Functions, Data Processing Operators, Checking out the Pig Script Interfaces, Scripting with Pig Latin, Running Pig Programs.

Hive

Installing Hive, An Example, Running Hive, Comparison with Traditional Databases, HiveQL, Tables, Querying Data.

Unit No	Module	Micro content				
		Admiring the Pig Architecture				
		Installation and Running of Pig, Execution Types				
4a. Pig	Pig	Evaluating Local and Distributed Modes, Pig Latin Editors				
		Comparison with databases, Pig Latin Functions				
		Data Processing Operators,				

		Checking out the Pig Script Interfaces
		Scripting with Pig Latin
		Running Pig Programs
		Installing Hive
		An Example, Running Hive
4b. Hive	Hive	Comparison with Traditional Databases
		HiveQL
		Tables, Querying Data

Unit-5: Big data analytics in Smart Grids:

Smart Grid: Architectural Designs, Smart Grid Communications And Measurement Technology, Performance Analysis Tools For Smart Grid Design.

Big Data for Smart Grid: Need of Data Analysis in Smart Grid, Building the Foundation for Data Analytics, Applying Analytical Models in the Utility, Big Data Integration, Frameworks, and Databases. **Big Data implementation in smart grid:** the case of customer data analytics

Dig Data implementation in Small grave the case of customer data analytics							
Unit No	Module	Micro content					
	Smart Grid	Architectural Designs					
5a. Smart Grid		Smart Grid Communications And Measurement Technology					
		Performance Analysis Tools For Smart Grid Design					
	Big Data for Smart Grid	Need of Data Analysis in Smart Grid					
		Building the Foundation for Data Analytics,					
5b. Big Data for		Applying Analytical Models in the Utility					
Smart Grid		Big Data Integration					
		Frameworks. Databases					
5c. Big Data	Big Data	The case of customer data analytics					
implementation	implementatio						
in smart grid	n in smart grid						

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Understand the concepts of Data mining and Big Data Analytics, Analyze Hadoop
	Architecture {Understand level, KL2} {Analyze level, KL4}
CO2	Master the concepts of Hadoop Distributed File System.{Apply level, KL3}
CO3	Acquire knowledge on Map Reduce Framework. { Evaluate level, KL5}
CO4	Apply Pig and Hive concepts for Data Processing. {Evaluate level, KL5}
CO5	Analyze the Data Analytics on Smart Grid. {Analyze level, KL4}

Learning Resources

Text books:

- 1. Jiawei Han and Micheline Kamber, Data Mining Concepts & Techniques, 3 ed, Elsevier Publishers.
- 2. Dirk deRoos, Chris Eaton, George Lapis, Paul Zikopoulos, Tom Deutsch, "Understanding Big Data Analytics for Enterprise Class Hadoop and StreamingData", 1st Edition, TMH,2012.
- 3. TomWhite, Hadoop, "TheDefinitiveGuide", 3rdEdition, O'Reilly Publications, 2012.
- 4. Smart Grid: Fundamentals of Design and Analysis, 1st Edition, Wiley- IEEE Press.
- 5. Carol L. Stimmel, Big Data Analytics Strategies for the Smart Grid, CRC Press. 2015.

6. Daki, H., El Hannani, A., Aqqal, A. et al. Big Data management in smart grid: concepts, requirements and implementation. J Big Data 4, 13 (2017). https://doi.org/10.1186/s40537-017-0070-y.

Reference books:

- 1. Michael Berthold, DavidJ. Hand, "Intelligent Data Analysis", Springer, 2007.
- 2. David Loshin, "BigDataAnalytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, NoSQL, and Graph", Morgan Kaufmann Publishers, 2013.
- 3. Hadoop in Practice by AlexHolmes, MANNING.
- 4. Hadoop in Action by ChuckLam, MANNING.

CO-PO Mapping

	P	PO	PO	РО	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO
	O	2	3	4	5	6	7	8	9	0	1	2	-1	-2
	1													
CO1	2			1	2									
CO2	1				2									
CO3	2				2									
CO4	2			1	3									
CO5	1				3									

L T P C 2 0 0 2

MACHINE LEARNING (Open Elective-III)

PRE-REQUISITES: 1) Basic Statistics, 2) Data Mining

Course objectives: The student should be able to

- 1. Recognize the characteristics of machine learning, binary classification
- 2. Solve classification problems using multiclass classification and concept learning
- 3. Apply Tree based and Rule based learning models to real world problems
- 4. Apply Linear models and Distance based classification and clustering algorithms
- 5. Analyze Bayesian classifiers and Understand the concept behind neural networks for learning non-linear functions

	Syllabus					
Unit No	Contents	Mapped CO				
	The ingredients of machine learning, Tasks: (08 hrs)					
	The problems that can be solved with machine learning, Looking for structure,					
	Evaluating performance on a task, Models: the output of machine learning:					
	Geometric models, Probabilistic models, Logical models, Grouping and grading,					
Ι	Features: the workhorses of machine learning, Two uses of features, Feature construction and transformation.	CO1				
	Binary classification and related tasks: (06 hrs) Classification, Assessing classification performance, Visualizing classification					
	performance, Class probability estimation, Assessing Class probability estimates					
	Beyond binary classification: (07 hrs)					
	Handling more than two classes, Multi class classification Multi class scores and					
	probabilities, Regression, Unsupervised and descriptive learning, Predictive and					
	descriptive clustering.					
II	Concept learning: (07 hrs)					
	The hypothesis space, Least general generalization, Internal disjunction, Paths	he				
	through the hypothesis space, Most general consistent hypotheses, Closed					
	concepts, Beyond conjunctive concepts					
	Tree models: (06 hrs)					
	Decision trees, Ranking and probability estimation trees, Tree learning as					
	variance reduction.	002				
III	Rule models: (06 hrs)	CO3				
	Learning ordered rule lists, Learning unordered rule sets, Descriptive rule					
	learning, First-order rule learning.					
	Linear models: (07 hrs)					
IV	The least-squares method, multivariate linear regression, regularized regression,	CO4				
	using least-squares regression for classification, Support vector machines, Soft					

	margin SVM.				
	Distance Based Models: (07 hrs)				
	Ways of measuring distance, Neighbours and exemplars, Nearest Neighbours				
	classification, Distance based clustering, k means algorithm, Clustering around				
	mediods, Silhouettes, Hierarchical Clustering.				
	Bayesian Learning: (06 hrs)				
	Introduction, Bayes Theorem, Bayes Optimal Classifier, Gibbs Algorithm, Naïve				
\mathbf{v}	Bayes Classifier, Learning to classify Text.	CO5			
·	Artificial Neural Networks: (06 hrs)	COS			
	Introduction, Neural network representation, appropriate problems for neural				
	network learning, Multilayer networks and the back propagation algorithm.				

Content Beyond the syllabus:

Features: Kinds of feature, Feature transformations, Feature construction and selection. Model ensembles: Bagging and random forests, Boosting.

Dimensionality Reduction: Principal Component Analysis (PCA), Implementation and demonstration.

	Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to						
CO1	Recognize the characteristics of machine learning, binary classification						
	{Understand level, KL2} {Analyze level, KL4}						
CO2	Solve classification problems using multiclass classification and concept learning						
	{Evaluate level, KL5}						
CO3	Apply Tree based and Rule based learning models to real world problems						
	{Apply level, KL3}						
CO4	Apply Linear models and Distance based classification and clustering algorithms						
	{Apply level, KL3}						
CO5	Analyze Bayesian classifiers and Understand the concept behind neural networks for						
	learning non-linear functions						
	{Understand level, KL2} {Analyze level, KL4}						

Learning Resources

Text books:

- 1. Machine Learning: The art and Science of algorithms that make sense of data, Peter Flach, Cambridge University Press, 2012.
- 2. Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education.
- 3. Chris Albon: Machine Learning with Python Cookbook, O'Reilly Media, Inc.2018.

Reference books:

- 1. Stephen Marsland, "Machine Learning An Algorithmic Perspective", Second Edition, Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014.
- 2. Ethem Alpaydın, Introduction to machine learning, second edition, MIT press.
- 3. T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning", Springer Series , 2nd edition.

e- Resources & other digital material

- 1. Kevin Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012, https://www.cs.ubc.ca/~murphyk/MLbook/pml-intro-5nov11.pdf
- 2. Professor S. Sarkar , IIT Kharagpur "Introduction to machine learning", https://www.youtube.com/playlist?list=PLYihddLFCgYuWNL55Wg8ALkm6u8U7gps
- 3. Professor Carl Gustaf Jansson, KTH, Video Course on Machine Learning https://nptel.ac.in/noc/individual_course.php?id=noc19-cs35
- 4. Tom Mitchell, "Machine Learning", http://www.cs.cmu.edu/~tom/10701_sp11/lectures.shtml

Micro-Syllabus

Unit – 1: The ingredients of machine learning, Tasks: (08 hrs)

The problems that can be solved with machine learning, Looking for structure, Evaluating performance on a task, **Models: the output of machine learning:** Geometric models, Probabilistic models, Logical models, Grouping and grading, **Features:** The workhorses of machine learning, Two uses of features, Feature construction and transformation.

Binary classification and related tasks: (06 hrs)

Classification, Assessing classification performance, Visualizing classification performance, Class probability estimation, Assessing Class probability estimates.

Unit No	Module	Micro content					
	The ingredients of machine learning,	The problems that can be solved with machine learning					
1a. The	Tasks	Looking for structure Evaluating performance on a task					
ingredients of	Models: the output	Geometric models, Probabilistic models					
machine	of machine	Logical models, Grouping and grading					
learning, Tasks	learning						
		The workhorses of machine learning					
	Features	Two uses of features					
		Feature construction and transformation					
11 D'		Classification					
1b. Binary	Binary	Assessing classification performance					
classification	classification and	Visualizing classification performance					
and related	related tasks	Class probability estimation					
tasks		Assessing Class probability estimates					

Unit-2: Beyond binary classification: (07 hrs)

Handling more than two classes, Multi class classification, Multi class scores and probabilities, Regression, Unsupervised and descriptive learning, Predictive and descriptive clustering.

Concept learning: (07 hrs)

The hypothesis space, Least general generalization, Internal disjunction, Paths through the hypothesis space, Most general consistent hypotheses, Closed concepts, Beyond conjunctive concepts.

Unit No	Module	Micro content		
2a. Beyond	Beyond binary	Handling more than two classes		
binary	classification	Multi class classification		
classification	Classification	Multi class scores and probabilities		

		Regression				
		Unsupervised and descriptive learning				
		Predictive and descriptive clustering				
		The hypothesis space				
		Least general generalization				
2h Canaant		Internal disjunction				
2b. Concept learning	Concept learning	Paths through the hypothesis space				
icai iiiig		Most general consistent hypotheses				
		Closed concepts				
		Beyond conjunctive concepts				

Unit-3: Tree models: (06 hrs)

Decision trees, Ranking and probability estimation trees, Tree learning as variance reduction.

Rule models: (06 hrs)

Learning ordered rule lists, Learning unordered rule sets, Descriptive rule learning, First-order rule learning.

Unit No Module		Micro content					
		Decision trees					
3a. Tree models	Tree models	Ranking and probability estimation trees					
		Tree learning as variance reduction					
		Learning ordered rule lists					
3b. Rule models	Rule models	Learning unordered rule sets					
50. Rule models	Rule illodels	Descriptive rule learning					
		First-order rule learning					

Unit-4: Linear models: (07 hrs)

The least-squares method, multivariate linear regression, regularized regression, using least-squares regression for classification, Support vector machines, Soft margin SVM.

Distance Based Models: (07 hrs)

Ways of measuring distance, Neighbours and exemplars, Nearest Neighbours classification, Distance based clustering, k means algorithm, Clustering around mediods, Silhouettes, Hierarchical Clustering.

Unit No	Module	Micro content					
		The least-squares method					
		multivariate linear regression					
4a. Linear	Linear models	regularized regression					
models	Linear models	using least-squares regression for classification					
		Support vector machines					
		Soft margin SVM					
		Ways of measuring distance					
		Neighbours and exemplars					
4b. Distance	Distance Based	Nearest Neighbours classification					
Based Models	Models	Distance based clustering					
Daseu Mouels	Models	k means algorithm					
		Clustering around mediods					
		Silhouettes					

Hierarchical Clustering

Unit-5: Bayesian Learning: (06 hrs)

Introduction, Bayes Theorem, Bayes Optimal Classifier, Gibbs Algorithm, Naïve Bayes Classifier, Learning to classify Text.

Artificial Neural Networks: (06 hrs)

Introduction, Neural network representation, appropriate problems for neural network learning, Multilayer networks and the back propagation algorithm.

Unit No	Module	Micro content					
		Introduction					
5a. Bayesian	Bayesian Learning	Bayes Theorem, Bayes Optimal Classifier					
Learning		Gibbs Algorithm					
		Naïve Bayes Classifier, Learning to classify Text					
		Introduction					
5b. Artificial	Artificial Neural	Neural network representation					
Neural	Networks	appropriate problems for neural network learning					
Networks	14CLWUI NS	Multilayer networks and the back propagation					
		algorithm					

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Recognize the characteristics of machine learning, binary classification
	{Understand level, KL2} {Analyze level, KL4}
CO2	Solve classification problems using multiclass classification and concept learning
	{Evaluate level, KL5}
CO3	Apply Tree based and Rule based learning models to real world problems
	{Apply level, KL3}
CO4	Apply Linear models and Distance based classification and clustering algorithms
	{Apply level, KL3}
CO5	Analyze Bayesian classifiers and Understand the concept behind neural networks for
	learning non-linear functions
	{Understand level, KL2} {Analyze level, KL4}

Learning Resources

Text books:

- 1. Machine Learning: The art and Science of algorithms that make sense of data, Peter Flach, Cambridge University Press, 2012.
- 2. Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education.
- 3. Chris Albon: Machine Learning with Python Cookbook, O'Reilly Media, Inc.2018.

Reference books:

- 1. Stephen Marsland, "Machine Learning An Algorithmic Perspective", Second Edition, Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014.
- 2. Ethem Alpaydın, Introduction to machine learning, second edition, MIT press.
- 3. T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning", Springer Series , 2nd edition.

e- Resources & other digital material

- 1. Kevin Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012, https://www.cs.ubc.ca/~murphyk/MLbook/pml-intro-5nov11.pdf
- 2. Professor S. Sarkar , IIT Kharagpur "Introduction to machine learning", https://www.youtube.com/playlist?list=PLYihddLFCgYuWNL55Wg8ALkm6u8U7gps
- 3. Professor Carl Gustaf Jansson, KTH, Video Course on Machine Learning https://nptel.ac.in/noc/individual_course.php?id=noc19-cs35
- 4. Tom Mitchell, "Machine Learning", http://www.cs.cmu.edu/~tom/10701_sp11/lectures.shtml

CO-PO mapping

	P	PO	PO1	PO1	PO1	PSO	PSO							
	O	2	3	4	5	6	7	8	9	0	1	2	-1	-2
	1													
CO1	1	1	1	1										
CO2	2	1	2	2										
CO3	2	1	2	2										
CO4	2	1	2	2										
CO5	2	1	2	2										

L T P C 2 0 0 2

DIGITAL SIGNAL PROCESSING (Open Elective-III)

PRE-REQUISITES: 1) Signals & Systems

- 2) Mathematics,
- 3) Concept of Communications

Course objectives: The student should be able to

- 1 Analyze the Discrete Time Signals and Systems
- 2 Know the importance of FFT algorithm for computation of Discrete Fourier Transform
- 3 Learn the FIR and IIR Filter design procedures
- 4 Able to realize the digital filters with different structures
- 5 Know the need of Multirate Processing & Learn the concepts of DSP Processors

	Syllabus					
Unit No	Contents	Mapped CO				
I	Introduction to Discrete Time Signals & Systems. (12 Hrs.) Introduction to Digital Signal Processing, Discrete time Signals, Signal Processing, Discrete time Systems, Linear Shift Invariant Systems, Condition for Stability. Linear Constant Coefficient Difference Equations, Discrete Time Fourier Transformation and its Properties, Linear Convolution, Review of Z-Transforms –Solutions of Difference Equations using Z-Transforms, Stability Criteria in Z-Transform	CO1				
II	DFT & FFT DFS, Properties of DFS, DFT, Properties of DFT, DFT as Linear Transformation, Circular Convolution, Sectional Convolution-Overlap Add and Overlap Save Methods, Linear Convolution using Circular Convolution. Introduction to FFT, Efficient Computation of DFT, Radix-2 Algorithms-Decimation in Time and Decimation in Frequency Algorithms, Inverse DFT using FFT.					
III	Design And Realization of IIR filters Introduction to Digital Filters, Analog Filter Approximations-Butterworth &Chebyshev, Digital IIR Filters Design from Analog filters, Analog and Digital frequency transformations. Basic structures of IIR systems, Transposed forms	CO3				
IV	Design And Realization of FIR filters (14 Hrs.) Introduction to FIR Filters, Characteristics of FIR Filters, Frequency Response, Design of FIR Filters- Fourier Series Method, Frequency Sampling method and Window Method. Basic structures of FIR systems, Lattice structures, Lattice- ladder structures.	CO4				
V	Multirate Digital Signal Processing & Introduction to DSP processors (12 Hrs.) Introduction, Down Sampling, Decimation, Spectrum of Down Sampling, Up	CO5				

Sampling, Interpolation, Spectrum of Up Sampling, Cascading Sample Rate Converters, Sampling Rate Conversion, Applications of Multirate DSP. (6 Hrs.) Introduction to DSP processors, Basic architecture of TMS320 6713 DSP processor, Applications of DSP processors - Detection of QRS complex of ECG signals, Generation and detection of DTMF signals, Speech compression using Linear Predictive Coding. (6 Hrs.)

Content Beyond the syllabus:

Discrete Cosine Transformation: Formulas for Discrete Cosine and Inverse Discrete Cosine Transformation, Properties and Applications.

Speech Processing Technologies: How to develop speech processing algorithms

Medical Applications of Digital Signal Processing.

	Course Outcomes				
Upon	successful completion of the course, the student will be able to				
CO1	Analyze the Discrete Time Signals and Systems & Apply the difference equations				
	concept in the analysis of Discrete time systems. {Apply level, KL1,3}				
CO2	Know the importance of FFT algorithm for computation of Discrete Fourier Transform				
	&Use the FFT algorithm for solving the DFT of a given signal {Apply level, KL1,2}				
CO3	Design a Digital filter (FIR&IIR) from the given specifications {Analyze level, KL6}				
CO4	Realize the digital filters. {Evaluate level, KL5}				
CO5	Compare different types of Multirate Processing and Understandthe concepts of DSP				
	Processors. {Apply level, KL1,4}				

Learning Resources

Text books:

- 1 Digital Signal Processing, Principles, Algorithms, and Applications: John G. Proakis, Dimitris
- 2 G.Manolakis, Pearson Education / PHI, 2007...
- 3 Discrete Time Signal Processing A.V.Oppenheim and R.W. Schaffer, PHI Private Limited.
- 4 Digital Signal Processors Architecture, Programming and Applications,, B.Venkataramani, M.Bhaskar, TATA McGraw Hill, 2002
- 5 Digital Signal Processing K Raja Rajeswari, I.K. International Publishing House

Reference books:

- 1 Digital Signal Processing: Andreas Antoniou, TATA McGraw Hill, 2006.
- 2 Digital Signal Processing: MH Hayes, Schaum's Outlines, TATA Mc-Graw Hill, 2007..
- 3 Digital Signal Processing Ramesh babu, Sci Tech publications
- 4 Digital Signal Processing Alan V. Oppenheim, Ronald W. Schafer, PHI Ed., 2006

Micro-Syllabus

Introduction to Discrete Time Signals & Systems.

Introduction to Digital Signal Processing, Discrete time Signals, Signal Processing, Discrete time Systems, Linear Shift Invariant Systems, Condition for Stability. Linear Constant Coefficient Difference Equations, Discrete Time Fourier Transformation and its Properties, Linear Convolution, Review of Z-Transforms –Solutions of Difference Equations using Z-

Transforms, Stability Criteria in Z-Transform.

Unit No	Module	Micro content				
		DSP Introduction , Difference between ASP & DSP,				
		Block diagram of DSP, Advantages, Drawbacks and				
		Applications				
		Basic discrete time signals , classification of DT				
	Signals, System	signals, Problems				
	and Processing	Time scaling time reversal, time shifting, addition				
		and multiplication etc				
1. Discrete Time		Classification of systems and problems related				
Signals and		Solutions of Difference Equations , natural response				
Systems		, forced response and total response				
Č		Fourier transform and its inverse, properties,				
		Frequency response				
		Matrix method, table method and graph method				
	Transformations	Review of Z-Transforms, relation between Z and				
		DTFT				
		Solutions using Z-Transform				
		Stability criteria, Poles and Zeroes				

DFT & FFT

DFS, Properties of DFS, DFT, Properties of DFT, DFT as Linear Transformation, Circular Convolution, Sectional Convolution-Overlap Add and Overlap Save Methods , Linear Convolution using Circular Convolution.

Introduction to FFT, Efficient Computation of DFT, Radix-2 Algorithms- Decimation in Time and Decimation in Frequency Algorithms, Inverse DFT using FFT.

Unit No	Module	Micro content			
	DFS	DFS and properties of DFS			
	DFT	Introduction, Properties, relation with Z, DTFT			
2- DET		DFT as Linear Transformation			
2a. DFT	Circular Convolution	Types , Problems			
		Overlap Add and Overlap Save method			
	Sectional Convolution	Linear convolution using circles and matrix method			
		Introduction, Diff. between DFT and FFT			
2b. FFT	Fast Fourier Transformation	Derivation of DIT and DIF, Problems			
	11 austormation	Inverse using Radix 2 DIT and DIF			

Design And Realization of IIR filters

Introduction to Digital Filters, Analog Filter Approximations-Butterworth & Chebyshev, Digital IIR Filters Design from Analog filters, Analog and Digital frequency transformations. Basic structures of IIR systems, Transposed forms

Unit No	Module	Micro content				
	Introduction	Comparison between analog and digital filters.				
	ind oduction	Frequency response characteristics				
		Butterworth filter, steps to find transfer function				
	Analog Filter	problems				
3a. IIR Design	Approximations	Chebyshev filter, steps to find transfer function,				
		problems				
		Mapping techniques, design examples of Impulse				
	Digital IIR Filters	Invariant Transformation Method				
	Design	Design examples of Bilinear Transformation				
		Method				
3b. IIR		Direct form I and II realizations , Transposed				
Realization	Types of Structures	forms				
Keanzation		Cascade and Parallel form realizations				

Design And Realization of FIR filters

Introduction to FIR Filters, Characteristics of FIR Filters, Frequency Response, Design of FIR Filters- Fourier Series Method , Frequency Sampling method and Window Method. Basic structures of FIR systems, Lattice structures, Lattice-ladder structures.

Unit No	Module	Micro content		
	Introduction and	Introduction to FIR Filters		
	Characteristics of FIR	Characteristics of FIR Filters, Comparison of IIR		
	Filters	& FIR filters		
		Symmetric & N Even,		
	Frequency Response	Symmetric & N Odd,		
4a. FIR Design	of FIR filters	Asymmetric& N Even,		
		Asymmetric& N Odd		
	Design of FIR Filters	Fourier Series Method		
		Window Method		
		Frequency Sampling method		
	Structures	Direct form, cascade form, Linear phase realizations		
4b. FIR		Lattice structure		
Realization		Lattice-Ladder structure		
		Comparison between DC and AC distribution systems.		

Unit-5:Multirate Digital Signal Processing & Introduction to DSP processors

Introduction, Down Sampling, Decimation, Spectrum of Down Sampling, Up Sampling, Interpolation, Spectrum of Up Sampling, Cascading Sample Rate Converters, Sampling Rate Conversion, Applications of Multirate DSP.

Introduction to DSP processors, Basic architecture of TMS320 6713 DSP processor, Applications of DSP processors - Detection of QRS complex of ECG signals, Generation and detection of DTMF signals, Speech compression using Linear Predictive Coding.

