I B. TECH II SEMESTER REGULAR EXAMINATIONS, SEPTEMBER - 2021 MATHEMATICS - II (Common to All Branches)

Time : 3 Hours

Max. Marks: 70

Note : Answer ONE question from each unit (5 × 14 = 70 Marks)

UNIT-I

- 1. a) Find a root of the following equation using Bisection method, correct to two [7M] decimal places $x^3 x 1 = 0$.
 - b) Find by Newton's method, the real root of the equation $3x = \cos x + 1$. [7M]

(OR)

- 2. a) Solve 20x + y 2z = 17; 3x + 20y z = -18; 2x 3y + 20z = 25 by Gauss [7M] Jacobi method.
 - b) Derive the iterative formula for finding $\frac{1}{N}$ using Newton-Raphson method [7M] and also find the value of $\frac{1}{32}$ correct to four decimal places.

UNIT-II

3. a) (i) Show that
$$\mu \delta = \frac{1}{2} (\Delta + \nabla)$$
.

(ii) Find the function f(x), if its first order forward difference is $x^2 + 5x$ and

f(0) = 2, interval of differencing being 1.

 b) Interpolate by means of Gauss's backward formula the population of a town [7M] for the year 1974 from

Year	1939	1949	1959	1969	1979	1989
Population (in thousands)	12	15	20	27	39	52
	(0	OR)				

- 4. a) A curve passes through the points (0, 18), (1, 10), (3, -18) and (6, 90). Find [7M] the slope of the curve at x = 2.
 - b) Given $\sin 45^0 = 0.7071$, $\sin 50^0 = 0.7660$, $\sin 55^0 = 0.8192$, $\sin 60^0 = 0.8660$, [7M] find $\sin 52^0$ using Newton's forward formula.

[7M]

UNIT-III

5	ച	Given that
J.	a)	Orven mai

х	4.0	4.2	4.4	4.6	4.8	5.0	5.2
log x	1.3863	1.4351	1.4816	1.5261	1.5686	1.6094	1.6487

Evaluate $\int_{0}^{5.2} \log x \, dx$ by

(i) Simpson's 1/3rd rule; (ii) Trapezoidal rule; (iii) Simpson's 3/8th rule.

Using Picard's process of successive approximation, obtain a solution upto the [8M] b) fifth approximation of the equation $\frac{dy}{dx} = y + x$ such that y = 1 when x = 0.

Use Euler's modified method to compute y for 0.1 and 0.2, given that [7M] 6. a) $\frac{dy}{dx} = x + y^2, y(0) = 1.$

b) Obtain the value of y at x = 0.2, if y satisfying $\frac{dy}{dx} = x^2 y + x$, y(0) = 1, taking h [7M] = 0.1, using R-K method of fourth order.

UNIT-IV

7. a) Find
$$L\left[2^{t} + \frac{\cos 2t - \cos 3t}{t} + t \sin t\right].$$
 [7M]

b) Find
$$L^{-1}\left[\log\left(\frac{s^2+1}{(s-1)^2}\right)\right]$$
. [7M]

(OR)

8. a) Find
$$L\left[\int_{0}^{t} \frac{1-e^{-u}}{u} \, du\right]$$
. [6M]

Use transform method to solve $\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + x = e^t$ with x = 2, $\frac{dx}{dt} = -1$ at t = 0. b) [8M]

UNIT-V

9. a) Obtain the Fourier series for
$$f(x) = \left(\frac{\pi - x}{2}\right)^2$$
, in $0 < x < 2\pi$ [8M]

Find the Fourier sine transform of $\frac{e^{-ax}}{x}$, a > 0. b) [6M] (OR

10. a) Find the Fourier series for
$$f(t) = 1 - t^2$$
, when $-1 \le t \le 1$. [6M]

b) Given $F\left[e^{-x^2}\right] = \sqrt{\pi}e^{-s^2/4}$, find the Fourier transforms of [8M] (i) $e^{-x^2/3}$; (ii) $e^{-4(x-3)^2}$.

* * * * *

Page 2 of 2

 $\mathbf{R20}$

[6M]