Unit No	Module	Micro content				
	Introduction	Multirate DSP Definition and examples				
	Decimation	Down sampling and Decimation				
	Decimation	Frequency Spectrum of Decimation				
	Internalation	Up Sampling and Interpolation				
5a.	Interpolation	Spectrum of Up Sampling				
Multirate Digital Signal Processing	Cascading Sample Rate Converters	Cascading procedure with examples				
Trocessing	Sampling Rate Conversion	Sampling rate conversion procedure with block diagrams				
	Applications of Multirate DSP	Advantages and Applications				
	Introduction to DSP	Comparison with general purpose				
	processors	microprocessors and advantages				
5b. DSP	Basic architecture of TMS320 6713 DSP processor	Basic architecture of TMS320 6713 DSP processor				
processors		Applications of DSP processors, Detection of				
	Applications of DSP	QRS complex of ECG signals, Generation and				
	processors	detection of DTMF signals, Speech compression using Linear Predictive Coding				

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Analyze the Discrete Time Signals and Systems & Apply the difference equations
	concept in the analysis of Discrete time systems. {Apply level, KL1,3}
CO2	Know the importance of FFT algorithm for computation of Discrete Fourier Transform
	&Use the FFT algorithm for solving the DFT of a given signal {Apply level, KL1,2}
CO3	Design a Digital filter (FIR&IIR) from the given specifications {Analyze level, KL6}
CO4	Realize the digital filters. {Evaluate level, KL5}
CO5	Compare different types of Multirate Processing and Understandthe concepts of DSP
	Processors. {Apply level, KL1,4}

Text	haa	70.
ICAL		n.,

- 1. Digital Signal Processing, Principles, Algorithms, and Applications: John G. Proakis, Dimitris
 - G.Manolakis, Pearson Education / PHI, 2007...
- 2. Discrete Time Signal Processing A.V.Oppenheim and R.W. Schaffer, PHI Private Limited.
- 3. Digital Signal Processors Architecture, Programming and Applications,, B.Venkataramani, M.Bhaskar, TATA McGraw Hill, 2002
- 4. Digital Signal Processing K Raja Rajeswari, I.K. International Publishing House

Reference books:

- 1. Digital Signal Processing: Andreas Antoniou, TATA McGraw Hill, 2006.
- 2. Digital Signal Processing: MH Hayes, Schaum's Outlines, TATA Mc-Graw Hill, 2007...
- 3. Digital Signal Processing Ramesh babu, Sci Tech publications
- 4. Digital Signal Processing Alan V. Oppenheim, Ronald W. Schafer, PHI Ed., 2006

CO-PO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-	PSO-
													1	2
CO1	3		2				2							
CO2	3		1				1						1	
CO3	3		2				1							
CO4	3		2				1							1
CO5	3		1				1							1

L T P C 3 0 0 3

RENEWABLE ENERGY SOURCES

(Professional Elective –II)

PRE-REQUISITES: 1) Basics of Solar Energy

Preamble: This course gives a flavor of renewable sources and systems to the students. It introduces solar energy its radiation, collection, storage and its applications. This covers generation, design, efficiency and characteristics of various renewable energy sources including solar, wind, hydro, Fuel cells and geothermal systems.

Course objectives: The main objectives are

- 1. To study the solar radiation data, extraterrestrial radiation. Radiation on earth's surface.
- 2. To study solar thermal collections.
- 3. To study solar photo voltaic systems.
- 4. To study wind energy conversion systems Betz coefficient systems tip speed ratio.
- 5. To study basic principle and working of hydro, tidal, fuel cell and geothermal systems.

	Syllabus	
Unit No	Contents	Mapped CO
	Solar Energy Systems and Solar Geometry	
	Solar Energy Systems:	
	Energy conservation principle – Energy scenario (world and India) – various forms of	
	renewable energy - Solar radiation: Outside earth's atmosphere - Earth surface -	
I	Analysis of solar radiation data.	CO1
	Solar Geometry:	
	Latitude angle-Zenith angle- Altitude angle- Declination angle-Solar azimuth angle-	
	Slop- Surface azimuth angle- angle of incidence- Solar Time-Hour angle- Sunrise,	
	Sunset and daylight– Radiation on tilted surfaces – Numerical problems.	
	Solar Thermal and Solar Photovoltaic Systems	
	Solar Thermal Systems	
	Introduction-Liquid flat plate collectors-Performance Analysis- Concentrating	
II	collectors & its types- Applications (Solar pond, Solar Water heater, Solar Cookers &	CO2
11	Solar still).	002
	Solar Photovoltaic Systems	
	Solar photovoltaic cell, module, array – Construction –Solar Cell I-V characteristics –	
	Equivalent circuit -Maximizing the performance of solar cell – Solar PV Systems.	
	PV System design and Wind Energy System	
	PV System design:	
	Balance of system components – PV System design: storage sizing – PV system	
III	sizing – Maximum power point techniques- Perturb and observe (P&O) technique.	CO3
	Wind Energy Syatem	
	Sources of wind energy - Power in Wind- Wind Energy Conversion System-Wind	
	Turbine-operating characteristics-Types of turbines- Power output of wind turbine-	

	Selection of generator— Maximum power point tracking.	
	Hydro and Tidal power systems	
	Hydro power systems:	
	Basic working principle - Conversion of Hydro Power-Classification of small	
IV	hydropower Plant-Operation of Micro Hydro Power Plant- Types of Water turbines.	CO4
1 V	Tidal power systems:	CO4
	Origin of Tides - Tidal Energy - Operation of Tidal plant - Tidal energy conversation	
	Schemes – Numerical problems.	
	Wave Energy: Power Associated to Wave – Wave Energy Conversion devices.	
	Fuel cells and geothermal systems	
	Fuel cell:	
	Basic Working Principle - Classification of fuel for fuel cells - Fuel cell voltage-	
\mathbf{V}	Efficiency – V-I characteristics-Application.	CO5
	Geothermal:	
	Resources- Geothermal based electric power generation - Classification - Dry steam -	
	Wet steam- Hot water Resources-Hot Dry Rock Resources.	

	Course Outcomes					
Upon s	successful completion of the course, the student will be able to					
CO1	Analyze solar radiation data, extraterrestrial radiation. radiation on earth's surface. {Apply					
	level, KL4}					
CO2	Design solar thermal collectors, solar thermal plants. {Evaluate level, KL5}					
CO3	Design solar photo voltaic systems and wind energy conversion systems. {Evaluate level,					
	KL5}					
CO4	Understand working of hydro, tidal and wave power plant operations. {Understand level,					
	KL2}					
CO5	Explain importance of fuel cell and geothermal system .{Explain level, KL3}					

Learning Resources

Text books:

- 1. "Solar Energy" Principles of thermal collections and storage, S. P. Sukhatme, and J.K. Nayak, TMH ,New Delhi, 3nd edition.
- 2. "Renewable Energy Resources" Johan Twidell and Tony Weir, Taylor and Fancies 2^{rd} edition, 2013.

Reference books:

- 1. "Renewable Energy" Edited by Godfrey, Boyle-Oxford University press 3rd edition, 2013.
- 2. "Renewable Energy Technologies/Ramesh and Kumar Narosa
- 3. "Renewable Energy Technologies" A Practical Guide For Beginners

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/112105051
- 2. https://www.tatapower.com/bussiness/renewable-energy.aspx
- 3. https://www.cleanlineenergy.com/technology/wind-and-solar
- 4. https://www.youtube.com/watch?=xokHLFE96h8
- 5. https://www.youtube.com/watch?v=GZKKWz_tX1c

Micro-Syllabus

Unit – 1: Solar Energy Systems and Solar Geometry

Solar Energy Systems:

Energy conservation principle – Energy scenario (world and India) – various forms of renewable energy - Solar radiation: Outside earth's atmosphere – Earth surface – Analysis of solar radiation data.

Solar Geometry:

Latitude angle-Zenith angle- Altitude angle- Declination angle-Solar azimuth angle- Slop- Surface azimuth angle- angle of incidence- Solar Time-Hour angle- Sunrise, Sunset and daylight— Radiation on tilted surfaces — Numerical problems.

Unit No	Module	Micro content
		Energy conversion principle
		Energy Scenario (world and India)
	Calar Enguery Crystams	Various forms of renewable energy
	Solar Energy Systems	Solar radiation on outside earth's atmosphere
		Solar radiation on Earth surface,
101 5		analysis of solar radiation data
1. Solar Energy		Latitude angle
Systems and Solar		Zenith angle and Altitude angle
Geometry		Declination angle
		Slop and Surface azimuth angle
	Solar Geometry	angle of incidence
		Solar Time-Hour angle
		Sunrise, Sunset and daylight
		Radiation on tilted surfaces
		Numerical problems.

Unit-2: Solar Thermal and Solar Photovoltaic Systems

Solar Thermal Systems

Introduction-Liquid flat plate collectors-Performance Analysis—Concentrating collectors & its types-Applications (Solar pond, Solar Water heater, Solar Cookers & Solar still).

Solar Photovoltaic Systems

Solar photovoltaic cell, module, array – Construction –Solar Cell I-V characteristics –Equivalent circuit -Maximizing the performance of solar cell – Solar PV Systems.

Unit No	Module	Micro content					
		Introduction to Liquid flat plate collectors					
	Solar Thermal Systems	Performance Analysis					
	Solai Thermai Systems	Concentrating collectors & its types					
2. Solar Thermal		Applications (Solar pond, Solar Water heater, Solar					
and Solar		Cookers & Solar still)					
Photovoltaic		Solar photovoltaic systems,					
Systems		Solar photovoltaic cell, module & Array					
Systems	Solar Photovoltaic	Construction of Solar photovoltaic systems					
	Systems	Solar Cell I-V characteristics					
		Equivalent circuit					
		Maximizing the performance of solar cell					
		Solar PV Systems					

Unit-3: PV System design and Wind Energy System

PV System design:

Balance of system components – PV System design: storage sizing – PV system sizing – Maximum power point techniques- Perturb and observe (P&O) technique.

Wind Energy System

Sources of wind energy - Power in Wind- Wind Energy Conversion System-Wind Turbine-operating characteristics-Types of turbines- Power output of wind turbine- Selection of generator- Maximum power point tracking.

Unit No	Module	Micro content
		Balance of system components
		PV System design:
	PV System design	storage sizing – PV system sizing
		Maximum power point techniques
		Perturb and observe (P&O) technique
		Sources of wind energy
3. PV System		Power in Wind
design and Wind		Wind Energy Conversion System
Energy System		Wind Turbine
	Wind Engrav Cyctom	Operating characteristics
	Wind Energy System	Types of turbines:
		Horizontal axis and vertical axis machines
		Power output of wind turbine
		Selection of generators (synchronous, induction)
		Maximum power point tracking

Unit-4: Hydro and Tidal power systems

Hydro power systems:

Basic working principle – Conversion of Hydro Power-Classification of small hydropower Plant-Operation of Micro Hydro Power Plant- Types of Water turbines.

Tidal power systems:

Origin of Tides - Tidal Energy - Operation of Tidal plant - Tidal energy conversation Schemes - Numerical problems.

Wave Energy: Power Associated to Wave – Wave Energy Conversion devices.

Unit No							
		Basic working principle					
		Conversion of Hydro Power					
	Hydro power systems	Classification of small hydropower Plant					
		Operation of Micro Hydro Power Plant					
4. Hydro And		Types of Water turbines					
Tidal Power Systems		Origin of Tides					
Systems	m	Tidal Energy					
	Tidal power systems	Operation of Tidal plant					
		Tidal energy conversation Schemes					
		Numerical problems.					

Wave Energy	Power Associated to Wave
wave Ellergy	Wave Energy Conversion devices

Unit 5: Fuel cells and geothermal systems

Fuel cell:

Basic Working Principle - Classification of fuel for fuel cells - Fuel cell voltage- Efficiency - V-I characteristics-Application.

Geothermal:

Resources- Geothermal based electric power generation - Classification - Dry steam - Wet steam- Hot water Resources-Hot Dry Rock Resources.

Unit No	Module Micro content			
		Basic Working Principle		
		Classification of fuel for fuel cells		
	Eval call	Fuel cell voltage		
	Fuel cell	Efficiency		
5 F 1 11 1		V-I characteristics		
5. Fuel cells and		Application		
geothermal		Resources		
systems		Geothermal based electric power generation		
	Coothamal	Dry steam		
	Geothermal	Wet steam		
		Hot water Resources		
		Hot Dry Rock Resources		

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Analyze solar radiation data, extraterrestrial radiation. radiation on earth's surface. {Apply
	level, KL4}
CO2	Design solar thermal collectors, solar thermal plants. {Evaluate level, KL5}
CO3	Design solar photo voltaic systems and wind energy conversion systems. {Evaluate level,
	KL5}
CO4	Understand working of hydro, tidal and wave power plant operations. {Understand level,
	KL2}
CO5	Explain importance of fuel cell and geothermal system .{Explain level, KL3}

Text books:

- 1. "Solar Energy" Principles of thermal collections and storage, S. P. Sukhatme, and J.K. Nayak, TMH New Delhi, 3nd edition.
- 2. "Renewable Energy Resources" Johan Twidell and Tony Weir, Taylor and Francis 2^{rd} edition, 2013.

Reference books:

- 1. "Renewable Energy" Edited by Godfrey, Boyle-Oxford University press 3rd edition, 2013.
- 2. "Renewable Energy Technologies/Ramesh and Kumar Narosa
- 3. "Renewable Energy Technologies" A Practical Guide For Beginners.

CO-PO mapping Table with Justification

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (High: 3, Medium: 2, Low: 1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO1	3													
CO2	3												1	
CO3	3	2												
CO4	3	3												1
CO5	3	1												1

L T P C 0 0 3 1.5

MICROPROCESSORS AND MICROCONTROLLERS LAB

Preamble: Microprocessors and Microcontrollers laboratory course helps the students to develop their knowledge on processor architecture and the programming skills. This laboratory course provides hands-on experience to interface I/O devices, perform stepper motor rotation and writing assembly level language programs etc. The skills acquired through the experiments help the students to dotheir projects and enhance their knowledge on the latest trends and technologies.

Course objectives:

The main objectives are

- 1. To perform arithmetic, logical, string and port operations using 8086 emulator software.
- 2. To implement timer and serial data operations using 8051 microcontroller.
- 3. To interface 8255 and 8279 using 8086Objective.

List of Experiments: Any 10 of the following experiments are to be conducted

1. ARITHMETIC OPERATIONS

- a. Multi byte addition and subtraction, multiplication and division
- b. ASCII addition and subtraction, multiplication and division.

2. LOGIC OPERATIONS

- a. Packed BCD to Unpacked BCD
- b. BCD to ASCII
- c. Find the number of elements in the array having "1" in their 5th position.

3. STRING OPERATIONS

- a. Change position of word in a given string
- b. Reverse the given string
- c. Insert a word into given string
- d. Remove a word from given string
- e. Find length of the string.

4. PORT OPERATIONS

- a. Read data from port 1 and increment it by 1 and transfer it to port 2.
- b. Transfer 1 to 10 continuously port 1.

5. TIMER IN DIFFERENT MODES USING 8051

- a. Produce 1khz square wave with 50% duty cycle using timer 0 in mode 0.
- b. Produce 1khz square wave with 50% duty cycle using timer 0 in mode 1
- c. Produce 1khz triangular wave with 50% duty cycle using timer 0 in mode 1

6. SERIAL DATA COMMUNICATION

- a. Receive data serially.
- b. Transfer "HELLO" serially at 9600 band, 8 bit data and 1 stop bit.
- 7. Addition & Subtraction using 8086 Kit
- 8. Interfacing 8279 Keyboard Display.
- 9. Interfacing 8255–PPI
- 10. Stepper motor control using 8253/8255

List of Additional Experiments: Any 2 of the following experiments are to be conducted

- 1. Interfacing of 8259- Programmable Interrupt Controller
- 2. Traffic light control using 8051 micro controller
- 3. A/D and D/A converter using 8255.

Software(s)/ Hardware(s) used: EMU8086, 8255, 8259 and 8279 interfacing boards.

Cours	ourse Outcomes								
Upon	Upon successful completion of the course, the student will be able to								
CO1	Understand and apply the fundamentals of assembly level programming of microprocessor. Knowledge level, KL1, KL3 }								
CO2	Design and implement 8051 microcontroller based systems {Knowledge level, KL1, KL2}								
CO3	Design interfacing circuits with 8086. {Knowledge level, KL1, KL2}								

CO-POs& PSOs Mapping:

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of													
	correlations (High: 3, Medium: 2, Low: 1)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO- PS										PSO-			
													1	2
CO1	3	1	1	1	1									
CO2	2	1	1	1	1									
CO3	2	1	1	1	2									

Note: Strength of correlations is High: 3, Medium: 2, Low: 1

III Year II Semester

L T P C 0 0 3 1.5

ELECTRICAL MEASUREMENTS &INSTRUMENTATION LAB

Pre-Requisites: 1) Basic Circuit Analysis

Course objectives:

- 1. To know various methods to calibrate the instruments
- 2. To know various methods for measurments of electrical parametes
- 3. To select the suitable instruments for measurements

List of Experiments: Any 10 of the following experiments are to be conducted

- 1. Calibration of Electrodynamometer wattmeter UPF by phontom loading
- 2. Calibration of Electrodynamometer wattmeter LPF by direcet loading
- 3. Calibration of 3-Ph two element Electrodynamometer wattmeter UPF by direct loading
- 4. Calibration of electrodynamometer type Power factor meter
- 5. Calibration of 1-Ph induction type energy meter by direct loading
- 6. Measurement of Inductance by Andersons bridge
- 7. Measurement of capacitance by Schering bridge
- 8. Measurement of voltage by DC Cromptons potentiometer
- 9. Measurement of 3-Ph reactive power using single phase wattmeter for balanced load
- 10. Measurement of strain using resistance strain gauge
- 11. Characteristics of LVDT.
- 12. Dielectric oil testing using H.T test kit.

List of Additional Experiments: Any 2 of the following experiments are to be conducted

- 1. Measurement of 1-phase power using 3-voltmeter and 3-ammeter method.
- 2. Estimation of iron losses from B-H curve using CRO.
- 3. Dielectric oil testing using H.T test kit.
- 4. Determination of transformer ration and phase angle error using current transformer.

Course Outcomes:

Upon successful completion of the course, the student will be able to

CO1	Calibrate various electrical measuring instruments {Analyzing level, KL4}
CO2	Measure various electrical parameters{Apply level, KL3}
CO3	Choose suitable instrument for given measurement {Evaluating level, KL5}

Text books:

- 1. Electrical & Electronic Measurement & Instruments by A.K.Sawhney, Dhanpat Rai & Co 17th edition 2000.
- 2. Electronic Instrumentation by H S Kalsi, 2nd Edition, McGraw-Hill Publishing, 2004.
- 3. Electrical Measurements and measuring Instruments by E.W. Golding and F.C. Widdis, 5th Edition, Wheeler Publishing, 1999.
- e- Resources & other digital material

1.

- 1. https://slaanut.html
- 2. http://vlabs.iitkgp.ernet.in/asnm/exp23/index.html
- 3. http://vlabs.iitkgp.ernet.in/asnm/exp21/index.html

CO-PO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-	PSO-
													1	2
CO1	3	3												
CO2	3	2												
CO3	3													

IV Year I Semester

L T P C 3 0 0 3

Management Science

Prerequisites: Basic Sciences and Humanities

Course Objective:

- 1. To familiarize with the process of management, principles, and basic concepts of Organization.
- 2. To understand the tools of operations and Materials Management.
- 3. To provide conceptual knowledge on functional management like Human resource management and Marketing management.
- 4. To impart knowledge on project management.
- 5. To provide basic insight into selected contemporary management practices and Strategic Management.

Course Outcomes:

After completion the Course, Student will be able to:

- **CO** 1: Apply management and motivation theories to renovate the practice of management.
- **CO 2:** Explain concepts of quality management and use process control charts, concepts and tools of quality engineering in the design of products and process controls.
- **CO 3:** Appraise the functional management challenges associated with high levels of change in the organizations.
- **CO 4:** Identify activities with their interdependency and use scheduling techniques of project management PERT/CPM.
- **CO 5:** Develop global vision and management skills both at strategic level and interpersonal level.

UNIT – I Introduction to Management:

12 Hrs

Concept –nature and importance of Management –Generic Functions of Management – Principles and Types of Management –Evolution of Management thought- Theories of Motivation – Decision making process-Designing organization structure- Principles of organization – Organizational typology.

UNIT - II Operations Management:

12 Hrs

Work study- Statistical Quality Control- Control charts (P-chart, R-chart, and C-chart) Simple problems- Material Management: Need for Inventory control- EOQ, ABC analysis (simple problems) and Types of ABC analysis (HML, SDE, VED, and FSN analysis), Justin- Time (JIT) system, Total Quality Management (TQM), Six sigma, Supply chain management.

UNIT – III Functional Management:

12 Hrs

Concept of HRM, HRD and ER (Employee Relations) - Functions of HR Manager-Compensation Management plans – Job Evaluation and Merit Rating - Marketing Management: Functions of Marketing – Marketing strategies based on product Life Cycle, Channels of distributions.

UNIT – IV Project Management:

12 Hrs

(PERT/CPM): Development of Network – Difference between PERT and CPM Identifying Critical Path- Probability- Project Crashing (Simple Problems).

UNIT - V Strategic Management:

12 Hrs

Vision, Mission, Goals, Strategy – Elements of Corporate Planning Process – Environmental Scanning – SWOT analysis- Steps in Strategy Formulation and Implementation, Generic Strategy Alternatives, Basic concepts of MIS, ERP, Capability Maturity Model(CMM) Levels, Balanced Score Card.

Text Books:

- 1. Management Science, Aryasri, Tata McGraw Hill, 2014.
- 2. Dr. P. Vijaya Kumar & Dr. N. Appa Rao, 'Introduction to *Management Science*' Cengage, Delhi, 2012.
- 3. G Srinivasa Rao: 'Management Science', The Hi-Tech Publishers, 2004.

Reference Books:

- 1. Principles of Marketing: A South Asian Perspective, Kotler Philip, Gary Armstrong, Prafulla Y. Agnihotri, and Eshan ul Haque, 17th Edition, Pearson Education/ Prentice Hall of India, 2018.
- 2. Human Resource Management: Gary Dessler, 14th Edition, pearson 2015.
- 3. Production and Operations Management: S N Chary, TMH, 2019, 6e.
- 4. Project Planning and Control with PERT and CPM: Dr. B. C. Punmia, K. K Khandelwal, Laxmi Publication, 2017, 4th Edition.
- 5. Strategic Management: John A Pearce, Richard B Robinson, TMH 12th Edition, 2017.

Web links:

- 4. www.managementstudyguide.com
- **5.** www.tutorialspoint.com
- **6.** <u>www.lecturenotes.in</u>

Micro Syllabus for Management Science

UNIT – I Introduction to Management:

Concept –nature and importance of Management –Generic Functions of Management – Principles and Types of Management -Evolution of Management thought- Theories of Motivation – Decision making process-Designing organization structure- Principles of organization – Organizational typology.

Unit	Module	Micro Content				
		What is Management				
	Todaya dayadi a m	Process of Management				
	Introduction	Nature and Characteristics of Management				
		Importance of Management				
		Five functions of Management				
	Generic Functions of	Planning, Organizing, staffing, Directing, Controlling				
Unit	Management	Principles of Management				
I		Types of Management				
1	Evolution of Management thought	Management awakening period				
		2. Scientific management period				
		3. The human relations period (also called behavioural science				
		period)				
		4. Modern management period				
	Theories of Motivation	What is Motivation				
	Theories of Motivation	Importance of Motivation				

	Nature of Motivation
	Types of Motivation
	 Maslow's hierarchy of needs
	2. Herzberg's Two factor Theory
	3. Mc Gregor's Theory X and Theory Y
	4. Vroom's Theory of Expectancy
Decision making	What is Decision making
process	Steps in Decision Making Process
	What is Organization
organization structure	Features of Organization
organization structure	What is Organization Chart
	Principles of Organization
	1. Line organisation
	2. Functional organisation
	3. Line and staff organisation
	4. Committee organisation
Organizational typology	5. Matrix organisation
Organizational typology	6. Virtual organisation
	7. Cellular organisation
	8. Team structure
	9. Boundary less organisation
	10. Inverted pyramid structure

UNIT - II Operations Management:

Work study- Statistical Quality Control- Control charts (P-chart, R-chart, and C-chart) Simple problems- Material Management: Need for Inventory control- EOQ, ABC analysis (simple problems) and Types of ABC analysis (HML, SDE, VED, and FSN analysis), Justin- Time (JIT) system, Total Quality Management (TQM), Six sigma, Supply chain management.

Quanty	management (1 Qm), b	ix sigma, supply chain management.			
	Introduction	What is Operations Management			
		Nature and Importance of Operations Management			
		Scope of Operations Management			
		Need for Study			
		Objectives of work study			
	Work Study	Advantages and tools of work study			
		Importance of work study			
		Work study Procedure			
Unit	Statistical Quality Control	Quality Control, objectives of Quality control			
II		Steps in Quality control			
		Techniques of SQC			
		Product Control: Single Sampling, Double Sampling, Multiple			
		Sampling			
		Process Control: Control Charts, Advantages of control charts			
		Types of control charts			
		Variables: Mean (x̄-Chart), Range chart (R-Chart) with standard			
		deviation and without standard deviation simple problems			
		Attributes: P-Chart, nP-Chart, C-Chart, simple problems			

	Benefits of Statistical quality control
	Application of control charts
	What is Materials Management
Matarial Managament	Objectives of Material Management
Material Management	Functions of Materials Management
	Advantages of Materials Management
	What is Inventory, Classification of Inventories, what is inventory
Inventory Control	control, need for inventory control, objectives, functions,
	advantages, Techniques of inventory control
EOQ	What is EOQ, Simple Problems
ABC Analysis	Types of ABC Analysis, HML, SDE, VED, and FSN analysis
Contemporary	Justin- Time (JIT) system, Total Quality Management (TQM), Six
Management Practices	sigma, Supply chain management.

UNIT – III Functional Management:

Concept of HRM, HRD and ER (Employee Relations) - Functions of HR Manager- Wage payment plans – Job Evaluation and Merit Rating - Marketing Management: Functions of Marketing – Marketing strategies based on product Life Cycle, Channels of distributions.

	Concept of HRM, HRD	What is HRM, Need, Objectives of HRM					
	and PMIR	What is HRD					
	and Fiving	What is IR/ER, Difference among HRM, HRD and IR/ER					
		Managerial Functions					
		Operative Functions					
		Procurement: Job Analysis, HRP, Recruitment, Selection,					
		Placement, Induction, transfer, Promotion, Separation					
		Development: Performance appraisal, Training and development,					
	Functions HRM	Career Planning and development					
	Tunctions Tixivi	Compensation: Job Evaluation, Wage and Salary Administration,					
		Bonus and Incentives, Payroll					
		Integration: Motivation, Job satisfaction, Grievance Redressel,					
		collective bargaining, conflict management, employee participation,					
Unit		discipline					
III		Maintenance: Health and safety, HR audit, HRIS					
	Job Evaluation	What is Job evaluation, Types					
	Merit rating	What is Merit rating, Types, Difference Between Job evaluation and					
	Wicht faming	Merit Rating					
	Compensation	Types of Wage Payment Plans					
	Management Plans						
		What is Marketing Management, functions of Marketing					
	Marketing Management	Management					
		Product Life Cycle					
	Marketing strategies	Introduction, Growth, Maturity, Decline					
	based on product Life						
	Cycle						
	Channels of	Features, Types of channels of distribution					
	Distribution						

UNIT – IV Project Management:

(PERT/CPM): Development of Network – Difference between PERT and CPM Identifying Critical Path- Probability- Project Crashing (Simple Problems).

	Project Management	Introduction, what is Net work diagram: features, advantages,				
	3 &	limitations, objectives, applications of network analysis				
	Terminology in network	Activity, Event: Burst event - Merge event - dual event, dummy				
	analysis	activity,				
		Rules for drawing network diagram, rules for numbering				
Unit		What is a PERT, feature, advantages, steps in use of PERT,				
	PERT	Terminology used in PERT, EST, EFT, LST, LFT, Probability,				
IV		Slack and floats, problems.				
	CPM	What is CPM, Features, objectives, advantages, limitations, steps in				
	CFWI	use of CPM, difference between PERT & CPM, problems.				
	Duciant analysis for	Project cost analysis, direct cost, indirect cost, total cost,				
	Project analysis &	Project crashing, terms in crashing, cost slope, crashing procedure.				
	crashing	Simple Problems				

UNIT - V Strategic Management:

Vision, Mission, Goals, Strategy – Elements of Corporate Planning Process – Environmental Scanning – SWOT analysis- Steps in Strategy Formulation and Implementation, Generic Strategy Alternatives, Basic concepts of MIS, ERP, Capability Maturity Model(CMM) Levels, Balanced Score Card.

	Strategic Management	Introduction, features		
	Strategic Wallagement	significance, advantages		
		Features, objectives		
	Corporate Planning	Corporate planning procedure, elements, vision		
		Mission, goal, strategy		
Unit	Environmental scanning	Internal environment and external environment		
V	Strategy formulation	Steps		
	and implementation			
	Strategy alternatives	Types		
	SWOT analysis	Types		
	Contemporary	Basic concepts of MIS, ERP, Capability Maturity Model(CMM)		
	Management Practices	Levels, Balanced Score Card.		

Co- Po mapping

	ı	11 8	ı	1	ı			1		ĭ		ı
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1						1		3	3	3		2
CO 2						1		3	3	3	3	2
CO 3						1		3	3	3	3	2
CO 4						1		3	3	3	3	2
CO 5						1		3	3	3		2

IV Year I Semester

L T P C 3 0 0 3

Switchgear and Protection

PRE-REQUISITES: 1) Power Systems

Course objectives: The student should be able to

- 1. Study the basic aspects of protection system and operation of circuit breakers.
- 2. Study the classification, operation and application of different types of electromagnetic protective relays.
- 3. Learn about the various protection schemes generators and transformers.
- 4. Know the various protection schemes applied for transmission lines and neutral grounding
- 5. Study the reasons for Over voltages, protection schemes and latest trends in Protection schemes

	Syllabus	
Unit No	Contents	Mappe CO
I	Introduction to Power system protection(12 hrs) Power system protection: Faults in power system, characteristics of short circuit and open circuit faults and harmful effects, necessity of protection system, basic requirements, classification, protection system terminology. (02 hrs) Fuse: Introduction to fuse, fuse materials, characteristics of fuse and ratings; HRC fuse(02 hrs) Circuit Breakers: Elementary principles of arc phenomenon -Principle of operation of air, oil, vacuum and SF6 circuit breakers (Elementary treatment only) - Specification of circuit breakers, ratings and auto re-closures. (08 hrs)	CO1
II	Fundamentals of Protectiverelays(12 hrs) Protective Relays:Relay connection – Principle of operation Balanced beam type attracted armature relay - induction disc and induction cup relays—Torque equation – PSM, TSM - Relays classification—Instantaneous—DMT and IDMT types (06 hrs) Applications of relays:Over current and under voltage relays—Directional relays—Differential relays and percentage differential relays—Universal torque equation—Distance relays: Impedance—Reactance—Mho and offset mho relays—Characteristics of distance relays and comparison (06 hrs)	CO2
III	Protection of AC generators and Transformer(12 hrs) Protection of AC generators: Protection of generators against stator faults—Rotor faults and abnormal conditions—restricted earth fault and inter turn fault protection—Numerical example. (07 hrs) Protection of transformers: Percentage differential protection—Design of CT's ratio—Buchholz relay protection—Numerical examples. (05 hrs)	CO3
IV	Protection of Transmission lines and Neutral grounding(12 hrs) Protection of lines: Over current Protection schemes - Numerical examples – Pilot	CO4

	wire protection - Carrier current and three zone distance relay using impedance	
	relays-Protection of bus barsby using Differential protection.(08 hrs)	
	Neutral grounding: Grounded and ungrounded neutral systems–Effects of ungrounded	
	neutral on system performance– Methods of neutral	
	grounding: Solid–resistance–Reactance–Arcing grounds and grounding Practices (04	
	hrs)	
	Protection against Over voltages and Advancements in Protection systems (12 hrs)	
	Over Voltage Protection: Causes of over voltages in power systems – internal causes -	
	Protection against lightning over voltages: Rod gap and horn gap arrester-Valve	
	type and expulsion type lighting arresters and ground wires (elementary treatment	
V	only) – Selection of lightning arresters - Insulation coordination (10 hrs)	CO ₅
	Advancements in Protection systems: Advancements in protective relays: Static relays,	
	digital relays block diagram - Preliminaries of Synchro Phasor, Phasor measuring units,	
	Wide Area Monitoring	
	(02 hrs)	

Content Beyond the syllabus:

Advancements in Circuit breakers: MCB, MCCB, RCCB, ELCB. (Elementary treatment only)

Advancements in relays: Static, Microprocessor based relays, Numerical relays and applications.(Elementary treatment only)

Recent trends in Protection systems: AI applications in Power System Protection (Elementary treatment only).

	Course Outcomes			
Upon s	successful completion of the course, the student will be able to			
CO1	Acquire the knowledge of protection systems and operation of circuit breakers {Understand			
	level, KL2}			
CO2	Describe the operating principles of various types of relays. { Understand level, KL2}			
CO3	Select appropriate protection scheme for AC generator and transformer {Apply level, KL3}			
CO4	Choose appropriate protection scheme for transmission lines and know about different neutral			
	grounding techniques { Apply level, KL3}			
CO5	Understand the reasons behind over voltages and operation of lightning arrester along with			
	latest trends in protection system{ Understand level, KL2}			

Learning Resources

Text books:

- 7. A text book on Power System Engineering by M.L. Soni, P.V.Gupta, U.S. Bhatnagar and A. Chakrabarti, DhanpatRai& Co Pvt. Ltd.
- 8. Electrical power systems by C.L. Wadhwa, New Age International (P) Ltd, Publishers, 1998.

Reference books:

- 8. Fundamentals of Power System Protection by Paithankar Y.G and Bhide S.R. PHI, 2007
- 9. Switchgear and protection by Sunil S. Rao Khanna Publications.
- $10.\ Switch gear\ and\ Protection\ by\ J.B.Gupta,\ S.K.Kataria\ and\ sons\ . Publications,\ 2^{nd}\ edition,\ 2004$
- 11. Power System Protection and Switchgear by B.Ram and D.N.Viswakarma, Tata McGraw Hill, 2ndEdition, 2011
- 12. A. G. Phadke and J. S. Thorp, "Computer Relaying for Power Systems", John Wiley &Sons, 1988

e- Re	e- Resources & other digital material		
11.	https://nptel.ac.in/courses/108101039		
12.	https://nptel.ac.in/courses/108105167		
13.	https://nptel.ac.in/courses/108107167		
14.	https://nptel.ac.in/courses/117107148		
15.	https://www.youtube.com/playlist?list=PLBVJZMfxcrJn3p03lxsOP_ivHXzFLysYE		

Micro-Syllabus- Switchgear and Protection

Unit – 1: Introduction to Power system protection (12 hrs)

Power system protection: Faults in power system, characteristics of short circuit and open circuit faults and harmful effects, necessity of protection system, basic requirements, classification, protection system terminology. **(02 hrs)**

Fuse: Introduction to fuse, fuse materials, characteristics of fuse and ratings; HRC fuse (02 hrs)

Circuit Breakers: Elementary principles of arc phenomenon -Principle of operation of air, oil, vacuum and SF6 circuit breakers (Elementary treatment only) - Specification of circuit breakers, ratings and auto re-closures. **(08 hrs)**

Unit No	Module	Micro content
		Faults and abnormal conditions
		Classification and characteristics of faults: Short circuit
		fault and Open circuit fault
		Harmful effects of faults, necessity of protection system
	Power system	Basic requirements of relays: Selectivity, speed, sensitivity
	protection	reliability, simplicity and economy
	protection	Classification of relaying equipment
		protection system terminology: Definitions of Relay
		pickup level, reset level, operating time, reset time, primary
		and secondary relays, auxiliary relays, Reach, Under reach
		over reach, maximum torque angle
1		Fuse and its desirable characteristics, fuse elemen
Introduction to		materials
Power system	Fuse	Terms related to fuse: Current rating, fusing current, fusing
protection	ruse	factor, prospective current, cut off current, pre arcing time
P		arcing time, operating time, breaking capacity
		HRC fuse construction, operation and its applications
		Circuit Breaker operation
		Arc Phenomenon, principles of arc extinction
		Methods of arc extinction: High Resistance method and
		Current zero method
	Circuit Breakers	Arc voltage, Re-striking Voltage, Recovery Voltage
	on care breakers	RRRV and numerical problems
		Current Chopping and Resistance Switching
		Principle of operation of Air, Oil, Vacuum and SF6 gas
		circuit breaker and applications (elementary treatmen
		only)

Circuit	breaker	ratings:	Breaking	capacity,	Making
capacity	, Short tir	ne rating.			

Unit-2: Fundamentals of Protective relays (12 hrs)

Protective Relays: Relay connection – Principle of operation Balanced beam type attracted armature relay - induction disc and induction cup relays—Torque equation –PSM, TSM - Relays classification—Instantaneous—DMT and IDMT types (06 hrs)

Applications of relays:Over current and under voltage relays— Directional relays— Differential relays— Universal torque equation—Distance relays: Impedance— Reactance— Mho and offset mho relays— Characteristics of distance relays and comparison (06 hrs)

Unit No	Module	Micro content						
		Basic relays: Electromagnetic attraction and Electromagnetic induction						
	Protective relays	Electromagnetic attraction relays: Attracted armature type, solenoid type, balanced beam type						
		Electromagnetic induction relays: Shaded pole structure, Watt-hour meter structure and induction cup structure						
		Relay classification based on time of operation: Instantaneous OC relay, DMT OC relay, IDMT OC relay						
2		Electromagnetic induction Electromagnetic attraction relays: Attracted armature to solenoid type, balanced beam type Electromagnetic induction relays: Shaded pole structure Watt-hour meter structure and induction cup structure. Relay classification based on time of operator Instantaneous OC relay, DMT OC relay, IDMT OC relay. Pickup current, Current setting, Plug setting multiple (PSM) and Time setting multiplier (TSM) Functional relay types: Induction type OC relay directional and non-direction relay. Induction type directional power relay. Differential relays: Current differential and Volbalance differential relay. Distance relay. Universal torque equation of relay. Realization of impedance, reactance and mho relay for the solenoid structure.						
Fundamentals of Protective relays		Functional relay types: Induction type OC relay – directional and non-direction relay						
		Induction type directional power relay						
	Applications of							
	relays	Distance relay						
		Universal torque equation of relay						
		Realization of impedance, reactance and mho relay from						
		universal torque equation						
		Characteristics of impedance, reactance and mho relay on						
		R-X diagram and applications to various faults						

Unit-3:Protection of AC generators and Transformer (12 hrs)

Protection of AC generators: Protection of generators against stator faults—Rotor faults and abnormal conditions—restricted earth fault and inter turn fault protection—Numerical example. (07 hrs)

Protection of transformers: Percentage differential protection—Design of CT's ratio—Buchholz relay protection—Numerical examples(05 hrs)

Unit No	Module	Micro content
3. Protection of AC generators and Transformer	Protection of AC generators	Various types of faults occurs on the generator: Stator faults, Rotor faults and abnormal conditions Rotor earth fault protection Protection from unbalanced loading
		Overload protection
		Over voltage protection

	Failure of prime mover protection					
	Loss of excitation protection					
	Stator protection: by Differential protection, biased					
	differential protection					
	Inter turn fault protection					
	Restricted earth fault protection					
	Numerical problems on protected winding of stator					
	Transformer Differential protection					
	Combined leakage and over load protection					
Protection of	Harmonic restraint relay					
Transformer	Restricted earth fault protection					
11 ansionmer	Buchholz relay					
	Numerical problems on design of CT ratio for differential					
	protection scheme					

Unit-4:Protection of Transmission lines and Neutral grounding (12 hrs)

Protection of lines: Over current Protection schemes - Numerical examples — Pilot wire protection - Carrier current and three zone distance relay using impedance relays—Protection of bus barsby using Differential protection.(08 hrs)

Neutral grounding: Grounded and ungrounded neutral systems–Effects of ungrounded neutral on system performance– Methods of neutral grounding: Solid–resistance–Reactance–Arcing grounds and grounding Practices (**04 hrs**)

Unit No	Module	Micro content
4. Protection of Transmission	Protection of Transmission lines	Protection of bus bars: differential protection and fault bus protection Protection of feeders: Time graded protection, Current graded protection, pilot wire scheme Protection of parallel feeders 3-zone protection scheme for transmission lines Carrier current protection scheme for transmission lines
lines and Neutral grounding	Neutral grounding	Effectively grounded systems and ungrounded system Resonant grounding: Peterson coil Methods of neural grounding: solid grounding Resistance and reactance grounding-Peterson coil- Numerical problems Voltage transformer and zig zag transformer grounding

Unit-5: Protection against Over voltages and Advancements in Protection systems (12 hrs)

Over Voltage Protection: Causes of over voltages in power systems – internal causes - Protection
against lightning over voltages: Rod gap and horn gap arrester–Valve type and expulsion type
lighting arresters and ground wires (elementary treatment only) – Selection of lightning arresters

- Insulation coordination (10 hrs)

Advancements in Protection systems: Advancements in protective relays: Static relays, digital relays - Preliminaries of Synchro Phasor, Phasor measuring units, Wide Area Monitoring (02 hrs)

Unit No Modu	le Micro content
--------------	------------------

		Causes of over voltages in power system				
		Internal causes and external causes of over voltage				
	Over Voltage	Protection against lightning over voltages: ground wires				
	Protection	Lightning arresters: Rod gap, Horn gap arrester				
5	Tiotection	Expulsion type and valve type arrester				
5. Protection against		Selection of rating of lightning arrester				
Protection against Over voltages and		Insulation coordination				
Advancements in		Developments in relays: electromechanical, static,				
Protection		microprocessor based, Numerical relays				
systems		Static and digital relay: Block diagram approach				
systems	Advancements in	(Over current relay only)				
	Protection systems	Advantages and disadvantages above relays				
		Preliminaries of Synchro phasor,				
		Phasor Measuring Unit (PMU)				
		Wide Area Monitoring Systems				

CO-PO mapping Table

	C	O-1 (Ծ ուսբ	ping i	abic										
(Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations														
	(High: 3, Medium: 2, Low: 1)														
	P	O1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-1	PSO-2
CO	1 2	2													
CO	2	2													
CO	3 3	3	3	1											
CO	4	3	3	1											
CO	5	2		1									1	1	

L T P C 3 0 0 3

FACTS

PRE-REQUISITES: 1) Power Electronics and Power Systems

Course Objectives: The student should be able to

- 1. Study the basics of power flow control in transmission lines using FACTS controllers
- 2. Explain operation and control of voltage source and current source converter.
- 3. Understand Shunt compensation methods to improve stability and reduce power oscillations of a power system.
- 4. Know the methods of compensation using Series compensators.
- 5. Study the operation and control of Unified Power Flow Controller (UPFC) and Interline Power Flow Controller (IPFC).

	Syllabus	
Unit No	Contents	Mapped CO
I	Introduction to FACTS and High Power Electronic Devices(12 hrs) Introduction to FACTS (08 hrs) Power flow in an AC System – Loading capability limits – Dynamic stability considerations – Importance of controllable parameters – Basic types of FACTS controllers – Benefits from FACTS controllers. Introduction to High Power Electronic Devices(04 hrs) Requirements and characteristics of high power devices – Voltage and current rating – Losses and speed of switching – Parameter trade–off devices.	CO1
П	Voltage source and Current source converters (12 hrs) Voltage source converters: Concept of voltage source converter (VSC) – Single phase bridge converter – Square wave voltage harmonics for a single–phase bridge converter – Three–phase full wave bridge converter. (09 hrs) Current source converters– Concept of current source converter(CSC) -Comparison of current source converter with voltage source converter. (03 hrs)	CO2
III	Shunt Compensators (14 hrs) Shunt Compensators–1 (07 hrs) Objectives of shunt compensation – Mid–point voltage regulation for line segmentation – End of line voltage support to prevent voltage instability – improvement of transient stability – Power oscillation damping. Shunt Compensators–2 (07 hrs) Thyristor Switched Capacitor (TSC) – Thyristor Switched Reactor (TSC–TCR) - Static VAR compensator (SVC) and Static Compensator (STATCOM)- comparisons between SVC and STATCOM.	CO3
IV	Series Compensators (12 hrs) Static series compensators: Concept of series capacitive compensation – Improvement of transient stability – Power oscillation damping – Functional requirements. GTO thyristor controlled Series Capacitor (GSC) – Thyristor Switched Series Capacitor (TSSC), Thyristor Controlled Series Capacitor (TCSC) and Static Synchronous Series Compensator (SSSC)	CO4
V	Combined Controllers (10 hrs) Schematic and basic operating principles of Unified Power Flow Controller (UPFC) and Interline Power Flow Controller(IPFC), real time applications of these controllers on transmission lines.	CO5

Content Beyond the syllabus:

Shunt compensators: Operating point control and summary of compensation control.

Combined Controllers: Conventional transmission control capabilities, Mathematical modelling of UPFC and IPFC

	Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to						
CO1	CO1 Understand the power flow control in transmission lines using FACTS controllers. {Understand level, KL2}						
CO2	Explain the operation and control of voltage source and current source converters. .{Apply level, KL3}						
CO3	Analyze the compensation methods to improve stability and reduce power oscillations in the transmission lines.{Analyze level, KL4}						
CO4	Understand the methods of compensations using series compensators {Understand level, KL2}						
CO5	Explain operation and control of Unified Power Flow Controller (UPFC) and Interline Power						
	Flow Controller(IPFC).{Apply level, KL3}						

Learning Resources

Text books:

1. "Understanding FACTS" N.G.Hingorani and L.Guygi, IEEE Press.Indian Edition is available:—Standard Publications, 2001.

Reference books:

- 1 "Flexible AC transmission system (FACTS)" Edited by YONG HUE SONG and ALLAN T JOHNS, Institution of Electrical Engineers, London.
- 2 Flexible AC Transmission Systems: Modeling and Control by Zhang Rehtanz Bikash Pal, SPRINGER INDIA.
- 3 Facts Controllers In Power Transmission and Distribution by K.R.Padiyar, New Age International Pvt Ltd; Second edition (1 January 2016)

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/108/102/108102047/
- 2. https://www.coursera.org/learn/electric-power-systems
- 3. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00634216
- 4. https://www.electronicshub.org/flexible-ac-transmission-systemfacts/
- 5. https://www.electrical4u.com/facts-on-facts-theory-and-applications/
- 6. https://link.springer.com/book/10.1007%2F978-3-642-28241-6

Micro-Syllabus-FACTS

Unit-1: Introduction to FACTS and High Power Electronic Devices(12 hrs) Introduction to FACTS (08 hrs)

Power flow in an AC System – Loading capability limits – Dynamic stability considerations – Importance of controllable parameters – Basic types of FACTS controllers – Benefits from FACTS controllers.

Introduction to High Power Electronic Devices (04 hrs)

Requirements and characteristics of high power devices – Voltage and current rating – Losses and speed of switching – Parameter trade–off devices.

Unit No	Module	Micro content				
		Power flow in an AC System				
1.		Loading capability limits				
1a. Introduction to	Introduction to	Dynamic stability considerations				
FACTS	FACTS	Importance of controllable parameters Basic types of FACTS controllers and benefits of facts				
		controllers.				
1h Introduction		Requirements and characteristics of high power devices				
1b. Introduction	Introduction to High	Voltage and current rating				
to High Power Electronic	Power Electronic	Losses and speed of switching				
Devices	Devices	Parameter trade–off devices.				
Devices		Advantages and Disadvantages.				

Unit-2:Voltage source and Current source converters (12 hrs)

Voltage source converters: Concept of voltage source converter (VSC) – Single phase bridge converter – Square wave voltage harmonics for a single–phase bridge converter – Three–phase full wave bridge converter. **(09 hrs)**

Current source converters—Concept of Current source converter (CSC) -Comparison of current source converter with voltage source converter. (03 hrs)

Unit No	Module	Micro content
2a. Voltage source converters	Voltage source converters	Concept of voltage source converter (VSC)
		Single phase bridge converter
		Square wave voltage harmonics for a single-phase
		bridge converter
		Three–phase full wave bridge converter.
2b.	Current source converter	Concept of Current source converter (CSC)
Current source		Comparison of current source converter with voltage
converters		source converter.

Unit-3:Shunt Compensators (14 hrs)

Shunt Compensators-1 (07 hrs)

Objectives of shunt compensation – Mid–point voltage regulation for line segmentation – End of line voltage support to prevent voltage instability – improvement of transient stability – Power oscillation damping.

Shunt Compensators–2 (07hrs)

Thyristor Switched Capacitor (TSC) – Thyristor Switched Reactor (TSC–TCR) - Static VAR compensator (SVC) and Static Compensator (STATCOM) - Comparisons between SVC and STATCOM.

Unit No	Module	Micro content
3a. Shunt Compensators–1	Shunt Compensators-1	Objectives of shunt compensation
		Mid-point voltage regulation for line segmentation
		End of line voltage support to prevent voltage
		instability
		Improvement of transient stability
		Power oscillation damping.

		Thyristor Switched Capacitor (TSC)
3b.		Thyristor Switched Reactor
Shunt	Shunt Compensators-2	Static VAR compensator (SVC)
Compensators-2		Static Compensator(STATCOM)
		Comparisons between SVC and STATCOM.

Unit-4:Series Compensators (12 hrs)

Static series compensators: Concept of series capacitive compensation – Improvement of transient stability – Power oscillation damping – Functional requirements. GTO Thyristor controlled Series Capacitor (GSC) – Thyristor Switched Series Capacitor (TSSC), Thyristor Controlled Series Capacitor (TCSC) and Static Synchronous Series Compensator (SSSC)

Unit No	Module	Micro content
		Concept of series capacitive compensation
		Improvement of transient stability and Power
4.		oscillation damping.
Series	Series Compensators	GTO Thyristor controlled Series Capacitor (GSC).
Compensators		Thyristor Switched Series Capacitor (TSSC)
		Thyristor Controlled Series Capacitor (TCSC).
		Static Synchronous Series Compensator (SSSC)

Unit-5: Combined Controllers (10 hrs)

Schematic and basic operating principles of Unified Power Flow Controller (UPFC) and Interline Power Flow Controller(IPFC), real time applications of these controllers on transmission lines.

Unit No	Module	Micro content
5. Combined Controllers		Schematic and basic operating principle of Unified
		Power Flow Controller (UPFC)
	Combined Controllers	Schematic and basic operating principle of Interline
	Combined Controllers	Power Flow Controller (IPFC)
		Application of combined controllers on transmission
		lines

CO-PO mapping Table

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (**High: 3, Medium: 2, Low: 1**)

		\ 0	- ,		,	,								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-	PSO-
													1	2
CO1	3													
CO2	3												1	
CO3	2													
CO4	2	2												1
CO5	3													1

IV Year I Semester

L T P C 3 0 0 3

Cyber Security (Open Elective-IV)

PRE-REQUISITES: NIL

Course objectives: The student should be able

- 1. To familiarize various types of cyber-attacks and cyber-crimes.
- 2. To give an overview of the cyber laws and cyber forensic.
- 3. To study the defensive techniques against these attack in mobile and wireless devices.
- 4. To understand the security and privacy implications in organization.
- 5. To know the data privacy issues.

	Syllabus	
Unit No	Contents	Mapped CO
I	Introduction to Cyber Security: Basic Cyber Security Concepts, layers of security, Vulnerability, threat, Harmful acts, Internet Governance – Challenges and Constraints, Computer Criminals, CIA Triad, Assets and Threat, motive of attackers, active attacks, passive attacks, Software attacks, hardware attacks, Cyber Threats-Cyber Warfare, Cyber Crime, Cyber terrorism, Cyber Espionage, etc., Comprehensive Cyber Security Policy.	CO1
п	Cyberspace and the Law & Cyber Forensics: Introduction, Cyber Security Regulations, Roles of International Law. The INDIAN Cyberspace, National Cyber Security Policy. Introduction, Historical background of Cyber forensics, Digital Forensics Science, The Need for Computer Forensics, Cyber Forensics and Digital evidence, Forensics Analysis of Email, Digital Forensics Lifecycle, Forensics Investigation, Challenges in Computer Forensics.	CO2
III	Cybercrime: Mobile and Wireless Devices: Introduction, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication service Security, Attacks on Mobile/Cell Phones, Organizational Security Policies and Measures in Mobile Computing Era, Laptops.	СОЗ
IV	Cyber Security: Organizational Implications: Introduction, cost of cybercrimes and IPR issues, web threats for organizations, security and privacy implications, social media marketing: security risks and perils for organizations, social computing and the associated challenges for organizations.	CO4
V	Privacy Issues: Basic Data Privacy Concepts: Fundamental Concepts, Data Privacy Attacks, Data linking and profiling, privacy policies and their specifications, privacy policy languages, privacy in different domains- medical, financial, etc.	CO5

Content Beyond the syllabus:

Cyber security: Spectrum of attacks, Taxonomy of various attacks, IP spoofing, Methods of defense, Security Models, risk management.

Cybercrime and Cyber terrorism: Introduction, intellectual property in the cyberspace, the ethical

dimension of cybercrimes the psychology, mindset and skills of hackers and other cyber criminals.

	Course Outcomes				
Upon s	Upon successful completion of the course, the student will be able				
CO1	To understand cyber-attacks.				
CO2	To know the cyber laws and cyber forensic.				
CO3	To protect them self and ultimately the entire Internet community from such attacks.				
CO4	To understand the security and privacy implications in organization.				
CO5	To know the data privacy issues.				

Learning Resources

Text books:

- 1. Nina Godbole and Sunit Belpure, Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives, Wiley
- 2. B. B. Gupta, D. P. Agrawal, Haoxiang Wang, Computer and Cyber Security: Principles, Algorithm, Applications, and Perspectives, CRC Press, ISBN 9780815371335, 2018.

Reference books:

- 1. Cyber Security Essentials, James Graham, Richard Howard and Ryan Otson, CRC Press.
- 2. Introduction to Cyber Security, Chwan-Hwa(john) Wu,J. David Irwin, CRC Press T&F Group

e- Resources & other digital material

1. https://onlinecourses.swayam2.ac.in/nou19_cs08/preview

Micro-Syllabus- Cyber Security

Unit – 1: Introduction to Cyber Security: (13 hrs)Basic Cyber Security Concepts, layers of security, Vulnerability, threat, Harmful acts, Internet Governance – Challenges and Constraints, Computer Criminals, CIA Triad, Assets and Threat, motive of attackers, active attacks, passive attacks, Software attacks, hardware attacks, Cyber Threats-Cyber Warfare, Cyber Crime, Cyber terrorism, Cyber Espionage, etc., Comprehensive Cyber Security Policy.

Unit No	Module	Micro content
	Cyber Security	Basic Cyber Security Concepts
		layers of security
		Vulnerability, threat, Harmful acts, Internet Governance
1a.Cyber Security		 Challenges and Constraints
		CIA Triad, Assets and Threat, motive of attackers,
		active attacks, passive attacks
		Software attacks, hardware attacks
1b.Cyber Crime	Cyber Crime	Cyber Threats-Cyber Warfare
		Cyber Crime
		Cyber terrorism, Cyber Espionage, etc.,
		Comprehensive Cyber Security Policy.

Unit-2. Cyberspace and the Law & Cyber Forensics: : (11 hrs) Introduction, Cyber Security Regulations, Roles of International Law. The INDIAN Cyberspace, National Cyber Security Policy. Introduction, Historical background of Cyber forensics, Digital Forensics Science, The Need for Computer Forensics, Cyber Forensics and Digital evidence, Forensics Analysis of Email, Digital

Forensics Lifecycle	Forensics Lifecycle, Forensics Investigation, Challenges in Computer Forensics.				
Unit No	Module	Micro content			
2a Cruh angma aa		Cyber Security Regulations			
2a. Cyberspace and the Law	Cyberspace and the	Roles of International Law			
and the Law	Law	The INDIAN Cyberspace			
		National Cyber Security Policy			
	Cyber Forensics	Historical background of Cyber forensics			
		Digital Forensics Science			
		The Need for Computer Forensics			
2b. Cyber Forensics		Cyber Forensics and Digital evidence			
		Forensics Analysis of Email, Digital Forensics			
		Lifecycle,			
		Forensics Investigation, Challenges in Computer			
		Forensics.			

Unit-3:Cybercrime: Mobile and Wireless Devices: : (11 hrs) Introduction, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication service Security, Attacks on Mobile/Cell Phones, Organizational Security Policies and Measures in Mobile Computing Era, Laptops.

Unit No	Module	Micro content
		Proliferation of Mobile and Wireless Devices,
		Trends in Mobility, Credit card Frauds in Mobile and
		Wireless Computing Era
Unit-		Security Challenges Posed by Mobile Devices,
3:Cybercrime:	Cybercrime: Mobile and	, Registry Settings for Mobile Devices
Mobile and	Wireless Devices	Authentication service Security,
Wireless Devices		, Attacks on Mobile/Cell Phones,
		Attacks on Mobile/Cell Phones
		Organizational Security Policies and Measures in
		Mobile Computing Era, Laptops.

Unit-4: Cyber Security: Organizational Implications: : (10 hrs) Introduction, cost of cybercrimes and IPR issues, web threats for organizations, security and privacy implications, social media marketing: security risks and perils for organizations, social computing and the associated challenges or organizations

Unit No	Module	Micro content
Unit-4: Cyber Security: Organizational Implications		Introduction
	Organizational	cost of cybercrimes and IPR issues
	Implications	web threats for organizations
		security and privacy implications
	Social media marketing	social media marketing: security risks and perils for organizations

	social computing and the associated challenges for
	organizations

Unit-5: Privacy Issues: : (10 hrs)Basic Data Privacy Concepts: Fundamental Concepts, Data Privacy Attacks, Data linking and profiling, privacy policies and their specifications, privacy policy languages, privacy in different domains- medical, financial, etc.

Unit No	Module	Micro content
		Basic Data Privacy Concepts
		Fundamental Concepts
		Data Privacy Attacks
Unit-5: Privacy	Privacy Issues	Data linking and profiling
Issues	111vacy 155acs	privacy policies and their specifications
		privacy policy languages
		privacy in different domains- medical, financial, etc.

CO-PO mapping Table

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (**High: 3, Medium: 2, Low: 1**)

		` .	,			,								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-	PSO-
													1	2
CO1	2													
CO2	3					2							2	
CO3	2					1								
CO4	3							1					2	
CO5	2											2	2	

L T P C 3 0 0 3

Electric Drives (Professional Elective-III)

PRE-REQUISITES:

- 1) Power Electronics
- 2) Electric motors

Course objectives: The student should be able to

- 1. To learn the fundamentals of electric drive and different electric braking methods.
- 2. To analyze the operation of single phase converter controlled dc motors and four quadrant operation of dc motors using dual converters.
- 3. To understand the concept of speed control of induction motor by using AC voltage controllers and voltage source inverters.
- 4. To learn the principles of static rotor resistance control and various slip power recovery schemes.
- 5. To understand the speed control mechanism of synchronous motors

	Syllabus	
Unit No	Contents	Mapped CO
I	Fundamentals of Electric Drives Electric drive – Fundamental torque equation – Load torque components – Nature and classification of load torques – Steady state stability – Load equalization – Four quadrant operation of drive (hoist control) – Braking methods: Dynamic – Plugging – Regenerative methods.	CO1
П	Controlled Converter Fed DC Motor Drives 1-phase half and fully controlled converter fed separately and self-excited DC motor drive –Output voltage and current waveforms – Speed-torque expressions – Speed-torque characteristics — Principle of operation of dual converters and dual converter fed DC motor drives -Numerical problems.	CO2
III	DC-DC Converters Fed DC Motor Drives Single quadrant – Two quadrant and four quadrant DC-DC converter fed separately excited and self-excited DC motors – Continuous current operation – Output voltage and current waveforms – Speed–torque expressions – Speed–torque characteristics –Four quadrant operation – Closed loop operation (qualitative treatment only).	СО3
IV	Stator side control of 3-phase Induction motor Drive Stator voltage control using 3-phase AC voltage regulators – Waveforms –Speed torque characteristics – Variable Voltage Variable Frequency control of induction motor by PWM voltage source inverter – Closed loop v/f control of induction motor drives (qualitative treatment only). Rotor side control of 3-phase Induction motor Drive Static rotor resistance control – Slip power recovery schemes – Static Scherbius drive – Static Kramer drive – Performance and speed torque characteristics – Advantages – Applications.	CO4
V	Control of Synchronous Motor Drives Separate control & self-control of synchronous motors – Operation of self-controlled synchronous motors by VSI– Closed Loop control operation of synchronous motor	CO5

drives (qualitative treatment only).-Variable frequency control-Pulse width modulation.

	Course Outcomes					
Upon s	Upon successful completion of the course, the student will be able to					
CO1 Understand the fundamentals of electric drive and different electric braking methods.						
CO2	CO2 Analyze the operation of three phase converter fed dc motors and four quadrant operations of dc					
	motors using dual converters.					
CO3	CO3 Describe the converter control of dc motors in various quadrants of operation					
CO4	O4 Know the concept of speed control of induction motor by using AC voltage controllers and					
	Differentiate the stator side control and rotor side control of three phase induction motor.					
CO5	Explain the speed control mechanism of synchronous motors					

Learning Resources

Text books:

- 1. Fundamentals of Electric Drives by G K DubeyNarosa Publications
- 2. Power Semiconductor Drives, by S.B.Dewan, G.R.Slemon, A.Straughen, Wiley-India Edition.

Reference books:

- 1. Electric Motors and Drives Fundamentals, Types and Apllications, by Austin Hughes and Bill Drury, Newnes.
- 2. Thyristor Control of Electric drives VedamSubramanyam Tata McGraw Hill Publications.
- 3. Power Electronic Circuits, Devices and applications by M.H.Rashid, PHI
- 4. Power Electronics handbook by Muhammad H.Rashid, Elsevier.

e- Resources & other digital material

- 1. Four Quadrant Operation of DC Motor Motoring and Breaking Operation (tutorialspoint.com)
- 2. Chopper Control of DC Motors: Operation and Set-Up | Electrical Engineering (engineeringenotes.com)

Micro-Syllabus- Electric Drives

Unit – 1: Fundamentals of Electric Drives

Electric drive – Fundamental torque equation – Load torque components – Nature and classification of load torques – Steady state stability – Load equalization – Four quadrant operation of drive (hoist control) – Braking methods: Dynamic – Plugging – Regenerative methods.

Unit No	Module	Micro content					
		Introduction to Electric Drives					
		Fundamental torque equation					
		Load torque components					
	Electric drive	Nature and classification of load torques					
Fundamentals of		Steady state stability					
Electric Drives		Load equalization					
		Four quadrant operation of drive (hoist control)					
	Braking methods:	Dynamic method					
		Plugging method					
	Draking methods.	Regenerative method					
		Numerical Problems					

Unit-2: Controlled Converter Fed DC Motor Drives

1-phase half and fully controlled converter fed separately and self-excited DC motor drive —Output voltage and current waveforms — Speed-torque expressions — Speed-torque characteristics — Principle of operation of dual converters and dual converter fed DC motor drives -Numerical problems.

Unit No	Module	Micro content
		1-phase half controlled converter fed separately excited
		DC motor drive.
		1-phase fully controlled converter fed separately excited
		DC motor drive.
		1-phase half controlled converter fed self excited DC
Controlled		motor drive.
Converter Fed	Controlled	1-phase fully controlled converter fed self excited DC
DC Motor Drives	Converter Fed DC	motor drive.
DC Motor Drives	Motor Drives	principle of operation of dual converters
		Dual converter fed DC motor drives
		Numerical problems

Unit-3: DC-DC Converters Fed DC Motor Drives

Single quadrant – Two quadrant and four quadrant DC-DC converter fed separately excited and self-excited DC motors – Continuous current operation– Output voltage and current waveforms – Speed–torque expressions – Speed–torque characteristics –Four quadrant operation – Closed loop operation (qualitative treatment only).

Unit No	Module	Micro content
DC-DC Converters Fed DC Motor Drives	Module DC-DC Converters Fed DC Motor Drives	Single quadrantDC-DC converter fed separately excited DC motors. Single quadrant DC-DC converter fedself-excited DC motors Two quadrantDC-DC converter fed separately excited DC motors. Two quadrant DC-DC converter fedself-excited DC motors Four quadrantDC-DC converter fed separately excited DC motors. Four quadrantDC-DC converter fed separately excited DC motors. Four quadrant DC-DC converter fedself-excited DC motors
		Closed loop operation (qualitative treatment only).

Unit-4: Stator side control of 3-phase Induction motor Drive

Stator voltage control using 3-phase AC voltage regulators – Waveforms –Speed torquecharacteristics – Variable Voltage Variable Frequency control of induction motor by PWM voltage source inverter – Closed loop v/f control of induction motor drives(qualitative treatment only).

Rotor side control of 3-phase Induction motor Drive

Static rotor resistance control – Slip power recovery schemes – Static Scherbius drive – Static Kramer drive – Performance and speed torque characteristics – Advantages – Applications.

Unit No	Module	Micro content
Speed control of	Stator side control of 3-	Stator voltage control using 3-phase AC voltage
3-phase Induction	phase Induction motor	regulators

motor Drive	Drive	Variable Voltage Variable Frequency control of
		induction motor by PWM voltage source inverter
		Closed loop v/f control of induction motor
		drives(qualitative treatment only).
	Rotor side control of 3-	Static rotor resistance control
	phase Induction motor	Slip power recovery schemes – Static Scherbius drive
	Drive	Static Kramer drive

Unit-5: Control of Synchronous Motor Drives

Separate control & self-control of synchronous motors – Operation of self-controlledsynchronous motors by VSI– Closed Loop control operation of synchronous motor drives (qualitative treatment only).–Variable frequency control–Pulse width modulation.

Unit No	Module	Micro content
		Separate control of synchronous motors
		self-control of synchronous motors
Control of		Operation of self-controlled
Synchronous	Control of Synchronous	synchronous motors by VSI
Motor Drives	Motor Drives	Closed Loop control operation of synchronous motor
		drives
		Variable frequency control—Pulse width modulation.

CO-PO mapping Table

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of													
				co	rrelatio	ons (H i	igh: 3,	Mediu	ım: 2, 1	Low: 1)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-	PSO-
													1	2
CO1		2	3											
CO2		3	1											
CO3		2		2										
CO4	2		2											
CO5		2		3										

L T P C 3 0 0 3

Power System Reliability (Professional Elective-III)

PRE-REQUISITES:

- 1) Power Systems- I
- 2) Power Systems- II
- 3) Probability and Stochastic Methods

Course objectives: The student should be able to

- 1. Study various methods and measure for determining reliability of a system
- 2. Compute failure frequencies and duration for components failure.
- 3. Study models for reliability determination and identify probable failures in electrical generation system.
- 4. Compute outage and identify contingency in power transmission system
- 5. Identify the reliability models for radial distribution system

	Syllabus					
Unit	Contents	Mapped				
No		CO				
	Network Modelling and Reliability Analysis (12 hrs)					
I	Reliability concepts – exponential distributions – meantime to failure – series and	CO1				
	parallel system – MARKOV process – recursive technique - Bathtub curve (07 hrs)					
	Reliability Measures MTTF, MTTR, MTBF(05 hrs) Frequency & Duration Techniques(12 hrs)					
	Frequency and duration concept – Evaluation of frequency of encountering state, mean					
II	cycle time for one and two component repairable models (06 hrs)					
	evaluation of cumulative probability and cumulative frequency of encountering of					
	merged states(06 hrs)					
	Generation System Reliability Analysis(12 hrs)					
	Reliability model of a generation system: recursive relation for unit addition and					
III	removal – load modelling - Merging of generation load model (07 hrs)	CO3				
	evaluation of transition rates for merged state model - cumulative Probability,					
	cumulative frequency of failure evaluation – LOLP, LOLE(05 hrs)					
	Transmission System Reliability Analysis(12 hrs)					
IV	Deterministic contingency analysis-Determination of reliability indices like LOLP and	CO4				
	expected value of demand not served.					
	Distribution System Reliability Analysis(12 hrs)					
\mathbf{V}	Basic Concepts – Additional interruption indices - Evaluation of Basic and performance	CO5				
C	reliability indices of radial networks.					

Content Beyond the syllabus:

Reliability under preventive maintenance, Energy index of reliability, Applications of reliability indices in power system planning, Applications of reliability indices in power system interconnection

	Course Outcomes					
Upon successful completion of the course, the student will be able to						
CO1	Demonstrate basic reliability measures{Understand level, KL2}					
CO2	Apply failure frequency and duration for power system applications {Apply level, KL3}					
CO3	Analyze the failure probability of generation system {Analyze level, KL4}					
CO4	Analyze the outage and contingency of transmission system. {Analyze level, KL4}					
CO5	Analyze the reliability of radial distribution networks. {Analyze level, KL4}					

Learning Resources

Text books:

- 9. R. Billinton, R.N.Allan, "Reliability Evaluation of Power systems" second edition, Springer.
- 10. Charles E. Ebeling, "An Introduction to Reliability and Maintainability Engineering", TATA Mc Graw Hill Edition.

Reference books:

- 13. R. Billinton, R.N.Allan, "Reliability Evaluation of Engineering System", Plenum Press, New York.
- 14. Eodrenyi, J., "Reliability modelling in Electric Power System", John Wiley, (1980)

e- Resources & other digital material

- 16. https://ieeexplore.ieee.org/abstract/document/8614407
- 17. https://www.sciencedirect.com/science/article/abs/pii/095183209090007A
- 18. https://ekeeda.com/degree-courses/electrical-engineering/power-system-planning-and-reliability
- 19. https://www.intechopen.com/chapters/57936

Micro-Syllabus

Unit I: Network Modelling and Reliability Analysis (12 hrs)

Reliability concepts – exponential distributions – meantime to failure – series and parallel system – MARKOV process – recursive technique - Bathtub curve (07 hrs)

Reliability Measures MTTF, MTTR, MTBF(05 hrs)

Unit No Module		Micro content			
		Exponential distributions - Meantime to Failure			
1a.		Series and Parallel System			
Reliability	Reliability concepts	MARKOV process			
concepts		Recursive technique			
		Bathtub curve			
1h Doliobility	Reliability Measures	MTTF			
1b. Reliability Measures		MTTR			
Measures		MTBF			

Unit-2:Frequency & Duration Techniques (12 hrs)

Frequency and duration concept – Evaluation of frequency of encountering state, mean cycle time for one and two component repairable models (08 hrs)

evaluation of cumulative probability and cumulative frequency of encountering of merged states (04 hrs)

Unit No	Module	Micro content		
		Frequency and duration concept		
2a. Frequency &	Frequency & Duration	Evaluation of frequency of encountering state		
Duration		mean cycle time for one component repairable model		
		mean cycle time for two components repairable		
		model		
2b.		evaluation of cumulative probability of encountering		
Cumulative	Cumulative probability	of merged states		
probability and	and frequency	evaluation of cumulative frequency of encountering		
frequency determination		of merged states		
determination				

Unit-3: Generation System Reliability Analysis (12 hrs)

Reliability model of a generation system: recursive relation for unit addition and removal – load modelling - Merging of generation load model (07 hrs)

Evaluation of transition rates for merged state model – cumulative Probability, cumulative frequency of failure evaluation – LOLP, LOLE(05 hrs)

Unit No	Module	Micro content
3a.		recursive relation for unit addition
Reliability model	Reliability model of a	recursive relation for unit removal
of a generation	generation system	load modelling
system		Merging of generation load model
3b.		cumulative Probability
Evaluation of	Evaluation of transition	cumulative frequency of failure evaluation – LOLP
transition rates	rates for merged state	cumulative frequency of failure evaluation- LOLE
for merged state	model	
model		

Unit-IV. Transmission System Reliability Analysis (12 hrs)

Deterministic contingency analysis-Determination of reliability indices like LOLP and expected value of demand not served.

Unit No	Module	Micro content		
4a.		Deterministic contingency analysis		
Contingency	Contingency analysis	Load flow contingency		
analysis		Multiple Contingency problem		
4b.	4b.	LOLP		
Determination of	Determination of	Expected value of demand not served		
reliability indices	reliability indices	Improving reliability indices		

Unit-5: Distribution System Reliability Analysis (12 hrs)

Basic Concepts – Additional interruption indices(04 hrs)

Evaluation of Basic and performance reliability indices of radial networks (08 hrs)

Unit No	Module	Micro content				
5a.		Basic Concepts				
Interruption	Interruption indices Additional interruption indices					
indices						
5b.	Reliability Indices of	Evaluation of Basic reliability indices of radial				

Reliability Indices	Radial Networks	networks
of Radial Networks		Evaluation of performance reliability indices of radial
		networks.

CO-PO mapping Table

1	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of													
	correlations (High: 3, Medium: 2, Low: 1)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-	PSO-
ļ													1	2
CO1				3										
CO2	3													
CO3		3		2										
CO4		3		2										
CO5		3		2										

IV Year I Semester

L T P C 3 0 0 3

Programmable Logic Controller (Professional Elective-III)

Course objectives: The student should be able to

- 1. To have knowledge on PLC.
- 2. To acquire the knowledge on programming of PLC.
- 3. To understand different PLC registers and their description.
- 4. To have knowledge on data handling functions of PLC.
- 5. To know how to handle analog signal and converting of A/D in PLC.

	Syllabus					
Unit No	Contents	Mapped CO				
I	INTRODUCTION (5 hrs) PLC Basics: PLC systems, I/O modules and interfacing, CPU processor, programming equipment, programming formats, constraints of PLC ladder diagrams, devices connect modules.(05 hrs)					
II	PLC Programming(7 hrs) PLC Programming: Input instructions ,output operations procedures, programming using contacts and coils. Digital logic gates, programming in the Boolean algebra conversion example, ladder diagram and sequence listings, ladder diagram(07 hrs)					
Ш	Programmable Timers and Counters (6hrs) Timer Instructions, on delay time instruction, off delay timer instruction, counter instructions, Up counter, Down counter, Cascading counters, Incremental Counter applications, Combing counter and timer functions.					
IV	Program Control Instructions & Other Instructions (8hrs) Master control reset instruction, Jump instructions and sub routines, Immediately instructions. Data manipulation, Data transfer operation, Data compare instruction, Data programs, Numerical data I/O interfaces, Math instructions, Addition, Subtraction and division instruction, Sequential instructions, Sequence programs, Shift Registers.					
V	Applications (4hrs)					
	Course Outcomes					
Upor	successful completion of the course, the student will be able to					
CO1	CO1 Understand the PLC's and their I/O modules {Understand level, KL2}					
CO2	Explain Develop control algorithms to PLC using ladder logic{Apply level, KL3}					
CO3 Analyze Manage PLC registers for effective utilization in different applica {Analyze level, KL4}						

CO4 Evaluate Design PID controller with PLC{Evaluate level, KL5}

Learning Resources

Text books:

- 1. Programmable logic controller by Frank D.Petruzella-McGraw Hill-3rd Edition
- 2. Programmable logic controller –Principle and applications by John w.Web Reiss ,fifth edition, PHI.

Reference books:

- 1. Programmable logic controllers-Programming method and applications by and F.D Hackworth Jr. Pearson, 2004.
- 2. Introduction to Programmable logic controllers-Gary Dunning.
- 3. Programmable logic controllers-W.Bolton _Elsevier Publisher.

IV Year I Semester

L T P C 3 0 0 3

Reactive power compensation and Management (Professional Elective-III)

PRE-REQUISITES: 1) Power Systems-II

Course objectives: The student should be able to

- 1. Identify the necessity of reactive power compensation.
- 2. Describe load compensation.
- 3. Select various types of reactive power compensation in transmission systems
- 4. Contrast reactive power coordination system.
- 5. Characterize distribution side and utility side reactive power management.

	Syllabus	
Unit No	Contents	Mapped CO
I	Load Compensation(11 hrs) Load Compensation: Objectives and specifications – reactive power characteristics – inductive and capacitive approximate biasing – Load compensator as a voltage regulator – phase balancing and power factor correction of unsymmetrical loads- examples.	CO1
II	Steady – State Reactive Power Compensation in Transmission System(13 hrs) Uncompensated line – types of compensation – Passive shunt and series and dynamic shunt compensation –examples Transient state reactive power compensation in transmission systems: Characteristic time periods – passive shunt compensation – static compensations- series capacitor compensation – compensation using synchronous condensers – examples	CO2
III	Reactive Power Coordination(12 hrs) Objective – Mathematical modelling – Operation planning – transmission benefits – Basic concepts of quality of power supply – disturbances- steady –state variations – effects of under voltages – frequency –Harmonics, radio frequency and electromagnetic interferences.	СОЗ
IV	Demand Side Management(12 hrs) Load patterns – basic methods load shaping – power tariffs- KVAR based tariffs penalties for voltage flickers and Harmonic voltage levels Distribution side Reactive power Management: System losses –loss reduction methods – examples – Reactive power planning – objectives – Economics Planning capacitor placement – retrofitting of capacitor banks.	CO4
v	User Side Reactive Power Management(12 hrs) KVAR requirements for domestic appliances – Purpose of using capacitors – selection of capacitors – deciding factors – types of available capacitor, characteristics and Limitations Reactive power management in electric traction systems and are furnaces: Typical layout of traction systems – reactive power control requirements – distribution transformers- Electric arc furnaces – basic operations- furnaces transformer –filter requirements – remedial measures –power factor of an arc furnace	CO5
Cont	tent Beyond the syllabus:	1
	etive power control in Microgrid: Basic understanding of Microgrid, Reactive power of	control of

grid co	grid connected microgrid. (Elementary treatment only).				
	Course Outcomes				
Upon	successful completion of the course, the student will be able to				
CO1	Distinguish the importance of load compensation in symmetrical as well as un symmetrical				
	loads{Distinguish level, KL4}				
CO2	Observe various compensation methods in transmission lines. {Observe level, KL2}				
CO3	Construct model for reactive power coordination{Construct level, KL6}				
CO4	Understand Different load patterns, Different methods of load shaping, Various loss reduction				
	methods {Understand level, KL2}				
CO5	Distinguish demand side reactive power management & user side reactive power management.				
	{Distinguish level, KL4}				

Learning Resources

Text books:

- 1. Reactive power control in Electric power systems by T.J.E. Miller, John Wiley and sons, 1982.
- 2. Reactive power Management by D. M. Tagare, Tata McGraw Hill, 2004.

Reference books:

1. Wolfgang Hofmann, Jurgen Schlabbach, Wolfgang Just "Reactive Power Compensation: A Practical Guide, April, 2012, Wiely publication.

Micro-Syllabus

Unit – 1: Load Compensation (11 hrs)

Load Compensation: Objectives and specifications – reactive power characteristics – inductive and capacitive approximate biasing – Load compensator as a voltage regulator – phase balancing and power factor correction of unsymmetrical loads- examples.

Unit No	Module	Micro content		
1a.		Objectives of load compensation.		
LoadCompensatio	Load Compensation	reactive power characteristics.		
n		inductive and capacitive approximate biasing.		
1b. Load	Load componentor of a	Load compensator as a voltage regulator.		
compensator as a	Load compensator as a voltage regulator	phase balancing.		
voltage regulator		power factor correction		

Unit-2:Steady – State Reactive Power Compensation in Transmission System (13 hrs)

Uncompensated line – types of compensation – Passive shunt and series and dynamic shunt compensation –examples Transient state reactive power compensation in transmission systems: Characteristic time periods – passive shunt compensation – static compensations- series capacitor compensation – compensation using synchronous condensers – examples

Unit No	Module	Micro content						
2a. Steady – State	Steady – State Reactive	VAR Compensation.						
Reactive Power	Power Compensation in	Traditional methods of VAR compensation.						
Compensation in	Transmission System	Passive shunt and series and dynamic shunt						

Transmission		compensation.
System		Advanced compensators
		Advanced compensators
2b.		Characteristic time periods.
Transient state	Transient state reactive	series capacitor compensation
reactive power compensation in transmission system	power compensation in transmission system	compensation using synchronous condensers

Unit-3: Reactive Power Coordination (12 hrs)

Objective – Mathematical modelling – Operation planning – transmission benefits – Basic concepts of quality of power supply – disturbances- steady –state variations – effects of under voltages – frequency –Harmonics, radio frequency and electromagnetic interferences.

Unit No	Module	Micro content		
20		Objective of Reactive power coordination		
3a. Reactive Power	Reactive Power	Mathematical modelling		
Coordination	Coordination	Operation planning		
Coordination		transmission benefits		
3b.		Power quality terms		
Basic concepts of	Basic concepts of quality	Causes of low power quality		
quality of power	of power supply	Equipment to solve power quality problems		
supply		Under voltage, electromagnetic interferences		

Unit-4: Demand Side Management (12 hrs)

Load patterns – basic methods load shaping – power tariffs- KVAR based tariffs penalties for voltage flickers and Harmonic voltage levels Distribution side Reactive power Management: System losses – loss reduction methods – examples – Reactive power planning – objectives – Economics Planning capacitor placement – retrofitting of capacitor banks.

Unit No	Module	Micro content
4a. Load patterns	Load patterns	 basic methods load shaping ➤ power tariffs- KVAR based tariffs ➤ penalties for voltage flickers and Harmonic voltage levels
4b. Distribution side Reactive power Management	Distribution side Reactive power Management	System losses loss reduction methods with examples Reactive power planning Objectives Economics Planning of capacitor placement retrofitting of capacitor banks.

Unit-5: User Side Reactive Power Management (12 hrs)

KVAR requirements for domestic appliances – Purpose of using capacitors – selection of capacitors – deciding factors – types of available capacitor, characteristics and Limitations Reactive power management in electric traction systems and are furnaces: Typical layout of traction systems – reactive power control requirements – distribution transformers- Electric arc furnaces – basic operations-

Unit No	Module	Micro content			
5a.		Purpose of using capacitors			
KVAR	WWAD as and a few	selection of capacitors			
requirements for	KVAR requirements for	deciding factors in choosing capacitor			
lomestic	domestic appliances	types of available capacitor			
appliances		characteristics and Limitations			
		Typical layout of traction systems			
5).		reactive power control requirements			
5b.	Pagetiya novyar	distribution transformers			
Reactive power management in	Reactive power management in electric	Electric arc furnaces			
electric traction	traction systems and are	basic operations			
systems and are	furnaces	➤ furnaces transformer			
furnaces	Turnaces	filter requirements			
iui naces		remedial measures			
		power factor of an arc furnace			

CO-PO mapping Table

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of													
	correlations (High: 3, Medium: 2, Low: 1)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-	PSO-
													1	2
CO1	3													
CO2	3													
CO3	2													
CO4	2													
CO5	3													

L T P C 0 0 3 1.5

Power Systems Laboratory

PRE-REQUISITES:

- 1. Power generation, Transmission and Protection
- 2. Power System Analysis

Preamble:To impart the practical knowledge of functioning of various power system components and determination of various parameters and simulation of load flows, transient stability, LFC and Economic dispatch.

Course Objectives: The student should be able to

- 1. To control the speed of three phase induction motors.
- 2. To determine /predetermine the performance of three phase induction.
- 3. To determine /predetermine the performance of single-phase induction.
- 4. To improve the power factor of single-phase induction motor.
- 5. To predetermine the regulation of three–phase alternator by various methods, find Xd/Xq ratio of alternator and asses the performance of three–phase synchronous motor.

LIST OF EXPERIMENTS

Any Ten of the following experiments are to be conducted:

- 1. Sequence impedances of 3-phase transformer
- 2. Sequence impedances of 3-phase alternator by fault analysis
- 3. Calibration of Tong tester
- 4. ABCD parameters of transmission network
- 5. Load flow study using Gauss-Seidel method
- 6. Load flow study using Newton-Raphson method
- 7. Economic load dispatchwithout transmission losses
- 8. Economic load dispatchwith transmission losses
- 9. Load frequency control of single area system without controller
- 10. Load frequency control of single area system with controller
- 11. Load frequency control of two area system without controller
- 12. Load frequency control of two area system without controller

Course Outcomes: Upon successful completion of the course, the student will be able to

CO1	Able to understand affect of various faults in various power system components.
CO2	Students can execute energy management systems functions at load
CO3	Able to determine the parameters of various power system components
CO4	Able to understand the power flows and stability in power system.

Learning Resources

Textbooks:

- 1. Nagrath I J and Kothari D P, "Modern Power System analysis" Tata McGraw Hill
- 2. Wadhwa C L "Electrical Power Systems" New Age International
- 3. Badri Ram and Vishwakarma D N "Power System Protection and Switch Gear" Tata McGraw Hill. 4. Ned Mohan, First Course in Power Systems, Wiley.

Reference books:

- 1. 1.Power System by V. K. Mehta.
- 2. 2."Power systems and analysis" by Hadisaadat, Tata McGraw Hill

e- Resources & other digital material

- 1.https://nptel.ac.in/courses/108/105/108105017
- 2.https://nptel.ac.in/courses/103/102/108102146
- 3.www.nptelvideos.in/2012/11/electrical-power systems-i.html
- 4.<u>https://www.electrical4u.com/power</u> systems

CO-PO mapping Table with Justification:

	oo i o mapping rabie with destineation.													
Cont	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of													
	correlations (High: 3, Medium: 2, Low: 1)													
Mapping	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
C01	1	1	1	1	1	-	_	-	1	-	_	-	-	2
C02	1	2				-	_	-	1	-	_	-	-	2
C03	2	2	2	2	-	-	-	-	1	-	-	-	-	1
C04	2	2	2	2	-	-	-	-	1	-	-	-	-	1

Big Data Analytics Laboratory

PRE-REQUISITES: 1) Operating Systems: Linux commands, Windows 2) Programming Knowledge in JAVA

Preamble:

Big Data Analytics Lab provides the essential facilities to the students to augment their concepts about the fundamentals of Data structures implementation using java, Collections frame work, Set interface and various operations on Big Data analytics. This lab is mainly deals with the various Big data applications using various analytical tools like Pig and Hive. The lab covers the concepts of Basic file management commands in Hadoop environment, word count program using Map Reduce, pig Latin Scripts, operations on Tables using Hive.

Course Objectives: The student should be able to

- 6. To understand the implementation of various data structures using the Java.
- 7. To introduce the terminology, technology and its applications.
- 8. To determine concepts of analytics for business.
- 9. To apply analytics on structured data.

LIST OF EXPERIMENTS

Any Seven of the following experiments are to be conducted:

- 13. Implementation of Stack Data Structure using JAVA
 - a. Simple Stack implementation
 - b. Using Arrays
- 14. Implementation of Queue Data Structure using JAVA
- 15. Implementation of Linked List using JAVA
- 16. Implementation of Collection framework, Set interface in JAVA
- 17. Installation of HADOOP
 - a. CDH (Cloudera Distributed Hadoop) Installation & Configuration on Virtual Box
 - b. In LINUX Environment
- 18. File Management Tasks in HDFS
- 19. Implementation of word count programs using Map Reduce programming to process the stored data in HDFS.
- 20. Install & Run Pig then write pig Latin scripts to sort, group, join, project and filter your data.
- 21. Install & Run Hive then use Hive to create, alter and drop data bases, tables, views.

List of Additional Experiments: Any of the two experiments are to be conducted

4. Mining of Weather data using map Reduce concept by sensors. The dataset can be taken from National Climate Data Center (NCDC, http://www.ncdc.noaa.gov/).

Course Outcomes: Upon successful completion of the course, the student will be able to

	Course Outcomes
CO1	Applying Java concepts required for developing MapReduce programs. (Apply)
CO2	Able to understand the fundamental concepts of Big Data & Hadoop framework.
	(Understand and Apply)
CO3	Demonstrate the knowledge of big data analytics and implement different file
	management task in Hadoop. (Apply)
CO4	Analyze and perform different operations on data using Pig Latin scripts. (Understand,
	Apply and Analyze).
CO5	Illustrate and apply different operations on relations and databases using Hive.
	(Understand, Apply and Analyze).

Learning Resources

Text books:

- 1. Big Java 4th Edition, Cay Horstmann, Wiley John Wiley & Sons, INC.
- 2. Hadoop: the definitive guide by Tom white ,fourth edition O'reilly media 2015
- 3. Hadoop in Action by Chuck Lam, MANNING Publ.

Reference books:

- 1. Hadoop in Practice by Alex Holmes, MANNING Publ.
- 2. Hadoop MapReduce Cook Book, Srinath Perera, Thilina Gunarathne

e- Resources & other digital material

- 1. https://drive.google.com/drive/folders/0B8_ZAVB1cH_FOGh3VXltWVpPOFE?usp=sharing
- 2. https://freevideolectures.com/course/4233/nptel-big-data-computing/3
- 3. https://archive.nptel.ac.in/courses/106/104/106104189/

CO-PO mapping Table with Justification:

Cont	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of													
	correlations (High: 3, Medium: 2, Low: 1)													
Mapping	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
C01	2	2	-	1	-	-	-	-	-	-	-	1	-	-
C02	2	-	-	1	-	-	-	-	-	-	-	1	-	-
C03	2	_	1	1	-	_	-	-	-	-	-	1	-	2
C04	2	3	3	-	3	-	_	_	_	1	-	2	3	_
C05	2	3	3	-	3	-	-	-	-	1	-	2	3	-

UTILIZATION OF ELECTRICAL ENERGY (Professional Elective-IV)

Pre-Requisites: Electrical Circuit Analysis, Power Systems,

Preamble: The objective of the course is to provide the first detailed treatment of fundamental understanding and application of electrical energy in power systems. Beginning with the basic terms, concepts and power system components representations, the course will present power generation technologies and power delivery systems.

Course objectives:

The main objectives are

- 1. To describe the concepts of electricity applications in heating and welding procedures
- 2. To explain the terminology of illumination engineering and its applications.
- 3. To gain the knowledge about electric traction systems and its performance parameters.
- 4. To describe the analytical concepts of electric traction systems with reference to braking, power and energy calculations.
- 5. To teach the theory about different electrical appliances and electric vehicles.

Unit	Contents	Mapped					
No		CO					
	Electric Heating & Welding (14hrs)						
	Electric Heating (07 hrs)						
	Advantages and methods of electric heating-Resistance heating, induction heating						
I	and dielectric heating – Arc furnaces – Direct and indirect arc furnaces	CO1					
	Electric Welding (07 hrs)						
	Electric welding-Resistance and arc welding-Electric welding equipment-						
	Comparison between AC and DC Welding						
	Illumination(15 hrs)						
	Illumination fundamentals (05 hrs)						
	Introduction, terms used in illumination, laws of illumination, polar curves,						
II	photometry, integrating sphere, sources of light.	CO2					
	Illumination concepts (10 hrs)						
	Discharge lamps, MV and SV lamps, comparison between tungsten filament						
	lamps and fluorescent tubes, Basic principles of light control, Types and design of						
	lighting, LED lighting, Street and flood lighting.						
	Electric Traction-1(13 hrs)						
	Electric Traction Speed - Time Curves and Mechanics of Train Movement						
	(07 hrs)						
	Introduction, Systems of Traction, Systems of electric Traction, Speed-Time						
III	Curves for Train Movement, Mechanics of Train Movement, Train Resistance,	CO3					
	Adhesive Weight, Coefficient of Adhesion, Load equalization.						
	Motors for Electric traction(06 hrs)						
	Introduction, Series and Shunt Motors for Traction Services, Two Series Motors						
	are used to drive a Motor Car, AC Series Motor, Three Phase Induction Motor,						

	Temperature rise calculations, Calculation of Tractive Effort, Horse Power and	
	Specific Energy consumption for a given run.	
	Electric Traction-2(13 hrs)	
	Braking (06 hrs)	
	Introduction, Regenerative Braking of Three Phase Induction Motors, Braking of	
	Single Phase Series Motors, Mechanical braking, Magnetic Track Brake, Electro-	
IV	Mechanical Drum Brakes.	CO4
	Electric Traction Systems and Power Supply (07 hrs)	
	AC Electrification, Sub-Stations, Feeding and Distribution System for AC and DC	
	Traction systems, Electrolysis by Current through Earth, Negative Booster,	
	System of Current Collection, Trolley Wires.	
	Applications(13 hrs)	
	Domestic electrical appliances: Calculation of energy consumption and	
	efficiency of	
	i. Electric iron. ii. Electric toaster. iii. Electric water heater. iv. Microwave oven.	
	v. Fans (Ceiling and Table fan) vi. Washing Machine. vii. Grinder/ Mixer/ juicer.	
\mathbf{V}	viii. Vacuum Cleaner. ix. Flour Mill. x. Air conditioner, Concept of Star System	CO5
	for energy conservation.(07 hrs)	
	Electric Vehicles:(06 hrs)	
	Introduction, Configurations of Electric Vehicles, Performance of Electric	
	Vehicles, Tractive Effort in Normal Driving vehicles, Energy Consumption	
	calculations.	

Content Beyond the syllabus:(Not considered for evaluation)

Electric Elevator machines and their motors, Electrolytic processes, Electric circuits used in Refrigeration, Air Conditioning and Water coolers, LCD displays, Electromechanical processes.

Course Outcomes:

Upon successful completion of the course, the student will be able to

No	Description	POs, PSOs	KL
CO1	Describe about electric heating and welding procedures	PO1, PSO2	2
CO2	Articulate the terminology of illumination, Explain the working of electric lamps and design of lightning schemes	PO1, PSO2	2, 3
CO3	Discuss systems of electric traction, speed-time curves and mechanics of movement.	PO1, PSO2	2
CO4	Explain about braking methods used in traction systems and calculate different performance parameters of traction	PO1, PSO2	3
CO5	Examine different real time electrical appliances and applications in electric vehicles	PO1, PSO2	3

Text books:

- 1. "Utilization of Electrical Energy", V V L Rao, Universities Press, 1981.
- 2. "Art & Science of Utilization of Electrical Energy", H. Partab, 2nd edition, DhanpatRai& Sons, 2017.
- 3. "A Text book on Power System Engineering", M.L. Soni, P.V. Gupta, U.S. Bhatnagar and A. Chakrabarti, DhanpatRai Publishing Company (P) Limited, 2016.
- 4. "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals Theory,

and Design", MehrdadEhsani, YiminGao, Sebastien E Gay, Ali Emadi, 1st edition, CRC Press, 2004.

Reference books:

- 4. "Utilization of Electrical Power including Electric drives and Electric traction", N.V. Suryanarayana, 2nd edition, New Age Publishers, 2017.
- 5. "Generation, Distribution and Utilization of Electric Energy", C.L.Wadhawa, 3rd edition, New Age International Private Limited, 2015.
- 6. "Utilization, Generation and Conservation of Electrical Energy", Sunil S Rao,1st edition, Khanna Publishers, 2000.
- 7. "Utilization of Electric Power and Electric Traction", G.C. Garg, 1st edition, Khanna Publishers, 2018.

e-resources & other digital material

- 1. https://nptel.ac.in/courses/108/105/108105060/
- 2. https://www.governmentpolytechnicnayagarh.org/upload/ueet(Pm).pdf
- 3. https://www.coursera.org/learn/electric-utilities
- 4. https://www.coursera.org/learn/electric-power-systems
- 5. https://www.coursera.org/lecture/electric-power-systems/distribution-ZujEz
- 6. https://www.edx.org/learn/electricity
- 7. http://indianrailways.gov.in/railwayboard/uploads/codesmanual/ACTraction-II-P-I/ACTractionIIPartICh1_data.htm
- 8. https://en.wikipedia.org/wiki/Traction_substation
- 9. https://www.engineeringenotes.com/electrical-engineering/electric-traction-electrical-engineering/power-supply-arrangement-for-ac-track-electrification-electricity/37184
- 10. https://membership.corrosion.com.au/blog/stray-traction-effects-wheres-the-problem/
- 11. https://encyclopedia2.thefreedictionary.com/Negative+Booster+Transformer
- 12. https://en.wikipedia.org/wiki/Current_collector
- 13. https://en.wikipedia.org/wiki/Overhead_line

MICRO-SYLLABUS

Unit-1: Electric Heating & Welding (14 hrs)

Electric Heating (07 hrs)

Advantages and methods of electric heating–Resistance heating, induction heating and dielectric heating – Arc furnaces – Direct and indirect arc furnaces

Electric Welding (07 hrs)

Electric welding-Resistance and arc welding-Electric welding equipment-Comparison between AC and DC Welding

Unit No Module Name		Micro content				
		Introduction, Advantages of Electric Heating and				
		Heating methods				
		Resistance Heating				
		Resistance Furnaces, Temperature Control of				
10	Electric Heating	Resistance Furnaces				
1a.	Electric Heating	Design of Heating Element				
		Induction Heating: Core Type Induction Furnace				
		Vertical Core-Type Induction Furnace, Coreless				
		Induction Furnace				
		Dielectric Heating				

1b.	Electric Welding	Electric Welding: Introduction, Advantages and Disadvantages of Welding Types of Electric Winding, Resistance Welding Types of resistance welding, Spot welding, Seam welding Projection welding, Butt welding Introduction to Electric Arc Welding, Carbon arc welding, Metal arc welding Atomic hydrogen arc welding, Inert gas metal arc welding
		Electric Welding Equipment, Comparison between AC and DC Welding

Unit-2: Illumination (15 hrs)

Illumination fundamentals (05 hrs)

Introduction, terms used in illumination, laws of illumination, polar curves, photometry, integrating sphere, sources of light.

Illumination concepts (10 hrs)

Discharge lamps, MV and SV lamps, comparison between tungsten filament lamps and fluorescent tubes, Basic principles of light control, Types and design of lighting, LED lighting, Street and flood lighting.

Unit No	Module Name	Micro content
		Introduction, nature of light
		Definitions of various quantities related to
		illumination fundamentals
2a.	Illumination fundamentals	Laws of illumination
		Polar curves, Photometry
		Integrating sphere, Lux meter
		Sources of light
		Incandescent Lamps, Carbon arc Lamp
		Gaseous Discharge Lamps, Fluorescent Lamp
		Sodium Vapour Lamp, Mercury Vapour Lamps
		Comparison between filament lamps and
2b.	Illumination concepts	fluorescent lamp
		Principles of light control
		Types and design of lighting schemes
		LED lighting
		Street and Flood lighting

Unit-3: Electric Traction-1 (13 hrs)

Electric Traction Speed - Time Curves and Mechanics of Train Movement (07 hrs)

Introduction, Systems of Traction, Systems of electric Traction, Speed-Time Curves for Train Movement, Mechanics of Train Movement, Train Resistance, Adhesive Weight, Coefficient of Adhesion, Load equalization.

Motors for Electric traction (06 hrs)

Introduction, Series and Shunt Motors for Traction Services, Two Series Motors are used to drive a Motor Car, AC Series Motor, Three Phase Induction Motor, Temperature rise calculations, Calculation of Tractive Effort, Horse Power and Specific Energy consumption for a given run.

Unit No	Module Name	Micro content		
		Introduction, Traction systems, Different		
		systems of traction		
		Systems of railway electrification		
		Comparison between A.C. and D.C. Traction		
	Electric Traction Speed -	Electric Traction systems		
3a.	Time Curves and Mechanics of Train Movement	Trapezoidal and Quadrilateral Speed-Time curves		
		Mechanics of train movement		
		Train Resistance, Adhesive Weight, Coefficient		
		of Adhesion		
		Load equalization		
		Introduction		
		Series and Shunt Motors for Traction Services		
		Two Series Motors are used to drive a Motor Car		
		AC Series Motor		
3b.	Motors for Electric traction	Three Phase Induction Motor		
		Temperature rise calculations		
		Calculation of Tractive Effort, Horse Power		
		Calculation of Specific Energy consumption for a		
		given run		

Unit-4: Electric Traction-2 (13 hrs) Braking (06 hrs)

Introduction, Regenerative Braking of Three Phase Induction Motors, Braking of Single Phase Series Motors, Mechanical braking, Magnetic Track Brake, Electro–Mechanical Drum Brakes.

Electric Traction Systems and Power Supply (07 hrs)

AC Electrification, Sub-Stations, Feeding and Distribution System for AC and DC Traction systems, Electrolysis by Current through Earth, Negative Booster, System of Current Collection, Trolley Wires.

Unit No	Module Name	Micro content
		Introduction
		Regenerative Braking of Three Phase Induction
		Motors
4a.	Braking	Braking of Single Phase Series Motors
		Mechanical braking
		Magnetic Track Brake
		Electro-Mechanical Drum Brakes
		AC Electrification
	Electric Traction Systems and Power Supply	Traction Sub-Stations
		Feeding and Distribution System for ACTraction
		systems
4b.		Feeding and Distribution System for DC Traction
		systems
		Electrolysis by Current through Earth
		Negative Booster
		System of Current Collection

Trolley Wires

Unit-5: Applications (13 hrs)

Domestic electrical appliances: Calculation of energy consumption and efficiency of

i. Electric iron. ii. Electric toaster. iii. Electric water heater. iv. Microwave oven. v. Fans (Ceiling and Table fan) vi. Washing Machine. vii. Grinder/ Mixer/ juicer. viii. Vacuum Cleaner. ix. Flour Mill. x. Air conditioner, Concept of Star System for energy conservation. (07 hrs)

Electric Vehicles: (06 hrs)

Introduction, Configurations of Electric Vehicles, Performance of Electric Vehicles, Tractive Effort in Normal Driving vehicles, Energy Consumption calculations.

Unit No	Module Name	Micro content
5a.	Domestic electrical appliances	Calculation of energy consumption and efficiency of i. Electric iron. ii. Electric toaster. iii. Electric water heater. iv. Microwave oven. v. Fans (Ceiling and Table fan) vi. Washing Machine. vii. Grinder/ Mixer/ juicer. viii. Vacuum Cleaner. ix. Flour Mill. x. Air conditioner Concept of Star System for energy conservation
5b.	Electric Vehicles	Introduction Configurations of Electric Vehicles Performance of Electric Vehicles Tractive Effort in Normal Driving vehicles Energy Consumption calculations

Course Outcomes:

Upon successful completion of the course, the student will be able to

No	Description	POs, PSOs	KL			
CO1	Describe about electric heating and welding procedures	PO1, PSO2	2			
CO2	Articulate the terminology of illumination, Explain the working of electric lamps and design of lightning schemes	PO1, PSO2	2, 3			
CO3	Discuss systems of electric traction, speed-time curves and mechanics of movement. PO1, PSO2					
CO4	Explain about braking methods used in traction systems and calculate different performance parameters of traction	PO1, PSO2	3			
CO5	Examine different real time electrical appliances and applications in electric vehicles	PO1, PSO2	3			

Text books:

- 1. "Utilization of Electrical Energy", V V L Rao, Universities Press, 1981.
- 2. "Art & Science of Utilization of Electrical Energy", H. Partab, 2nd edition, DhanpatRai& Sons, 2017.
- 3. "A Text book on Power System Engineering", M.L. Soni, P.V. Gupta, U.S. Bhatnagar and A. Chakrabarti, DhanpatRai Publishing Company (P) Limited, 2016.
- 4. "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals Theory, and Design", MehrdadEhsani, YiminGao, Sebastien E Gay, Ali Emadi, 1st edition, CRC Press, 2004.

Reference books:

- 1. "Utilization of Electrical Power including Electric drives and Electric traction", N.V. Suryanarayana, 2nd edition, New Age Publishers, 2017.
- 2. "Generation, Distribution and Utilization of Electric Energy", C.L.Wadhawa, 3rd edition, New Age International Private Limited, 2015.
- 3. "Utilization, Generation and Conservation of Electrical Energy", Sunil S Rao, 1st edition, Khanna Publishers, 2000.
- 4. "Utilization of Electric Power and Electric Traction", G.C. Garg, 1st edition, Khanna Publishers, 2018.

e-resources & other digital material

- 1. https://nptel.ac.in/courses/108/105/108105060/
- 2. https://www.governmentpolytechnicnayagarh.org/upload/ueet(Pm).pdf
- 3. https://www.coursera.org/learn/electric-utilities
- 4. https://www.coursera.org/learn/electric-power-systems
- 5. https://www.coursera.org/lecture/electric-power-systems/distribution-ZujEz
- 6. https://www.edx.org/learn/electricity
- $7. \ http://indianrailways.gov.in/railwayboard/uploads/codesmanual/ACTraction-II-P-I/ACTractionIIPartICh1_data.htm$
- 8. https://en.wikipedia.org/wiki/Traction_substation
- 9. https://www.engineeringenotes.com/electrical-engineering/electric-traction-electrical-engineering/power-supply-arrangement-for-ac-track-electrification-electricity/37184
- 10. https://membership.corrosion.com.au/blog/stray-traction-effects-wheres-the-problem/
- 11. https://encyclopedia2.thefreedictionary.com/Negative+Booster+Transformer
- 12. https://en.wikipedia.org/wiki/Current_collector
- 13. https://en.wikipedia.org/wiki/Overhead line

CO-POs& PSOs Mapping:

CO No	PO Number									PSO Number				
CO No.	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	1											1	
CO2	3		1											1
CO3	2													
CO4	2	1											1	1
CO5	2	1					1						2	

L T P C 3 0 0 3

DIGITAL CONTROL SYSTEMS

(Professional Elective-IV)

PRE-REQUISITES: 1) Control Systems

Course objectives: The student should be able to

- 1. To understand the concepts of digital control systems and assemble various components associated with it. Advantages compared to the analog type.
- 2. The theory of z-transformations and application for the mathematical analysis of digital control systems.
- 3. To represent the discrete-time systems in state-space model and evaluation of state transition matrix, the design of state feedback control by "the pole placement method."
- 4. To examine the stability of the system using different tests.
- 5. To study the conventional method of analyzing digital control systems in the w-plane.

	Syllabus					
Unit No	Contents	Mapped CO				
	Introduction and signal processing (06 hrs)					
Ι	Introduction to analog and digital control systems – Advantages of digital systems – Typical examples – Continuous and Discrete Time Signals – Sample and hold devices – Frequency domain characteristics of zero order hold.	CO1				
	z–transformations (12 hrs)					
II	Z-Transforms - Theorems - Finding inverse z-transforms - Formulation of difference					
	Stability analysis (10 hrs)					
III	Mappingbetweenthes—Planeandthez—Plane—PrimarystripsandComplementarystrips—Stabilitycriterion —Modified Routh's stability criterion and Jury's stability test.	CO3				
	StatespaceanalysisandtheconceptsofControllabilityandObservability (06 hrs)					
IV	Statespacerepresentationofdiscretetimesystems—SolvingDiscreteTimestatespaceequations — State transition matrix and its properties— Discretization of continuous time stateequations—Conceptsofcontrollabilityandobservability—Tests(withoutproof). StateFeedbackControllersandStateObservers (06 hrs) Designofstatefeedbackcontroller throughpoleplacement—	CO4				
	Necessaryandsufficientconditions –Ackerman's formula					
	Design of discrete-time control systems by conventional methods (08 hrs)					
\mathbf{V}	Transientandsteadystatespecifications-Designusingfrequencyresponseinthew-planefor	CO5				
	lag andleadcompensators–Rootlocustechnique inthe z–plane.					
	tent Beyond the syllabus:					
Desig	gnofstateobservers(FullOrder andReducedOrder).					

Course Outcomes

Upon s	Upon successful completion of the course, the student will be able to					
CO1	Understand the advantages of discrete time control systems and the "knowhow" of various associated accessories. {understand level, kL2}					
CO2	Applyz–transformationsandtheirroleinthemathematical analysis of differentsystems(like Laplacetransformsinanalogsystems). Apply level, KL3 }					
CO3	Analyze the stability criterion for digital systems and methods adopted for testing the same are explained. {analyze level, kL4}					
CO4	Evaluating the conventional and states pacemethods of design. {evaluate level, kL5}					
CO5	Applying the design procedure in the w-plane. {Apply level, KL4}					

Learning Resources

Text books:

- 1. Discrete-TimeControlsystems-K. Ogata, PearsonEducation/PHI, 2ndEdition.
- 2. DigitalControlandStateVariableMethodsbyM.Gopal,TMH,4thEdition.

Reference books:

- 1. DigitalControlSystems, Kuo,OxfordUniversityPress, 2ndEdition,2003.
- 2. Digital Control Systems Analysis and Design- 3rd edition- Charles S Phillips, H.Troy Nagle PHI

e- Resources & other digital material

1. https://nptel.ac.in/courses/108103008

Micro-Syllabus

Unit 1: Introductionandsignal processing (06 hrs)

Introduction to analog and digital control systems – Advantages of digital systems – Typicalexamples – Continuous and Discrete Time Signals – Sample and hold devices – Frequencydomaincharacteristicsofzeroorderhold.

Unit No	Module	Micro content		
		Introduction to analog and digital control systems		
	Introduction	Advantages of digital systems		
1		Typicalexamples		
		Continuous and Discrete Time Signals		
	Signalprocessing	Sample and hold devices		
		Frequencydomaincharacteristicsofzeroorderhold.		

Unit 2: z-transformations (12 hrs)

Z-Transforms – Theorems – Finding inverse z-transforms – Formulation of difference equations and solving – Block diagram representation – Pulse transfer functions and finding open loop and closed loop responses.

Unit No	Module	Micro content
2		Z–Transforms
	z–transformations	Theorems
		Finding inverse z–transforms
		Formulation of difference equations and solving
		Block diagram representation

Pulse	transfer	functions	and	finding	open	loop
andclo	sedloopre	esponses.				

Unit 3: Stabilityanalysis (10 hrs)

Mappingbetweenthes—Planeandthez—Plane—PrimarystripsandComplementarystrips—Stabilitycriterion—ModifiedRouth'sstabilitycriterionandJury'sstabilitytest.

Unit No	Module	Micro content		
		Mappingbetweenthes-Planeandthez-Plane		
		PrimarystripsandComplementarystrips		
3	Stabilityanalysis	PrimarystripsandComplementarystrips		
		Jury'sstabilitytest		
ĺ		ModifiedRouth'sstabilitycriterion		

Unit 4: Statespaceanalysis and the concepts of Controllability and Observability (06 hrs)

Statespacerepresentationofdiscretetimesystems—SolvingDiscreteTimestatespaceequations — State transition matrix and its properties— Discretization of continuous time stateequations — Conceptsofcontrollabilityandobservability—Tests(withoutproof).

StateFeedbackControllersandStateObservers (06 hrs)

 $Design of state feedback controller\ through pole placement-Necessary and sufficient conditions-Ackerman's formula.$

Unit No	Module	Micro content	
		State space representation of discrete time systems	
	.a State space analysis State transition matrix and its proper	Solving Discrete Time state space equations	
4.a		State transition matrix and its properties	
		Discretization of continuous time stateequations	
		Conceptsofcontrollabilityandobservability-Tests	
		(withoutproof).	
		Designofstatefeedbackcontroller	
4.b	The concepts of Controllability and	throughpoleplacement	
	Observability	Necessaryandsufficientconditions	
		Ackerman's formula	

Unit 5: Design of discrete-time control systems by conventional methods (08 hrs)

Transientandsteadystatespecifications—Designusingfrequencyresponseinthew—planefor lag andleadcompensators—Rootlocustechnique inthe z—plane.

Unit No	Module	Micro content			
5	Design of discrete- time control systems by conventional methods	Transientandsteadystatespecifications Designusingfrequencyresponseinthew–planefor lag andleadcompensators Rootlocustechnique inthe z–plane			

CO-PO mapping Table

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of
correlations (High: 3, Medium: 2, Low: 1)

	constations (right b) Wedianit 2, 20 W 1)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-	PSO-
													1	2
CO1	3													
CO2	3												1	
CO3	2	1												
CO4	2	2	1											1
CO5	3	1												1

L T P C 3 0 0 3

HIGH VOLTAGE AC & DC TRANSMISSION (Professional Elective-IV)

PRE-REQUISITES:1) Power Electronics, 2) Power Systems-I & II

Course objectives: The student should be able to

- 1. To understand the phenomena associated with transmission line, operating at extra high voltages and detail analysis of several phenomena viz. electrostatic field, charges, voltage gradient and conductor configuration
- 2. The objective is to discuss phenomena of corona, losses, audible noise, radio interference and measurement of these quantities.
- 3. To understand the phenomena of HVDC, HVDC equipment comparison with AC and the latest state of art in HVDC transmission.
- 4. To understand method of conversion of AC to DC, performance of various level of pulse conversion and control characteristics of conversion
- 5. To understand the requirements of reactive power control and filtering technique in HVDC system and to understand the harmonics in AC side of power line in a HVDC system and design of filters

	Syllabus	
Unit No	Contents	Mapped CO
I	Introduction of EHV AC transmission(13 hrs) Necessity of EHV AC transmission – Advantages and problems – Power handling capacity and line losses – Mechanical considerations – Resistance of conductors - Electrostatics – Field of sphere gap – Field of line charges and properties (07hrs) Charge ~ potential relations for multi–conductors – Surface voltage gradient on conductors – Bundle spacing and bundle radius Examples – Distribution of voltage gradient on sub conductors of bundle – Examples. (06 hrs)	CO1
II	Corona effects(11 hrs) Power loss and audible noise (AN) – Corona loss formulae – Charge voltage diagram – Generation – Characteristics – Limits and measurements of AN (05hrs) Radio interference (RI) – Corona pulses generation – Properties and limits – Biological effects Electrical and magnetic fields on human beings and animals-Recent advances in UHV power transmission(06 hrs)	CO2
III	Basic Concepts of DC Transmission(13 hrs) Basic Concepts of DC Transmission Economics & Terminal equipment of HVDC transmission systems: Types of HVDC Links – Apparatus required for HVDC Systems (07 hrs) Comparison of AC &DC transmission – Application of DC Transmission System – Planning & Modern trends in DC transmission.(6hrs)	CO3
IV	Analysis of HVDC Converters and System Control(13 hrs)	CO4

	Choice of Converter configuration – Analysis of Graetzciruit – Characteristics of 6	
	Pulse & 12 Pulse converters – Cases of two 3 phase converters in star – Star mode	
	and their performance (7 hrs)	
	Principal of DC Link Control - Converters Control Characteristics - Firing angle	
	control – Current and extinction angle control – Starting and stopping of DC link –	
	Power Control. (6 hrs)	
	Reactive Power Control, Harmonics and Filters in HVDC(15 hrs)	
	Reactive Power Requirements in steady state – Conventional control strategies –	
	Alternate control strategies sources of reactive power - AC Filters - Shunt	
	capacitors – Synchronous condensers. (6 hrs)	
V	Harmonics and Filters Generation of Harmonics - Characteristics harmonics -	CO5
	Calculation of AC Harmonics – Non–Characteristics harmonics – Adverse effects	
	of harmonics - Calculation of voltage & current harmonics - Effect of Pulse	
	number on harmonics. Types of AC filters, Design of Single tuned filters – Design	
	of High pass filters(9 hrs)	

Content Beyond the syllabus:

Reactive Power Requirements: Reactive Power Requirements in steady state-Conventional control strategies-Alternate control strategiessources of reactive power-AC Filters – shunt capacitors-synchronous condensers. (Elementary treatment only).

Cours	e Outcomes						
Upon	successful completion of the course, the student will be able to						
CO1	Acquaint with HV transmission system with regard to power handling capacity, losses,						
	conductor resistance and electrostatic field associate with HV{Understand level, KL2}						
CO2	To develop ability for determining corona, radio interference, audible noise generation						
	and frequency spectrum for single and three phase transmission lines. { Analyze level,						
	KL4}						
CO3	To acquire knowledge in transmission of HVDC power with regard to terminal						
	equipment, type of HVDC connectivity and planning of HVDC system { Understand						
	level, KL2}						
CO4	To be able to develop knowledge with regard to choice of pulse conversion, control						
	characteristic, firing angle control and effect of source impedance. { Analyze level,						
	KL4}						
CO5	To develop knowledge of reactive power requirements of conventional control, filters						
	and reactive power compensation in HVDC system, calculate voltage and current						
	harmonics, and design of filters. { Analyze level, KL4}						

Learning Resources

Text books:

- 1. HVDC Power Transmission Systems: Technology and system Interactions by K.R.Padiyar, New Age International (P) Limited, and Publishers.
- 2. Direct Current Transmission by E.W.Kimbark, John Wiley & Sons.
- 3. EHVAC Transmission Engineering by R. D. Begamudre, New Age International (P) Ltd..

Reference books:

EHVAC and HVDC Transmission Engineering and Practice – S.Rao. Power Transmission by Direct Current – by E.Uhlmann, B.S.Publications HVDC Transmission – J. Arrillaga.

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/108/102/108102047/
- 2. https://www.coursera.org/learn/electric-power-systems

Micro-Syllabus

UNIT-I: Introduction of EHV AC transmission:(13 hrs)

Preliminaries of EHV Transmission: Necessity of EHV AC transmission – Advantages and problems – Power handling capacity and line losses – Mechanical considerations – Resistance of conductors -

Voltage gradients: Electrostatics – Field of sphere gap – Field of line charges and properties Charge - potential relations for multi–conductors – Surface voltage gradient on conductors – Bundle spacing and bundle radius Examples – Distribution of voltage gradient on sub conductors of bundle – Examples.

Unit No	Module	Micro content					
	Paguirament of EUV	Necessity of high voltage transmission					
	Requirement of EHV transmission	EHV transmission system advantages and					
	u ansimission	disadvantages					
		Standard transmission voltages,					
	Power handling	average values of line parameters					
	capacity	Power handling capacity and line losses:					
1.a.		simple problems					
Preliminaries	Mechanical	Types of vibrations and oscillations: Aeolian					
of EHV	considerations	vibrations, galloping, wake induced oscillations					
Transmission		Dampers and spacers					
		Resistance of conductors					
		Effect of conductor resistance					
	Resistance of conductors and	1 0 11 0 10 0 111 0 1011					
		Temperature rise of conductors and current carrying					
	temperature effects	capacity					
		Bundle conductors: bundle spacing and bundle					
		radius, GMR of bundle					
		Field of point charge and its properties					
	Electrostatics	Field of sphere gap, field of line charges and their properties,					
1.b Voltage gradients		Charge potential relations for multi conductor line					
		Surface voltage gradients on conductors: single conductor, 2-conductor bundle					
		Maximum SVG for bundle conductor with N>=3					
	Surface voltage	Mangoldt formula					

gradients	Distribution of voltage gradient on sub conductors of
	bundle –simple problems

UNIT-II: Corona effects: (11 hrs)

Power loss and audible noise (AN) – Corona loss formulae – Charge voltage diagram – Generation – Characteristics – Limits and measurements of AN

Radio interference (RI) – Corona pulses generation – Properties and limits –Biological effects Electrical and magnetic fields on human beings and animals- Recent advances in UHV power transmission

Unit No	Module	Micro content
	Downer loop	I ² R loss and corona los
		Corona loss formulae
•	Power loss	The corona current
2.a Corona		Charge-voltage diagram and corona loss
effects (AN)	Audible Noise	Audible noise: generation and characteristics
		Limits for audible noise
		AN measurements and meters
	Radio interference	Corona pulses generation and their properties
2.b Corona effects		Limits for RI fields
(RI)	Riological affacts	Effects of electrical fields and magnetic fields on
	Biological effects	human beings and animals
	Recent advances	Recent advances in UHV transmission and
	Recent advances	challenges

Unit III Basic Concepts of DC Transmission(13 hrs)

Basic Concepts of DC Transmission Economics & Terminal equipment of HVDC transmission systems: Types of HVDC Links – Apparatus required for HVDC Systems

Comparison of AC &DC transmission – Application of DC Transmission System – Planning & Modern trends in DC transmission.

Unit No	Module	Micro content				
	Basic Concepts	Introduction to DC Transmission				
3.a Basic Concepts of	Types of HVDC Links	Monopolar HVDC Link, Bipolar HVDC Link, Homopolar HVDC link, back to back HVDC Link				
DC Transmission	Apparatus Required	Apparatus required in HVDC transmission, like converter stations, Converter Transformer, smoothing reactor, Filters, Reactive Power Sources, Switchgear components				
3.b Basic Concepts of	Comparison of AC and DC	Comparison of AC and DC Transmission , Economics of Comparison, Technical Comparison, Reliability				
DC	Application	Applications of DC Transmission				
Transmission	Planning and Modern Trends	Planning of DC Transmission and Modern Trends DC Transmission				

Unit IV Analysis of HVDC Converters and System Control(13 hrs)

Choice of Converter configuration – Analysis of Graetz circuit – Characteristics of 6 Pulse & 12

Pulse converters – Cases of two 3 phase converters in star – Star mode and their performance Principal of DC Link Control - Converters Control Characteristics – Firing angle control – Current and extinction angle control – Starting and stopping of DC link – Power Control

Unit No	Module	Micro content				
	Choice of Converter configuration	Types of Converters, Pulse number, Valve utilization factor, Transformer Utilization factor,				
4.a Analysis of HVDC Converters	Analysis of Graetz Circuit	Analysis of Graetz circuit without overlap, Average DC voltage, Current, Harmonics analysis				
and System Control	Analysis of Graetz Circuit	Analysis of Graetz circuit without overlap, Average DC voltage, Current, Harmonics analysis, Cases of two and three valve conduction mode of 3 phase converter and its performance				
	12 Pulse Converter	12 Converter operation , average dc output voltage , AC Current Harmonics				
	Principal of DC Link Control	Steady State Equivalent circuit, Converter Control Characteristics, Voltage dependent control				
4.b Analysis of HVDC Converters and System Control	Firing angle control	Firing angle control, Individual phase control- constant alpha control, inverse cosine control, drawbacks of IPC,Equidistant Pulse Control- Pulse Frequency Control (PFC), Pulse Period Control, pulse Phase Control (PPC), drawbacks of EPC				
	Constant Current Control	Current and Extension angle control, Starting and Stopping of dc link, power Control				

Unit V Reactive Power Control, Harmonics and Filters in HVDC(15 hrs)

Reactive Power Requirements in steady state – Conventional control strategies –Alternate control strategies sources of reactive power – AC Filters – Shunt capacitors – Synchronous condensers.

Harmonics and Filters Generation of Harmonics – Characteristics harmonics – Calculation of AC Harmonics – Non–Characteristics harmonics – Adverse effects of harmonics – Calculation of voltage & current harmonics – Effect of Pulse number on harmonics. Types of AC filters, Design of Single tuned filters – Design of High pass filters.

Unit No	Module	Micro content			
5.a Reactive Power Control,	Reactive Power Control	Reactive power requirements in Steady state, Alternative control strategies,			
Harmonics and	Sources of Reactive	Sources of reactive power,-AC filters, Shunt			
Filters in HVDC	Power	Capacitors, Synchronous condenser			
		Sources of Harmonics generation, adverse			
5.b Reactive		effects of harmonics, Generation of harmonics-			
Power Control,	Generation of	Characteristic harmonics , calculation of			
Harmonics and	Harmonics	voltage and current harmonics , Non			
Filters in HVDC		characteristic harmonics , effect of pulse number on harmonics			

D	Design of filters	Types	of A	AC	Filters,	Design	of	Single	tuned
	resign of finers	filters -	- Des	sign	of High	n pass fil	ters.		

	Course Outcomes
Upon	successful completion of the course, the student will be able to
CO1	Acquaint with HV transmission system with regard to power handling capacity, losses,
	conductor resistance and electrostatic field associate with HV {Understand level, KL2}
CO2	To develop ability for determining corona, radio interference, audible noise generation
	and frequency spectrum for single and three phase transmission lines. { Analyze level,
	KL4}
CO3	To acquire knowledge in transmission of HVDC power with regard to terminal
	equipment, type of HVDC connectivity and planning of HVDC system { Understand
	level, KL2}
CO4	To be able to develop knowledge with regard to choice of pulse conversion, control
	characteristic, firing angle control and effect of source impedance. { Analyze level,
	KL4}
CO5	To develop knowledge of reactive power requirements of conventional control, filters
	and reactive power compensation in HVDC system, calculate voltage and current
	harmonics, and design of filters. { Analyze level, KL4}

Learning Resources

Text books:

- 1. HVDC Power Transmission Systems: Technology and system Interactions by K.R.Padiyar, New Age International (P) Limited, and Publishers.
- 2. Direct Current Transmission by E.W.Kimbark, John Wiley & Sons.
- 3. EHVAC Transmission Engineering by R. D. Begamudre, New Age International (P) Ltd..

Reference books:

- 1. EHVAC and HVDC Transmission Engineering and Practice S.Rao.
- 2. Power Transmission by Direct Current by E.Uhlmann, B.S.Publications
- 3. HVDC Transmission J. Arrillaga.

e- Resources & other digital material

1.https://nptel.ac.in/courses/108/104/108104013/

Co Po Mapping

			,												
	PO	PO1	PO1	PO1	PSO1	PSO	PS0								
	1	2	3	4	5	6	7	8	9	0	1	2		2	3
CO1	2	3	2	1								1			
CO2	2	3	2	1								1	1		
CO3	2	3	2	1								1			
CO4	2	3	2	1								1			1
CO5	2	3	2	1								1			1

L T P C 3 0 0 3

ELECTRIC POWER QUALITY (Professional Elective-IV)

PRE-REQUISITES: 1. Power Electronics

2. FACTS Devices

Preamble: An Enlarged utilization of Power Electronics loads gives the awareness on the power quality. A reasonable understanding on the basics of various power quality problems and their solutions to applied electricity is therefore important for an electrical engineer. This course covers different power quality problems occurring in power system and provides brief idea about their solutions with comparative study.

Course objectives: The main objectives are

- 1. Different types of power quality phenomena and identify sources for voltage sag, voltage swell, interruptions, transients, long duration over voltages and harmonics in a power system.
- 2. Power quality terms and study power quality standards.
- 3. The principle of voltage regulation, power factor improvement methods and study the effect the harmonic distortion and its solutions.
- 4. The relationship between distributed generation and power quality.
- 5. The power quality monitoring concepts and the usage of measuring instruments

	Syllabus	
Unit	Contents	Mapped
No		CO
I	Introduction to Power Quality (12 Hrs) Overview of power quality –Concern about the power quality –General classes of power quality and voltage quality problems –Transients –Long–duration voltage variations –Short–duration voltage variations –Voltage unbalance –Waveform distortion –Voltage fluctuation –Power frequency variations- Power quality terms – Voltage sags, Voltage swells, and harmonics interruptions, voltage flicker and voltage spikes –Sources of voltage sag, swell and interruptions –Nonlinear loads. Source of transient over voltages –Principles of over voltage protection, Devices for over voltage protection –Utility capacitor switching transients.	CO1
II	Voltage Regulation and power factor improvement (12 Hrs) Principles of regulating the voltage –Device for voltage regulation –Utility voltage regulator application –Capacitor for voltage regulation –Enduser capacitor application –Regulating utility voltage with distributed resources –Flicker –Power factor penalty – Static VAR compensations for power factor improvement.	CO2
III	Harmonic distortion and solutions (12 Hrs) Voltage distortion vs. Current distortion –Harmonics vs. Transients –Harmonic indices –Sources of harmonics –Effect of harmonic distortion –Impact of capacitors, transformers, motors and meters –Point of common coupling –Passive and active filtering –Numerical problems.	CO3
IV	Distributed Generation and Power Quality (12Hrs) Resurgence of distributed generation –DG technologies –Interface to the utility system –Power quality issues and operating conflicts –DG on low voltage distribution networks.	CO4

Monitoring and Instrumentation (12 Hrs)

Power quality monitoring and considerations –Historical perspective of PQ measuring instruments –PQ measurement equipment –Assessment of PQ measuring data – Application of intelligent systems –PQ monitoring standards.

Content Beyond the syllabus:

 \mathbf{V}

Total Harmonic Distortion and Total Demand Distortion.

	Course Outcomes					
Upon s	successful completion of the course, the student will be able to					
CO1	Understand the different types of power quality problems and analyze power quality terms					
	and power quality standards. {Apply level, KL2}					
CO2	Explain the principle of voltage regulation and power factor improvement methods.					
	{Evaluate level, KL3}					
CO3	Analyze the effect the harmonic distortion and its solutions. {Analyze level, K34}					
CO4	Demonstrate the relationship between distributed generation and power quality{Understand					
	level, KL2}					
CO5	Understand the power quality monitoring concepts and the usage of measuring instruments.					
	{Explain level, KL2}					

Learning Resources

Text books:

- 1. Electrical Power Systems Quality, Dugan R C, McGranaghan M F, Santoso S, and
- 2. Beaty H W, Second Edition, McGraw-Hill, 2012, 3rd edition..
- 3. Electric power quality problems -M.H.J.Bollen IEEE series-Wiley India publications, 2011.

Reference books:

- 1. Power Quality Primer, Kennedy B W, First Edition, McGraw-Hill, 2000.
- 2. Understanding Power Quality Problems: Voltage Sags and Interruptions, Bollen M HJ, First Edition, IEEE Press; 2000.
- 3. Power System Harmonics, Arrillaga J and Watson N R, Second Edition, John Wiley& Sons, 2003.
- 4. Electric Power Quality control Techniques, W. E. Kazibwe and M. H. Sendaula, VanNostradReinhold, New York.
- 5. Power Quality C.Shankaran, CRC Press, 2001
- 6. Harmonics and Power Systems -Franciso C.DE LA Rosa-CRC Press (Taylor &Francis

e- Resources & other digital material

- 1. https://www.digimat.in/nptel/courses/video/108107157/L01.html
- 2. https://nptel.ac.in/courses/108106025
- 3. https://onlinecourses.nptel.ac.in/noc20_ee10/preview
- 4. https://onlinecourses.nptel.ac.in/noc20_ee10/preview

Micro-Syllabus

Unit-1 Introduction to Power Quality (12 Hrs)

Overview of power quality -Concern about the power quality -General classes of power quality and voltage quality problems -Transients -Long-duration voltage variations -Short-duration voltage variations -Voltage unbalance -Waveform distortion -Voltage fluctuation -Power frequency variations- Power quality terms -Voltage sags, Voltage swells, and harmonics interruptions, voltage flicker and voltage spikes -Sources of voltage sag, swell and interruptions -Nonlinear loads. Source

CO5

of transient over voltages -Principles of over voltage protection, Devices for over voltage protection -Utility capacitor switching transients.

Unit	Module	Micro content				
1.a		Overview of power quality				
	Voltage Quality	General classes of power quality				
Power quality classes & waveform	nrohlems &	Transients				
distortion		Long-duration voltage variations				
		Short-duration voltage variations				
1.b		Voltage sags				
	Voltage Sag, Swell and interruptions	Voltage swell and interruptions				
Voltage		Source of transient over voltages				
fluctuation and its		Principles of over voltage protection				
sources		Devices for over voltage protection				

Unit-2:Voltage Regulation and power factor improvement (12 Hrs)

Principles of regulating the voltage -Device for voltage regulation -Utility voltage regulator application -Capacitor for voltage regulation -Enduser capacitor application -Regulating utility voltage with distributed resources -Flicker -Power factor penalty -Static VAR compensations for power factor improvement.

Unit	Module	Micro content
3.a		Principles of regulating the voltage
Device for voltage	Principles of regulating	Device for voltage regulation
regulation	the voltage	Utility voltage regulator application
regulation	voltage regulation	Capacitor for voltage regulation
3.b	Regulating utility	Enduser capacitor application
Static VAR	voltage with distributed resources	Distributed Resources
compensations	power factor improvement	Power factor penalty&Static VAR compensations

Unit-3: Harmonic distortion and solutions (12 Hrs)

Voltage distortion vs. Current distortion -Harmonics vs. Transients -Harmonic indices -Sources of harmonics -Effect of harmonic distortion -Impact of capacitors, transformers, motors and meters - Point of common coupling -Passive and active filtering -Numerical problems.

Unit	Module	Micro content
5.a Voltage		Voltage distortion vs. Current distortion
distortion &	Harmania indiasa	Harmonics vs. Transients
Current	Harmonic indices, Sources of harmonics	Harmonic indices
distortion	Sources of narmonics	Sources of harmonics
		Effect of harmonic distortion
5.b.		Point of common coupling
G 4 8 7014	Passive and active	Passive and active filtering
Concept of Filters	filtering	Numerical problems.

Unit-4:Distributed Generation and Power Quality (12Hrs)

Resurgence of distributed generation -DG technologies -Interface to the utility system -Power quality issues and operating conflicts -DG on low voltage distribution networks.

Unit	Module	Micro content
		Introduction to DG
7.a Distributed	DG technologies	DG technologies
Generation		Interface to the utility system
		Challenges Interface to the utility system
7.b		Power quality issues
Operating	Power quality issues and operating conflicts	Quality issues and operating conflicts
conflicts	or many commons	DG on low voltage distribution networks

Unit-5:Monitoring and Instrumentation (12 Hrs)

Power quality monitoring and considerations -Historical perspective of PQ measuring instruments - PQ measurement equipment -Assessment of PQ measuring data -Application of intelligent systems -PQ monitoring standards.

Unit	Module	Micro content				
9.a	Power quality	Power quality monitoring and considerations				
Power quality monitoring	monitoring and considerations	Historical perspective of PQ measuring instruments				
9.b		PQ measurement equipment				
	Assessment of PQ	Assessment of PQ measuring data				
PQ measurement	measuring data	Application of intelligent systems				
equipment		PQ monitoring standards				

CO-PO mapping Table

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of													
	correlations (High: 3, Medium: 2, Low: 1)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-	PSO-
													1	2
CO1	3	2												
CO2	2	2											1	
CO3	3	3											1	
CO4	2	2											1	
CO5	2	2												

L T P C 3 0 0 3

DATA ANALYTICS FOR SMART GRIDS (Professional Elective-V)

PRE-REQUISITES:Power Systems and Python

Course Objectives: The student should be able to

- 1. Studythe basics of conventional grid and Transformation tosmart grid using new technologies.
- 2. Understand themajor components, grid layout and standards of smart grids.
- 3. Demonstrate various smart gridcommunication and measurement technologies.
- 4. Distinguish thedata collection devices and data management in smart grids.
- 5. Critique the different power system issues using data analytic tools.

	Syllabus	
Unit No	Contents	Mapped CO
I	Introduction to Smart Grid(12 hrs) Overview of conventional grid-Evolution of Indian electric grid-Factors affecting performance of existing grid-Working definitions of smart grid-Functions of smart grid components-Difference between conventional and smart grid-Benefits of smartgrid-Characteristics of smartgrid-Stages of the Transformation tosmart grid —Technologies used in smart grid-General view of the smart grid market drivers-Smart grid stakeholder roles and functions-Challengesof smart grid-Barriers of smart grid- Smart grid activities in India.	CO1
II	Architecture of Smart Grid(06 hrs) Smart grid major components: Smart infrastructure-Smart communication-Smart management- Smart protection.Smart grid layout: Generation domain-Transmission domain-Distribution domain-Customer domain- Market domain-Operation domain-Service provider domain.Supervisory control and data acquisition system-Transmission automation-Distributionautomation. Standards of Smart Grid (05 hrs) Introduction-Classification of standards-Standards development organizations-Regulatory authorities in Indian power sector-Smart grid policies for standard developments-Standards for information exchange-Interoperability-Benefits and challenges of interoperability-Smart grid network interoperability- Interoperability standards-Cyber security standards-Standards for the various electric grid levels.	CO2
III	Smart Grid Communications and Measurement Technology(13 hrs) Smart Grid Communications(06 hrs) Introduction-Overview of various smart gridcommunication technologies-Communications infrastructure-Elements of communication networking for power system practitioners-Different network topologies and Classification of communication networks-Challenges of smart grid communication-Requirements of SG Communications-Comparison between wired	CO3

	communication technologies- Comparison between wireless communication								
	technologies-Smartgrid layers.								
	Wide Area MonitoringSystems(WAMS)(07 hrs)								
	WAMS concept-Components of WAMS-Comparison between wide area monitoring								
	systems & supervisory control and data acquisition system- WAMS applications- Overview of various smart gridmeasurement technologies- Remote Terminal Unit(RTU)- Synchronized Phasor Measurement Units(PMU)-Phasor data concentrators-								
	PMUscenario in INDIA-PMU techniques- Architectural model of smart meter system-								
	Advanced metering infrastructure(AMI)components-AMI protocols–Benefits of AMI								
	Data Management in Smart Grid(12 hrs)								
	Introduction-Sources of data-Intelligent data collection devices in smart grid-Big data								
	collection, sampling and preprocessing-Characteristics of operational & nonoperational								
IV	data-Building the foundation for data process-Big data integration-Enabling	CO4							
	Technologies-Frameworksand Databases-Data and file handling-Data plotting and								
	visualization- Benefits of big data systems in energy management-Smart grid simulation								
	tools.								
	Big Data Applications for Smart Grid(12 hrs)								
	Introduction-Need ofdata analytics in smart grid-Key challenges to apply Big Data								
\mathbf{v}	Analytics(BDA) to smart grids- Characteristics of big data for smart grid-Key stages of	CO5							
V	BDA-Performance analysis tools- Big data analytics platforms in smart grids-Customer	COS							
	data analytics-Meter data analytics- Blackoutsanalytics- Pricingand load forecasting								
	analytics.								

Content beyond the syllabus:

Research activities in the smart grid-multidisciplinary research activities-Concept of Demand Side Management (DSM) and Demand Response(DR).

Course Outcomes

Upon successful completion of the course, the student will be able to

Upon successful completion of the course, the student will be able to			
CO1	Understand the basics of conventional grid and Transformation tosmart grid using new		
	technologies.{Understand level, KL2}		
CO2	Describe the major components, grid layout and standards of smart grids.		
	{Understand level, KL2}		
CO3	Interpret the various smart gridcommunication and measurement technologies.		
	{Apply level, KL3}		
CO4	Analyzethe data collection devices and data management in smart grids.		
	{Analyze level, KL4}		
CO5	Appraisethe different power system issues using data analytic tools.		
	(Fyaluatelevel KI 5)		

Learning Resources

Text books:

- 1. "Smart Grid and Enabling Technologies", Shady S Refaat and Omar Ellabban, IEEE Press-John Wiley & Sons Ltd., 2021.
- 2. "Smart GridTechnology and Applications", Janaka E and Kithsiri L, John Wiley & Sons Ltd., 2012.
- 3. "Smart Grid Communication Infrastructures: Big Data, Cloud Computing and Security", Feng Ye, Yi Qian and Rose Qingyang Hu, IEEE Press-John Wiley & Sons Ltd., 2018.

Reference books:

- 1. "Smart Grid: Fundamentals of Design and Analysis", James Momoh, IEEE Press-John Wiley & Sons Ltd., 2012.
- 2. "Smart Grids:Infrastructure, Technology and Solutions", Stuart Borlase, CRC Press-Taylor & Francis Group,2013.
- 3. "Power System SCADA and Smart Grid", Mini S Thomas and J. D McDonald, CRC Press-Taylor & Francis Group,2015.
- 4. "Big Data Analytics Strategies for the Smart Grid", Carol L Stimmel, CRC Press-T&FGroup,2015.
- 5. "Smart Grid Technology: A Cloud Computing and Data Management Approach", Sudip Misra and Samaresh Bera, Cambridge University Press, 2018.

e- Resources & other digital material

- 1. https://onlinecourses.nptel.ac.in/noc19_ee64/course?
- 2. https://onlinecourses.swayam2.ac.in/arp19_ap60/course
- 3. https://onlinecourses.nptel.ac.in/noc22_cs65/announcements?force=true
- 4. https://onlinecourses.nptel.ac.in/noc22_cs08/announcements?force=true
- 5. https://onlinecourses.nptel.ac.in/noc22_cs28/announcements?force=true
- 6. https://ieeexplore.ieee.org/document/9272794

 \mathbf{C} L T 3 3

ELECTRIC VEHICLES (Professional Elective-V)

PRE-REQUISITES:

i. Electric machines

ii. Power Electronics

Course objectives: The students should be able to

- 1. To get exposed to EV system configuration and parameter
- 2. To know about electro mobility and environmental issues of EV
- 3. To understand about basic EV propulsion and dynamics
- 4. To understand about fuel cell technologies for EV
- 5. To know about basic battery charging and control strategies used in electric vehicles

Introduction to EV Systems and Parameters Past, Present and Future EV, EV Concept, EV Technology, State-of-the Art EVs, EV configuration, EV system, Fixed and Variable gearing, single and multiple motor drive, in-wheel drives, EV parameters: Weight, size, force and energy, performance parameters. (10 hrs) EV and Energy Sources	_	Syllabus	
Past, Present and Future EV, EV Concept, EV Technology, State-of-the Art EVs, EV configuration, EV system, Fixed and Variable gearing, single and multiple motor drive, in-wheel drives, EV parameters: Weight, size, force and energy, performance parameters. (10 hrs) EV and Energy Sources Electro mobility and the environment, history of Electric power trains, carbon emissions from fuels, green houses and pollutants, comparison of conventional, battery, hybrid and fuel cell electric systems(10 hrs) EV Propulsion and Dynamics Choice of electric propulsion system, block diagram, concept of EV Motors, single and multi-motor configurations, fixed and variable geared transmission, In-wheel motor configuration, classification, Electric motors used in current vehicle applications, Recent EV Motors, Vehicle load factors, vehicle acceleration(12 hrs) Fuel cells Introduction of fuel cells, basic operation, model, voltage, power and efficiency, power plant system –characteristics, sizing, Example of fuel cell electric vehicle. Introduction to HEV, brake specific fuel consumption, comparison of series, series-parallel hybrid systems, examples. (10 hrs) Battery Charging and control Battery Charging and control Battery charging: Basic requirements, charger architecture, charger functions, wireless charging, power factor correction.		Contents	Mapped CO
Electro mobility and the environment, history of Electric power trains, carbon emissions from fuels, green houses and pollutants, comparison of conventional, battery, hybrid and fuel cell electric systems(10 hrs) EV Propulsion and Dynamics Choice of electric propulsion system, block diagram, concept of EV Motors, single and multi-motor configurations, fixed and variable geared transmission, In-wheel motor configuration, classification, Electric motors used in current vehicle applications, Recent EV Motors, Vehicle load factors, vehicle acceleration(12 hrs) Fuel cells Introduction of fuel cells, basic operation, model, voltage, power and efficiency, power plant system –characteristics, sizing, Example of fuel cell electric vehicle. Introduction to HEV, brake specific fuel consumption, comparison of series, series-parallel hybrid systems, examples. (10 hrs) Battery Charging and control Battery charging: Basic requirements, charger architecture, charger functions, wireless charging, power factor correction.	Ι	Past, Present and Future EV, EV Concept, EV Technology, State-of-the Art EVs, EV configuration, EV system, Fixed and Variable gearing, single and multiple motor drive, in-wheel drives, EV parameters: Weight, size, force and energy, performance	CO1
Choice of electric propulsion system, block diagram, concept of EV Motors, single and multi-motor configurations, fixed and variable geared transmission, In-wheel motor configuration, classification, Electric motors used in current vehicle applications, Recent EV Motors, Vehicle load factors, vehicle acceleration(12 hrs) Fuel cells Introduction of fuel cells, basic operation, model, voltage, power and efficiency, power plant system –characteristics, sizing, Example of fuel cell electric vehicle. Introduction to HEV, brake specific fuel consumption, comparison of series, series-parallel hybrid systems, examples. (10 hrs) Battery Charging and control Battery charging: Basic requirements, charger architecture, charger functions, wireless charging, power factor correction.	II	Electro mobility and the environment, history of Electric power trains, carbon emissions from fuels, green houses and pollutants, comparison of conventional, battery, hybrid and	CO2
Introduction of fuel cells, basic operation, model, voltage, power and efficiency, power plant system –characteristics, sizing, Example of fuel cell electric vehicle. Introduction to HEV, brake specific fuel consumption, comparison of series, series-parallel hybrid systems, examples. (10 hrs) Battery Charging and control Battery charging: Basic requirements, charger architecture, charger functions, wireless charging, power factor correction.	III	Choice of electric propulsion system, block diagram, concept of EV Motors, single and multi-motor configurations, fixed and variable geared transmission, In-wheel motor configuration, classification, Electric motors used in current vehicle applications, Recent	СОЗ
Battery charging: Basic requirements, charger architecture, charger functions, wireless charging, power factor correction.	IV	Introduction of fuel cells, basic operation, model, voltage, power and efficiency, power plant system –characteristics, sizing, Example of fuel cell electric vehicle. Introduction to HEV, brake specific fuel consumption, comparison of series, series-parallel hybrid	CO4
design approach, PI controllers designing, torque-loop, speed control loop compensation, acceleration of battery electric vehicle. (12 hrs) Content Beyond the syllabus:		Battery charging: Basic requirements, charger architecture, charger functions, wireless charging, power factor correction. Control: Introduction, modelling of electro mechanical system, feedback controller design approach, PI controllers designing, torque-loop, speed control loop compensation, acceleration of battery electric vehicle. (12 hrs)	CO5

- Impact of different transportation technologies on environment and energy supply.
- ➤ Electric drives used in HEV/EVs

	Course Outcomes				
Upon s	Upon successful completion of the course, the student will be able to				
CO1	Understandabout various configurations in parameters of EV systems {Understand level, KL2}				
CO2	Understand about electro mobility and environmental issues of EVs{ Understand level, KL2}				
CO3	Analyzeabout propulsion and dynamic aspects of EV {Analyze level, KL4}				
CO4	Understand fuel cell technologies in EV systems. { Understand level, KL2}				
CO5	Analyzeabout battery charging and controls required of EVs {Apply level, KL4}				

Learning Resources

Text books:

- 1. C.C Chan, K.T Chau: "Modern Electric Vehicle Technology", Oxford University Press Inc., New York 2001.
- 2. James Larminie, John Lowry, "Electric Vehicle Technology Explained", Wiley, 2003.

Reference books:

- 1. Iqbal Husain,, "Electric and Hybrid Vehicles Design Fundamentals", CRC Press 2005.
- 2. Ali Emadi, "Advanced Electric Drive Vehicles", CRC Press, 2015.
- 3. M. Ehsani, Y. Gao, S. E. Gay and A. Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design", CRC Press, 2004.
- 4. T. Denton, "Electric and Hybrid Vehicles", Routledge, 2016.

e- Resources & other digital material

- 1. https://archive.nptel.ac.in/courses/108/106/108106182/
- 2. https://nptel.ac.in/courses/108106170
- 3. https://archive.nptel.ac.in/content/syllabus_pdf/108103009.pdf
- 4. https://en.wikipedia.org/wiki/Electric_vehicle
- 5. https://afdc.energy.gov/vehicles/electric.html

Micro-Syllabus

Unit – 1: Introduction to EV Systems and Parameters

Past, Present and Future EV, EV Concept, EV Technology, State-of-the Art EVs, EV configuration, EV system, Fixed and Variable gearing, single and multiple motor drive, in-wheel drives, EV parameters: Weight, size, force and energy, performance parameters. (10 hrs)

Unit No	Module	Micro content			
		Past, Present and Future EV			
1a.		EV Concept			
Introduction to	Introduction to EV	EV Technology			
EV Systems		State-of-the Art EVs			
		EV configuration.			
1h EV Systems		Fixed and Variable gearing			
1b. EV Systems and Parameters	EV Parameters	single and multiple motor drive			
and I at affecters		in-wheel drives			
		EV parameters: Weight, size, force and energy,			

performance 1	parameters
---------------	------------

Unit-2: EV and Energy Sources

Electro mobility and the environment, history of Electric power trains, carbon emissions from fuels, green houses and pollutants, comparison of conventional, battery, hybrid and fuel cell electric systems (10 hrs)

Unit No Module		Micro content
2a EV and		Electro mobility
2a. EV and	Electric mobility	history of Electric power trains
Energy Sources		carbon emissions from fuels
		green houses and pollutants
2b.		conventional, battery
EV and Energy	Energy Sources	hybrid and fuel cell electric systems
Sources		

Unit-3: EV Propulsion and Dynamics

Choice of electric propulsion system, block diagram, concept of EV Motors, single and multi motor configurations, fixed and variable geared transmission, In-wheel motor configuration, classification, Electric motors used in current vehicle applications, Recent EV Motors, Vehicle load factors, vehicle acceleration. (12 hrs).

Unit No	Module		Micro content
20			Choice of electric propulsion system
3a. EV Propulsion	EV Propulsion	and	block diagram
EV Propulsion and Dynamics	Dynamics	ļ	concept of EV Motors
and Dynamics			single configurations
			multi motor configurations
	EV Propulsion	and	fixed and variable geared transmission
3b.			In-wheel motor configuration
EV Propulsion			Electric motors used in current vehicle applications
and Dynamics	Dynamics		Recent EV Motors
			Vehicle load factors
			vehicle acceleration

Unit-4: Fuel cells

Introduction of fuel cells, basic operation, model, voltage, power and efficiency, sizing, Example of fuel cell electric vehicle. Introduction to HEV, brake specific fuel consumption, comparison of series, series-parallel hybrid systems, examples. (10 hrs)

Unit No	Module	Micro content
		Introduction of fuel cells,
4a. Fuel cells	Fuel cells	basic operation
		voltage, power and efficiency
		sizing
		Example of fuel cell electric vehicle.
4b. Hybrid EV	Hybrid EV	Introduction to HEV
Hybrid Ev		brake specific fuel consumption

comparison of series system
series-parallel hybrid systems, examples

Unit-5: Battery Charging and control

Battery charging: Basic requirements, charger architecture, charger functions, wireless charging, power factor correction.

Control: Introduction, modelling of electro mechanical system, feedback controller design approach, PI controllers designing, torque-loop, speed control loop compensation, acceleration of battery electric vehicle. (12 hrs)

Unit No	Module	Micro content
_		Basic requirements,
5a.		charger architecture
Battery Charging and control	Battery charging	charger functions
and control		wireless charging
		power factor correction
		modelling of electro mechanical system
5h	Charging Control	feedback controller design approach
5b. Charging Control		PI controllers designing
		torque-loop, speed control loop compensation
		acceleration of battery electric vehicle.

CO-PO mapping Table

Ο.		mappi		,,,										
	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of													
	correlations (High: 3, Medium: 2, Low: 1)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO-	PSO-
													1	2
CO1	2						1							
CO2	1						2							
CO3	2	2										2	1	
CO4	1													
CO5	2	1										2		1

L T P C 3 0 0 3

SCADA SYSTEMS AND APPLICATIONS

(Professional Elective-V)

PRE-REQUISITES: 1) Power systems and Power Electronics

Course objectives: The student should be able to

- 1. understand about Supervisory Control and Data Acquisition System (SCADA)
- 2. Know the SCADA communication and its functions
- 3. Get an insight into its application

Syllabus				
Unit No	Contents	Mapped CO		
I	Unit -I Introduction to SCADA(10hrs) Data acquisition systems, Evolution of SCADA, Communication technologies(04hrs) Monitoring and supervisory functions, SCADA applications in Utility Automation, Industries SCADA. (06hrs)	CO1		
II	Unit-II SCADA Components(11hrs) Industries SCADA System Components, Schemes- Remote Terminal Unit (RTU), Intelligent Electronic Devices (IED). (05hrs) Programmable Logic Controller (PLC), Communication Network, SCADA Server, SCADA/HMI Systems(06hrs)	CO2		
III	Unit-III SCADA Architecture(10hrs) Various SCADA architectures, advantages and disadvantages of each System(5 hrs) single unified standard architecture -IEC 61850.(5 hrs)	CO3		
IV	Unit-IV SCADA Communication (12 hrs) Various industrial communication technologies wired and wireless methods. (06 hrs) Fiberoptics, Open standard communication protocols. (06 hrs)	CO4		
V	Unit-V SCADA Applications: (12 hrs) Utility applications, Transmission and Distribution sector operations, monitoring, analysis and improvement. (06 hrs) Industries - oil, gas and water, Case studies, Implementation, Simulation Exercises. (06 hrs)	CO5		

	Course Outcomes				
Upon s	Upon successful completion of the course, the student will be able to				
CO1	CO1 Describe the basic tasks of SCADA {Describe level, KL2}				
CO2	Acquire knowledge about SCADA architecture, various advantages and disadvantages of each				
	System {knowledge level, KL1}				
CO3	Understand about single unified standard architecture IEC 61850{understand level, KL2}				
CO4	Understand about SCADA system components: remote terminal units, PLCs, intelligent				
	electronic devices, HMI systems, SCADA server. {Understand level, KL2}				
CO5	Apply SCADA systems in transmission and distribution sectors {Apply level, KL4}				

Learning Resources

Textbooks:

- 1. Stuart A. Boyer: "SCADA-Supervisory Control and Data Acquisition", Instrument Society of America Publications, USA, 2004
- 2. Gordon Clarke, Deon Reynders: "Practical Modern SCADA Protocols: DNP3, 60870.5 and Related Systems", Newnes Publications, Oxford, UK, 2004.

Reference books:

- 1. William T. Shaw, "Cybersecurity for SCADA systems", PennWell Books, 2006.
- 2. David Bailey, Edwin Wright, "Practical SCADA for industry", Newnes, 2003.
- 3. Michael Wiebe, "A guide to utility automation: AMR, SCADA, and IT systems for electric power", PennWell 1999.

Micro-Syllabus

Unit – 1 Introduction to SCADA (10 hrs)

Data acquisition systems, Evolution of SCADA, Communication technologies. (04 hrs)

Monitoring and supervisory functions, SCADA applications in Utility Automation, Industries SCADA. (06 hrs)

Unit No	Module	Micro content
1a. Introduction to SCADA	T4 4	Data acquisition systems
	Introduction to SCADA	Evolution of SCADA
		Communication technologies
1b. Introduction to SCADA	Introduction to	Monitoring and supervisory functions
	SCADA	SCADA applications in Utility Automation
		SCADA applications in Industries SCADA

Unit-II SCADA Components (11 hrs)

Industries SCADA System Components, Schemes- Remote Terminal Unit (RTU), Intelligent Electronic Devices (IED). (05 hrs)

Programmable Logic Controller (PLC), Communication Network, SCADA Server, SCADA/HMI Systems (06 hrs)

Unit No	Module	Micro content
		Industries SCADA System Components
2a. SCADA	SCADA Components	Industries SCADA System Schemes
Components		Remote Terminal Unit (RTU),
		Intelligent Electronic Devices (IED)
	SCADA Components	Programmable Logic Controller (PLC)
2b. SCADA		Communication Network
Components		SCADA Server
-		SCADA/HMI Systems

Unit-III SCADA Architecture (10hrs)

Various SCADA architectures, advantages, and disadvantages of each System (**5 hrs**) single unified standard architecture -IEC 61850.(**5 hrs**)

Unit No	Module	Micro content
3a SCADA	SCADA Architecture	Various SCADA architectures
Architecture		Advantage of each System

		Disadvantages of each System
3b. SCADA Architecture	SCADA Architecture	Single unified standard architecture -IEC 61850.

Unit-IV SCADA Communication(10hrs)

Various industrial communication technologies wired and wireless methods. (06hrs) fiberoptics, Open standard communication protocols. (04hrs)

Unit No	Module	Micro content						
4a.	SCADA	various industrial communication technologies						
SCADA	SCADA Communication	wired methods						
Communication	Communication	wireless methods						
4b.	SCADA	fiber optics						
SCADA Communication	Communication	Open standard communication protocols						

Unit-V SCADA Applications: (12 hrs)

Utility applications, Transmission and Distribution sector operations, monitoring, analysis and improvement. (06 hrs)

Industries - oil, gas and water, Case studies, Implementation, Simulation Exercises. (06 hrs)

Unit No	Module	Micro content							
		Utility applications							
5a.		Transmission and Distribution sector operations							
SCADA	SCADA Applications	Utility applications Transmission and Distribution sector operations Transmission and Distribution system monitoring, analysis Transmission and Distribution system improvement Industries - oil, gas and water, Case studies Industries - oil, gas and water Implementation,							
Applications									
		Transmission and Distribution system improvement							
5b.		Industries - oil, gas and water, Case studies							
SCADA	SCADA Applications	Transmission and Distribution sector operations Transmission and Distribution system monitoring, analysis Transmission and Distribution system improvement Industries - oil, gas and water, Case studies Industries - oil, gas and water Implementation,							
Applications		Simulation Exercises							

CO-PO mapping Table

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of													
	correlations (High: 3, Medium: 2, Low: 1)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO- PSO												PSO-	
													1	2
CO1			2	3										1
CO2			2	3										1
CO3			2	3										1
CO4			2	3										1
CO5			2	3										1

L T P C 3 0 0 3

SIGNALS AND SYSTEMS (Open Elective-V)

PRE-REQUISITES: Engineering Mathematics-1 and 3

Course objectives: The student should be able to

- Describe signals mathematically and understand how to perform mathematical operations on signals and Compute the Fourier series of a set of well-defined signals from first principles.
- ➤ Compute the Fourier transform of a set of well-defined signals and understand the Nyquist sampling theorem and the process of reconstructing a continuous-time signal from its samples.
- Perform the process of convolution and correlation between signals and Compute the output of an LTI system given the input and the impulse response through convolution sum and convolution integral.
- > Understand Laplace transforms and their properties for analysis of signals and systems.
- > Understand Z-transforms and their properties for analysis of signals and systems.

Syllabus								
Unit No	Contents	Mapped CO						
I	Signals Analysis and Fourier Series Signal Analysis: Definition Signal (Continuous time and Discrete time), Elementary signals such as Dirac delta, unit step, unit ramp, sinusoidal and exponential. Classification of signals, time operations on signals. Analogy between vectors and signals, Orthogonal signal space, Signal approximation using orthogonal functions, Mean square error, Closed or complete set of orthogonal functions. (09hr) Fourier Series: Representation of Fourier series, Dirichlet's conditions, Properties of Fourier Series, Trigonometric Fourier Series and Exponential/Complex Fourier Series, Complex Fourier spectrum. (06hr)	CO1						
П	Fourier Transform and Sampling Theorem Fourier Transform: Deriving Fourier Transform from Fourier series, Fourier Transform convergence condition, Fourier Transform of standard signals, Fourier Transform of Periodic Signals, Properties of Fourier Transform, Fourier Transforms involving Impulse function and Signum function, Introduction to Hilbert Transform. (08hr) Sampling Theorem: Graphical and analytical proof for Band Limited Signals, impulse sampling, Natural and Flat top Sampling, Reconstruction of signal from its samples, effect of under sampling –Aliasing, Introduction to Band Pass sampling. (05hrs)	CO2						
III	Signal transmission through Linear Time Invariant(LTI) Systems and Convolution and Correlation Signal transmission through Linear Time Invariant (LTI) Systems: System definition (continuous and discrete), properties of systems, impulse response,	CO3						

	transfer function, LTI system response, Filter characteristics of linear systems.									
	Distortion less transmission through a system, Signal bandwidth, system									
	bandwidth, Causality and Poly-Wiener criterion for physical realizable									
	systems.(07)									
	Convolution and Correlation: Concept of convolution, convolution in time are frequency domain properties of Fourier Transform, graphical and analytic									
	convolution, Cross correlation and auto correlation of functions, properties of									
	correlation function, Energy density spectrum, Power density spectrum,									
	Relation between auto correlation function and energy/power spectral density									
	spectrum. Relation between convolution and correlation.(09)									
	Laplace Transforms: Laplace Transforms (L.T), Inverse Laplace Transform,									
	Concept of Region of Convergence(ROC) for Laplace Transforms, Properties of									
IV	ROC of Laplace Transform, Properties of Laplace Transform, Relation between									
	LT and Fourier Transform of a signal, Response of LTI system using Laplace									
	Transform, Laplace transform of causal periodic signals, Laplace transform of									
	certain signals using waveform synthesis. (08hrs)									
	Z-Transforms: Concept of Z- Transform and Inverse Z-Transform, Distinction									
	between Laplace, Fourier and Z -transforms, Region of Convergence in Z-									
	Transform, Constraints on ROC for various classes of signals, Properties of									
\mathbf{V}	ROC of Z-Transform, Properties of Z-transforms, Inverse Z-transform,									
•	Response of LTI system using Z-Transform, Introduction to DTFT,									
	Relationship between ZT and DTFT, Conversion from Laplace transform to Z-									
	transform and vice-versa, Introduction to DTFT, Relationship between ZT and									
	DTFT. (08hrs)									

Course Outcomes												
Upon succ	Upon successful completion of the course, the student will be able to											
CO1	The student will be able to understand various types of signals mathematically and											
	able to calculate complex Fourier spectrum. {Understand level,											
	KL2,Calculate-KL-4}											
CO2	Analyse the continuous-time signals and continuous-time systems using Fourier											
	transform and Apply sampling theorem to convert continuous-time signals to											
	discrete-time signal and reconstruct the original signal from samples. { Analyse											
	level-KL3, Apply Level-KL3}											
CO3	Define systems based on their properties and determine the response of LTI system.											
	Understand the concept convolution, correlation, energy spectral density and power											
	spectral density. {Define KL-1, Understand level, KL2}											
CO4	Compute Laplace transforms to analyze continuous time signals and systems and											
	understand the concept of region of convergence. { Compute level, KL4}											
CO5	Compute Z-transform to analyze discrete-time signals and systems, and understand											
	the concept of region of convergence. { Compute level, KL4}											

Learning Resources								
Text books:								
1. Signals, Systems & Communications - B.P. Lathi, BS Publications, 2003.								

- 2. Signals and Systems A.V. Oppenheim, A.S. Willsky and S.H.Nawab, PHI, 2nd Edn.
- 3. Signals & Systems- Narayan Iyer and K Satya Prasad, Cengage Pub.
- 4. Principles of Linear Systems and Signals by B.P.Lathi, Oxford publications, Second Edition.

Reference books

- 1. Signals & Systems Simon Haykin and Van Veen, Wiley, 2ndEdition.
- 2. Signals and Systems K R Rajeswari
- 3. Fundamentals of Signals and Systems- Michel J. Robert, MGHInternational Edition, 2008.
- 4. Signals and Stochastic Processes- <u>Y Mallikarjuna Reddy and Giri Babu Kande</u>, University Press, 1st edition.

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/108/106/108106163/
- 2. https://nptel.ac.in/courses/108/104/108104100/
- 3. https://nptel.ac.in/courses/108/105/108105065/
- 4. https://nptel.ac.in/courses/117/104/117104074/
- 5. https://nptel.ac.in/courses/117/101/117101055/
- 6. https://nptel.ac.in/courses/108/106/108106075/

MICRO-SYLLABUS:

UNIT – I:Signals Analysis and Fourier Series

Signal Analysis: Definition Signal(Continuous time and Discrete time), Elementary signals such as Dirac delta, unit step, unit ramp, sinusoidal and exponential. Classification of signals(Even and odd, periodic and periodic, energy and power, random and deterministic, analog and digital and related problems), time operations on signals(time shifting, time scaling, time reversal and related problems). Analogy between vectors and signals, Orthogonal signal space, Signal approximation using orthogonal functions, Mean square error, Closed or complete set of orthogonal functions. (09hr)

Fourier Series: Representation of Fourier series, Dirichlet's conditions, Properties of Fourier Series(Linearity, time shifting, time scaling, time reversal, time differentiation, frequency shifting, time convolution, time multiplication, parsevals identity and related problems), Trigonometric Fourier Series and Exponential/Complex Fourier Series, Complex Fourier spectrum(definition and related problems). (06hr)

UNIT – II:Fourier Transform and Sampling Theorem

Fourier Transform: Deriving Fourier Transform from Fourier series, Fourier Transform convergence condition, Fourier Transform of standard signals, Fourier Transform of Periodic Signals, Properties of Fourier Transform, Fourier Transforms involving Impulse function and Signum function, Introduction to Hilbert Transform. (08hr)

Related Problems

Sampling Theorem: Graphical and analytical proof for Band Limited Signals, impulse sampling, Natural and Flat top Sampling, Reconstruction of signal from its samples, effect of under sampling –Aliasing, Introduction to Band Pass sampling. (05hrs)

Related Problems

UNIT – III

Signal transmission through Linear Time Invariant (LTI) Systems and Convolution and Correlation

Signal transmission through Linear Time Invariant(LTI) Systems: System definition (continuous and discrete), properties of systems(Linearity, time invariance, causality, stability, memoryless, invertibility and related problems), impulse response, transfer function, LTI system response, Filter characteristics of linear systems. Distortion less transmission through a system, Signal bandwidth, system bandwidth, Causality and Poly-Wiener criterion for physical realizable systems.(07)

Convolution and Correlation: Concept of convolution, convolution in time and frequency domain properties of Fourier Transform, graphical and analytical convolution, Cross correlation and auto correlation of functions, properties of correlation function, Energy density spectrum, Power density spectrum, Relation between auto correlation function and energy/power spectral density spectrum. Relation between convolution and correlation.(09). **Related Problems.**

UNIT - IV

Laplace Transforms: Laplace Transforms (L.T), Inverse Laplace Transform, Concept of Region of Convergence(ROC) for Laplace Transforms, Properties of ROC of Laplace Transform, Properties of Laplace Transform, Relation between LT and Fourier Transform of a signal, Response of LTI system using Laplace Transform, Laplace transform of causal periodic signals, **Laplace transform of certain signals using waveform synthesis.** (08hrs)

Related Problems

UNIT -V

Z-Transforms: Concept of Z- Transform and Inverse Z-Transform, Distinction between Laplace, Fourier and Z -transforms, Region of Convergence in Z-Transform, Constraints on ROC for various classes of signals, Properties of ROC of Z-Transform, Properties of Z-transforms, Inverse Z-transform, Response of LTI system using Z-Transform, Conversion from Laplace transform to Z-transform and vice-versa, Introduction to DTFT, Relationship between ZT and DTFT. (08hrs)

Related Problems

Learning Resources

Text books:

- 1. Signals, Systems & Communications B.P. Lathi, BS Publications, 2003.
- 2. Signals and Systems A.V. Oppenheim, A.S. Willsky and S.H.Nawab, PHI, 2nd Edn.
- 3. Signals & Systems- Narayan Iyer and K Satya Prasad ,Cengage Pub.
- 4. Principles of Linear Systems and Signals by B.P.Lathi, Oxford publications, Second Edition.

Reference books

- 1. Signals & Systems Simon Haykin and Van Veen, Wiley, 2ndEdition.
- 2. Signals and Systems K R Rajeswari
- 3. Fundamentals of Signals and Systems- Michel J. Robert, MGHInternational Edition, 2008.
- 4. Signals and Stochastic Processes- Y Mallikarjuna Reddy and Giri Babu Kande, University Press, 1st edition.

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/108/106/108106163/
- 2. https://nptel.ac.in/courses/108/104/108104100/
- 3. https://nptel.ac.in/courses/108/105/108105065/
- 4. https://nptel.ac.in/courses/117/104/117104074/
- 5. https://nptel.ac.in/courses/117/101/117101055/
- 6. https://nptel.ac.in/courses/108/106/108106075/

CO-PO mapping

	PO1	DO2	DO3	DO4	DO5	DO6	DO7	DOS	DO0	PO10	DO11	DO12	PSO-	PSO-
	FOI	F 02	103	F 04	103	POO	PO/	PO8	PO9	POIU	FOII	FO12	1	2
CO1	3	3	2											3
CO2	2	2	2											3
CO2	3	3	2											3
CO3	3	2	3											3
CO4	3	2	2											3
CO5	3	2	2											3
